初中数学几何阴影面积的三种解法

合集下载

四种方法求阴影部分面积

四种方法求阴影部分面积

四种方法求阴影部分面积首先,我们可以使用几何方法来求解阴影部分的面积。

设阴影部分的形状为矩形,其底边的长度为a,高度为h。

阴影的边界可以用两条直线来表示,设直线1与x轴的交点为A,直线2与x轴的交点为B。

两条直线与x轴的交点之间的距离为b。

则阴影部分的面积可以用以下公式表示:A=(a+b)*h/2第二种方法是通过将阴影部分分割成多个小矩形来求解。

首先,我们将阴影部分分割成n个小矩形,每个小矩形的底边长度为ai,高度为hi。

则阴影部分的面积可以表示为以下公式的和:A = ∑(ai * hi)其中i的范围从1到n。

第三种方法是使用积分来求解。

假设阴影部分的形状可以用函数y=f(x)来表示。

要求阴影部分的面积,我们需要找到函数f(x)的定义域上的积分区间[a,b]。

A = ∫[a, b] f(x) dx最后一种方法是使用统计学方法来求解。

假设我们已经获得了一组阴影部分的随机样本,符合一定的分布规律。

我们可以使用这组样本数据来进行统计分析,得出阴影部分的面积的估计值。

首先,我们可以计算出这组样本数据的平均值和标准差。

然后,使用均值加减一个标准差的方法,来计算阴影部分的上下边界。

根据阴影部分的上下边界和样本数据的分布,我们可以得到阴影部分面积的估计值。

需要注意的是,这种方法求得的阴影部分面积只是一个估计值,可能存在一定的误差。

综上所述,我们可以用几何法、分割法、积分法和统计法来求解阴影部分的面积。

每种方法都有自己的优缺点和适用范围,选择合适的方法取决于具体情况和问题要求。

九年级数学人教版(上册)小专题15 四种方法求阴影部分的面积

九年级数学人教版(上册)小专题15 四种方法求阴影部分的面积

方法 2 和差法 ★直接和差法
将不规则阴影部分的面积看成是以规则图形为载体的一部分, 其他部分空白且为规则图形,此时采用整体作差法求解.如图:
⇨S 阴影=S△ABC-S 扇形 CAD
⇨ S阴影=S△ABO-S扇形COD
2(. 2021·包头)如图,在 Rt△ABC 中,∠ACB=90°,AB= 5,
方法 4 容斥原理
有的阴影部分面积是由两个基本图形互相重叠得到的.常用的方 法是:两个基本图形的面积-被重叠图形的面积=组合图形的面积.
10.如图,在 Rt△ABC 中,∠ACB=90°,∠A=30°,AC= 3,

分别以点 A,B 为圆心,AC,BC 的长为半径画弧,分别交 AB 于点
D,E,则图中阴影部分的面积是51π2-
与 AB 相交于点 F,连接 OE,OF,则图中阴影部分的面积是
7 2
3-43π .
★构造和差法
先将不规则阴影部分与空白部分组合,构造规则图形或分割后为 规则图形,再进行面积和差计算.如图:
4(. 2021·吉林)如图,在 Rt△ABC 中,∠C=90°,∠A=30°, BC=2.以点 C 为圆心,CB 长为半径画弧,分别交 AC,AB 于点 D, E,则图中阴影部分的面积为 23π- 3 (结果保留 π).
3 2
.
11.如图,正方形 ABCD 的边长为 3,以点 A 为圆心,2 为半径 作圆弧,以点 D 为圆心,3 为半径作圆弧.若图中阴影部分的面积分 别为 S1,S2,则 S1-S2=134π-9 .
BC=2,以点 A 为圆心,AC 长为半径画弧,交 AB 于点 D,交 AC
于点 C,以点 B 为圆心,AC 长为半径画弧,交 AB 于点 E,交 BC

求阴影部分面积的方法

求阴影部分面积的方法

求阴影部分面积的方法在几何学中,求阴影部分的面积是一个常见的问题。

阴影部分的面积可以通过多种方法来计算,本文将介绍几种常用的方法。

一、几何图形分割法。

在几何图形分割法中,我们可以将阴影部分分割成几个简单的几何图形,然后分别计算每个图形的面积,最后将它们相加得到阴影部分的面积。

这种方法适用于较为规则的几何图形,如矩形、三角形等。

二、积分法。

对于较为复杂的曲线或曲面的阴影部分,我们可以利用积分法来求解。

通过建立适当的坐标系和积分限,我们可以将阴影部分的面积表示为一个定积分,通过积分计算得到阴影部分的面积。

三、几何变换法。

在一些特殊情况下,我们可以利用几何变换来求解阴影部分的面积。

例如,通过平移、旋转、镜像等几何变换,将阴影部分变换成一个已知的几何图形,然后计算这个已知几何图形的面积,最后根据几何变换的性质得到阴影部分的面积。

四、数值逼近法。

对于一些无法通过解析方法求解的阴影部分,我们可以利用数值逼近法来求解。

通过将阴影部分分割成若干小区域,然后分别计算每个小区域的面积,最后将它们相加得到阴影部分的面积的近似值。

五、利用计算机软件求解。

在现代科技条件下,我们还可以利用计算机软件来求解阴影部分的面积。

通过建立相应的数学模型,利用计算机软件进行数值计算,可以得到阴影部分的面积的精确值。

六、其他方法。

除了上述几种方法外,还有一些其他特殊的方法可以用来求解阴影部分的面积,如利用相似性、三角函数等性质来进行计算。

综上所述,求解阴影部分的面积涉及到多种方法,我们可以根据具体的情况选择合适的方法来进行计算。

在实际问题中,我们可以根据问题的特点和要求来选择合适的方法,从而求解阴影部分的面积。

希望本文介绍的方法对您有所帮助。

初中数学求阴影图形面积的三种解法

初中数学求阴影图形面积的三种解法

(阴影面积是一个常规的几何图形,例如三角形、正方形等)
二、和差法
(一)直接和差法
(用两个或多个常见的几何图形面积进行加减)
(一)直接和差法
(用两个或多个常见的几何图形面积进行加减)
(二)构造和差法
(通过添加辅助线进行求解)
(通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件)。

(一)全等法
(通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件)。

(二)对称法
(通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件)。

(三)平移法
(通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件)。

(四)旋转法。

(完整版)求阴影部分面积的几种常用方法

(完整版)求阴影部分面积的几种常用方法

总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为|:四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。

八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求下图(1)中阴影部分的面积,可将左半图形绕B 点逆时针方向旋转180°,使A与C 重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求下图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。

阴影部分面积的计算方法

阴影部分面积的计算方法

阴影部分面积的计算方法
计算阴影部分面积的方法取决于阴影部分的形状。

以下是一些常见的计算阴影部分面积的方法:
1. 矩形阴影部分面积:如果阴影部分是矩形,那么它的面积可以通过矩形的长和宽相乘来计算。

2. 三角形阴影部分面积:如果阴影部分是三角形,那么它的面积可以通过三角形的底和高相乘再除以 2 来计算。

3. 圆形阴影部分面积:如果阴影部分是圆形,那么它的面积可以通过圆的半径的平方乘以π(圆周率)来计算。

4. 弓形阴影部分面积:如果阴影部分是弓形,那么它的面积可以通过扇形的面积减去三角形的面积来计算。

扇形的面积可以通过圆的半径的平方乘以π再乘以扇形的角度(以弧度表示)来计算,三角形的面积可以通过底和高相乘再除以 2 来计算。

5. 不规则阴影部分面积:如果阴影部分是不规则形状,那么可以将其分成若干个简单的形状,然后计算每个形状的面积,最后将它们相加。

或者使用一些数学工具,如微积分,来计算阴影部分的面积。

需要注意的是,在计算阴影部分面积时,应该确保所使用的单位是一致的。

此外,对于一些复杂的形状,可能需要使用一些数学工具或计算机软件来计算面积。

求阴影部分面积解题方法之欧阳道创编

求阴影部分面积解题方法之欧阳道创编

解题方法|初中数学中求阴影部
在初中数学学习阶段,同学们经常会遇到一类求阴影部分面积的问题。

为了对此类问题有一个系统的认识,小编进行方法总结,希望对同学们的学习有所帮助。

在解题方法来讲,大致有以下三种:公式法、和差法、割补法。

1.公式法:所求面积的图形是一个规则图形,如三角形、特殊四边形、扇形等,这时可直接利用相关面积计算公式进行求解;
2.和差法:所求面积的图形是一个不规则图形,可将其通过转化变成多个规则图形面积的和或差,进行求解;
3.割补法:直接求面积较复杂或无法计算时,可通过旋转、平移、割补等方法,对图形进行转化,为利用公式法或和差法创造条件,从而求解。

三种不同的解题方法又分成细小分支,下面结合具体的图形,来一一说明。

好消息:。

初三数学圆阴影部分面积10种解题方法

初三数学圆阴影部分面积10种解题方法

初三数学圆阴影部分面积10种解题方法01和差法对于不规则图形实施分割、叠合后,把所求的图形面积用规则图形面积的和、差表示,再求面积.贵港中考如图1,在扇形OAB中,C是OA的中点,CD⊥OA,CD与弧AB交于点D,以O为圆心,OC的长为半径作弧CE交OB于点E,若OA= 4,∠AOB=120°,则图中阴影部分的面积为( 结果保留π) .图1解析: 图形中的阴影部分是不规则图形,较难直接计算.注意到阴影部分是环形BECA的一部分,因此阴影部分面积等于环形BECA的面积减去图形DCA的面积,又图形DCA的面积等于扇形DOA 的面积减去△ODC的面积.图2如图2,连接OD交弧CE于M.因为OA=4,C是OA的中点,CD⊥OA,所以OD=4,OC=2,DC=2√3,所以∠ODC=30°,∠DOC=60°02割补法对图形合理分割,把不规则图形补、拼成规则图形会,再求面积.吉林中考如图3,将半径为3的圆形纸片,按下列顺序折叠,若弧AB和弧BC都经过圆心O,则阴影部分的面积是( 结果保留π) .图3解析: 观察图形可以发现: 下方树叶形阴影部分的面积分成左右两块后,可以补到上方两个空白的新月形的位置.是否能够完全重合,通过计算验证即可.图4如图4,过点O作OD⊥AB于D,连接OA、OC、OB.由折叠性质知OD=1/2r=1/2AO,03等积变形法运用平行线性质或其他几何图形性质把不规则图形面积转化为与它等面积的规则图形来进行计算.天水中考如图5,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E 是半圆弧的三等分点,弧BE的长为2π/3,则阴影部分的面积为图5解析: 阴影部分是Rt△ABC的一部分,运用平行线的性质可将图形ABE面积转化成扇形BOE面积.连接BD、BE、BO、OE,如图6.图6因为点E、B是半圆弧的三等分点,所以∠DOB=∠BOE=∠EOA=60°,所以∠BAD=∠EBA=∠BAE=30°,所以BE∥AD.04平移法一些图形看似不规则,将某一个图形进行平移变换后,利用平移的性质,把不规则的图形的面积转化为规则图形的面积来计算.2019年黄石中考模拟如图7,从大半圆中剪去一个小半圆( 小半圆的直径在大半圆的直径MN上),点O为大半圆的圆心,AB是大半圆的弦,且与小半圆相切,AB∥MN,已知AB=12cm,则阴影部分的面积是.图7解析: 因为AB∥MN,由平行线间的距离处处相等,可以平移小半圆,使小半圆的圆心与大半圆的圆心重合,这样不规则的阴影图形就变成一个环形.图8如图8.过点O作OC⊥AB,垂足为C,连接OB,设大半圆的半径为R,小半圆的半径为r.05旋转法一些图形看似不规则,把某个图形进行旋转变换后,利用旋转的性质,把不规则图形的面积转化为规则图形的面积,再进行计算.安顺中考如图9,矩形ABCD中,BC=2,DC=4,以AB 为直径的⊙O与DC相切于点E,则阴影部分的面积为图9解析: 若直接利用弓形面积公式求解相当繁琐,根据已知条件及圆的旋转不变性,利用图形的旋转可实现解题.图10如图10,连接OE 交BD于M.因为CD 是⊙O 的切线,所以OE⊥CD,又AB∥CD,则OE⊥AB,而OE=OB,易知△OBM ≌△EDM,把△OBM绕点M旋转180°就会转到△EDM,阴影部分就转化为扇形BOE,恰好是半径为2的圆的四分之一,06对称法一些图形看似不规则,利用轴对称和中心对称的性质,把不规则图形进行轴对称和中心对称变换,转化为规则图形的面积,再进行计算.赤峰中考如图11,反比例函数y=k/x( k>0) 的图象与以原点(0,0)为圆心的圆交A、B两点,且A( 1,√3) ,图中阴影部分的面积等于 (结果保留π) .图11解析: 根据反比例函数图象及圆的对称性———既是轴对称图形,又是中心对称图形,可知图中两个阴影面积的和等于扇形AOB的面积.过点A作AD⊥x轴于D,如图12.图12因为A( 1,√3) ,所以∠AOD=60°,OA=2,又因为点A、B关于直线y=x对称,所以∠AOB=2×( 60°-45°)=30°.07整体法当已知条件不能或不足以直接求解时,可整体思考,化单一、分散为整体,把所求的未知量整体转换为已知量,再将问题整体化求解.安徽中考如图13,半径均为1的⊙A、⊙B、⊙C、⊙D、⊙E两两外离,A、B、C、D、E分别为五边形的五个顶点,则图中阴影部分的面积是图13解析: 由已知条件,分别求阴影部分的圆心角不易求得,但将五个扇形的圆心角合为一整体,它们的圆心角的和也是五边形的外角之和360°,所以阴影部分面积是一个整圆的面积,所以S阴影=π.08方程法有些图形的局部可以看成某个规则图形,或某些图形具有等面积的性质,这时可以把它们的关系用方程( 组) 来表示,再解方程( 组) ,求出图形的面积.2019年武汉模拟如图14,在边长为2的正方形ABCD 中,分别以2为半径,A、B、C、D 为圆心作弧,则阴影部分的面积是 ( 结果保留π) .图14解析: 仔细观察图形,有两种相同特征的图形在正方形内部,一起围成所求的阴影部分.设弧AC与弧BD交于点G,连接BE、EC,如图15.图15设形如AED 图形的面积为x,形如DEG 图形的面积为y,那么S阴影= S正-4 ( x+y) ,只需求出(x+y)的结果即可.09推算法某些题目运用已知条件,和图形的性质或定理进行推理,可把阴影部分面积用某个式子表示,从而求得不规则图形的面积.南宁中考如图16,Rt△ABC 中,AC=8,BC=6,∠C=90°,分别以AB、BC、AC 为直径作三个半圆,那么阴影部分的面积为平方单位.图16解析: 设左边阴影部分面积为S1,右边阴影部分面积为S2,整个图形的面积可以表示成: 以AC 为直径的半圆+ 以BC为直径的半圆+△ABC.也可以表示成: S1+S2+以AB为直径的半圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学几何阴影面积的三种解法,必须掌握
一、公式法
这属于最简单的方法,阴影面积是一个常规的几何图形,例如三角形、正方形等等。

简单举出2个例子:
二、和差法
攻略一直接和差法
这类题目也比较简单,属于一目了然的题目。

只需学生用两个或多个常见的几何图形面积进行加减。

攻略二构造和差法
从这里开始,学生就要构建自己的数学图形转化思维了,学会通过添加辅助线进行求解。

三、割补法
割补法,是学生拥有比较强的转化能力后才能轻松运用的,否则学生看到这样的题目还是会无从下手。

尤其适用于直接求面积较复杂或无法计算时,通过对图形的平移、
旋转、割补等,为利用公式法或和差法求解创造条件。

攻略一全等法
攻略二对称法
攻略三平移法
攻略四旋转法。

相关文档
最新文档