初中数学-求阴影部分面积的测试题

合集下载

中考数学 阴影部分面积-含答案

中考数学 阴影部分面积-含答案

阴影部分面积未命名一、填空题1.如图,已知水平放置的圆柱形污水排水管道的截面半径12cmOB=,截面圆心O到污水面的距离6cmOC=,则截面上有污水部分的面积为________.【答案】48π【分析】连接OA,阴影部分的面积等于扇形AOB的面积与三角形AOB的面积差,计算圆心角∠AOB的大小即可.【详解】如图,连接OA,∵OB=12,OC=6,OC⊥AB,∴sin∠OBA=12OCOB=,AC=BC,∴∠OBA=30°,BC AB=2BC ∵OA=OB,∴∠OAB=∠OBA=30°,∴∠AOB=120°,∴212012=360AOB S π⨯⨯扇形=48π,∴11=622AOB S AB OC ⨯=⨯△∴阴影部分的面积为-AOB AOB S S △扇形=48π故答案为:48π【点睛】本题考查了垂径定理,特殊角的三角函数,扇形的面积,三角形的面积,熟练进行图形面积分割,并运用相应的公式计算是解题的关键.2.如图,已知Rt ABC 中,6AB =,8BC =,分别以点A 、点C 为圆心,以2AC 长为半径画圆弧,则图中阴影部分的面积为____________.(结果保留π)【答案】2524.4π-【分析】 先计算,,A C AC ∠+∠ 再由阴影部分的面积等于三角形ABC 的面积减去一个圆心角为90,︒ 以12AC 为半径的扇形面积,再分别计算ABC 的面积,圆心角为90,︒ 以12AC 为半径的扇形面积,从而可得答案. 【详解】 解: Rt ABC 中,6AB =,8BC =,90,B ∠=︒90,10,A C AC ∴∠+∠=︒===115,6824,22ABC AC S ∴==⨯⨯= 又阴影部分的面积等于三角形ABC 的面积减去一个圆心角为90,︒ 以12AC 为半径的扇形面积,290525,3604S ππ⨯∴==扇形 2524.4S π∴=-阴影 故答案为:2524.4π- 【点睛】本题考查的是勾股定理的应用,扇形面积的计算,掌握扇形面积的计算是解题的关键.3.如图,在等腰Rt ABC △中,90BAC ∠=︒,BC =A ,B ,C 为圆心,以12AB 的长为半径画弧分别与ABC 的边相交,则图中阴影部分的面积为______.(结果保留π)【答案】82π-【分析】三角形面积公式S=1AC AB 2⨯,扇形面积公式:S =2360n r π,阴影面积=三角形面积—180°扇形的面积,计算即可.【详解】∵等腰Rt ABC △中,90BAC ∠=︒,BC =∴AB=BC•sin45°==42, ∴S △ABC =144=82⨯⨯, ∵∠A+∠B+∠C=180°, ∴1=4=2212AB ⨯, 以2为半径,180°扇形是半圆=212=22ππ⨯, 阴影面积=8-2π.故答案为:8-2π.【点睛】本题主要考查扇形的面积公式,三角形面积,熟知扇形的面积公式的运用,解题的关键是阴影面积=等腰直角三角形的面积-以2为半径180°扇形面积.4.如图,在正方形ABCD 的边长为6,以D 为圆心,4为半径作圆弧.以C 为圆心,6为半径作圆弧.若图中阴影部分的面积分别为12S S 、时,则12S S -=_____________.(结果保留π)【答案】1336π-【分析】根据割补法可进行求解.【详解】解:由题意可得:设以以D 为圆心,4为半径作圆弧所在的扇形面积为S ,则有: 222906904636,==94360360ABCD DCB S S S ππππ⨯⨯====正方形扇形,, ∴12=1336ABCD DCB S S S S S π-=+--正方形扇形;故答案为1336π-.【点睛】本题主要考查扇形面积,熟练掌握扇形面积计算是解题的关键.5.如图,矩形ABCD 的对角线交于点O ,以点A 为圆心,AB 的长为半径画弧,刚好过点O ,以点D 为圆心,DO 的长为半径画弧,交AD 于点E ,若AC =2,则图中阴影部分的面积为_____.(结果保留π)【答案】4π 【分析】由图可知,阴影部分的面积是扇形ABO 和扇形DEO 的面积之和,然后根据题目中的数据,可以求得AB 、OA 、DE 的长,∠BAO 和∠EDO 的度数,从而可以解答本题.【详解】解:∵四边形ABCD 是矩形,∴OA =OC =OB =OD ,∵AB =AO ,∴△ABO 是等边三角形,∴∠BAO =60°,∴∠EDO =30°,∵AC =2,∴OA =OD =1,∴图中阴影部分的面积为:22601301+=3603604ππ⨯⨯⨯⨯π, 故答案为:4π. 【点睛】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键.6.如图,在△ABC 中,∠A =90°,AB =AC =2,以AB 为直径的圆交BC 于点D ,求图中阴影部分的面积为_____.【答案】1【分析】连接AD ,由图中的图形关系看出阴影部分的面积可以简化成一个三角形的面积,然后通过已知条件求出面积.【详解】解:连接AD ,∵AB =BC =2,∠A =90°,∴∠C =∠B =45°,∴∠BAD =45°,∴BD =AD ,∴BD =AD∴由BD ,AD 组成的两个弓形面积相等,∴阴影部分的面积就等于△ABD 的面积,∴S △ABD =12AD•BD =121.故答案为:1.【点睛】本题考查的是扇形面积的计算,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键.7.如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =2,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过△ABC 的直角顶点C ,以点D 为顶点,作∠EDF =90°,与半圆交于点E 、F ,则图中阴影部分的面积是_______.【答案】142π- 【分析】连接CD ,作DM ⊥BC ,DN ⊥AC ,证明△DMG ≌△DNH ,则S 四边形DGCH =S 四边形DMCN ,求得扇形FDE 的面积,则阴影部分的面积即可求得.【详解】。

2024学年初中名校数学好题(通用版)专项(阴影部分的面积)练习(附答案)

2024学年初中名校数学好题(通用版)专项(阴影部分的面积)练习(附答案)

2024学年初中名校数学好题(通用版)专项(阴影部分的面积)练习1.如图,已知在矩形ABCD中,AB=2,以点A为圆心,AD长为半径作,交AB于点E,以AB为直径的半圆恰好与边DC相切,则图中阴影部分的面积为 .2.如图,矩形ABCD中.DB=4.以CD为直径的半圆O与AB相切于点E,连接BD,则阴影部分的面积为 .(结果保留π)3.如图,矩形ABCD对角线AC、BD交于点O,E为线段AB上一点,以点B为圆心,BE 为半径画圆与OA相切于OA的中点G,交OB于点F,若AD=2,则图中阴影部分面积为 .4.如图,已知矩形ABCD中,AB=8,以AB的中点为圆心,以长为半径画圆弧,交矩形的DC边于点E、F,若EF=4,则图中阴影部分的面积为 (结果保留π).5.如图,长方形ABCD中,AB=m,BC=n,E、F分别是线段BC、AD上的点,且四边形ABEF是正方形.以线段AE为直径的半圆交长方形于点A、F、E,则图中阴影部分的面积为 .6.如图,在矩形ABCD中,AB=3,AD=2,以A为圆心,AD为半径作圆交AB于点E,F为的中点,过F作CD的平行线,交AD于点G,交BC于点H,则阴影部分的面积为 .7.如图,矩形ABCD中,AB=1,AD=2,以A为圆心AD为半径作弧与BC交于点E,再以C为圆心,CD为半径作弧交BC于点F,则图中阴影部分的面积为 .8.如图,矩形ABCD的对角线AC,BD交于点O,分别以点A,C为圆心,AO长为半径画弧,分别交AB,CD于点E,F.若BD=4,∠CAB=36°,则图中阴影部分的面积为.(结果保留π)9.如图,在矩形ABCD中,BC=1,以点A为圆心,以AD长为半径画弧交BC于点E,∠DAE=60°,则图中阴影部分的面积为 .10.如图,矩形ABCD中,O是对角线BD的中点,连接CO,以B为圆心,BO为半径画弧,弧线刚好过点A,以O为圆心,OC为半径画弧CD,若BD=2,则图中阴影部分的面积为 .(结果保留π)11.如图,矩形ABCD,AB=2,AD=4,E是AD中点,连接BE、CE,分别以B、C为圆心,BE、CE为半径画弧交BC于点G、F,则图中阴影部分面积为 .12.如图,矩形ABCD中,对角线相交于O,以D为圆心,CD长为半径画弧,交AD于F,点O在圆弧上,若AB=4,则阴影部分的面积为 .13.如图,矩形ABCD中,AB=4,BC=4,点E,F分别是BC,AD的中点,以点E 为圆心线段EF为半径画弧分别交AB,CD于G,H点,则阴影部分的面积为 .14.矩形ABCD中,AB=2,BC=2,以A为圆心,AB为半径的圆交对角线AC于E,交AD于F,以C为圆心,CB为半径的圆分别交AC、AD于G、H.则图中阴影部分面积之和为 .15.如图,在矩形ABCD中,AD=2,AB=2,对角线AC、BD交于点O,以A为圆心,AB长为半径画圆,交CD于点F,连接FO并延长交AB于M,如图所示,则图中阴影部分的面积是 .(结果保留x)16.如图、在等边△ABC中,BC=4,以BC为直径画半圆,交AB于点D,交AC于点E,则图中阴影部分的面积为 (结果保留π).17.如图,在长方形ABCD中,AB=5,AD=3,以点D为圆心,AD长为半径画弧,交线段CD延长线于点E,点F为BC边上一点,若CF=2BF,连接EF,则图中阴影部分的面积为(结果保留π).18.如图,长方形ABCD中,AB=2,AD=6,以点B为圆心,AB长为半径画圆交BC于点F,以点D为圆心,AD长为半径画圆交DC的延长线于点E,则图中阴影部分面积为 .19.如图,在矩形ABCD中,AB=6,AD=4,以点A为圆心,AD长为半径画弧,交AB 于点E,图中阴影部分的面积是 (结果保留π).20.如图,在半径为,圆心角等于60°的扇形AOB内部作一个矩形CDEF,使点C在OA上,点D、E在OB上,点F在上,且CD:DE=:1,则阴影部分的面积为.参考答案1.如图,已知在矩形ABCD中,AB=2,以点A为圆心,AD长为半径作,交AB于点E,以AB为直径的半圆恰好与边DC相切,则图中阴影部分的面积为 +π.【过程解答】解:如图,连接AG、EG.由题意易知△AEG是等边三角形,S阴=S半圆﹣S扇形AEG﹣S弓形AmG=π﹣﹣(﹣),=+π.故答案为:+π.2.如图,矩形ABCD中.DB=4.以CD为直径的半圆O与AB相切于点E,连接BD,则阴影部分的面积为 4π.(结果保留π)【过程解答】解:连接OE,如图,设DC=2x,∵以CD为直径的半圆O与AB相切于点E,∴OD=x,OE⊥BC,∵∠EBC=∠OCB=90°,OE=OC,∴四边形OEAD为正方形,∴BC=x,∵DC2+BC2=BD2,∴,解得x=4.∴由弧DE、线段AE、AD所围成的面积S=S正方形OEAD﹣S扇形ODE=16﹣=16﹣4π,∴阴影部分的面积:S△ABD﹣S=×4×8﹣(16﹣4π)=4π,故答案为:4π.3.如图,矩形ABCD对角线AC、BD交于点O,E为线段AB上一点,以点B为圆心,BE 为半径画圆与OA相切于OA的中点G,交OB于点F,若AD=2,则图中阴影部分面积为 ﹣.【过程解答】解:连接BG,∵BE为半径画圆与OA相切于OA的中点G,∴BG⊥AO,AG=OG,∴AB=BO,∵四边形ABCD是矩形,∴AC=BD,AO=OC,OD=OB,∴AO=BO,∴AB=OA=OB,∴△AOB是等边三角形,∴∠BAO=∠ABO=60°,∴∠ACB=30°,∵∠BGC=∠ABC=90°,AD=BC=2,∴BG=BC=,AB=AO=BC=2,∴图中阴影部分面积=S△AOB﹣S扇形EBF=2×﹣=﹣, 故答案为:.4.如图,已知矩形ABCD中,AB=8,以AB的中点为圆心,以长为半径画圆弧,交矩形的DC边于点E、F,若EF=4,则图中阴影部分的面积为 12﹣π(结果保留π).【过程解答】解:∵OA=OE=OB=OF=4,EF=4,∴△EOF是等边三角形,∴AD=OM=OE=2,∴∠EOF=∠OEF=∠EFO=60°,∵矩形ABCD中,AB∥CD,∴∠AOE=∠OEF=60°,∠BOF=∠EFO=60°,∴S阴影=S矩形ABCD﹣2S扇形OAE﹣S△EOF=8×﹣2×﹣=12﹣π.故答案为12﹣π.5.如图,长方形ABCD中,AB=m,BC=n,E、F分别是线段BC、AD上的点,且四边形ABEF是正方形.以线段AE为直径的半圆交长方形于点A、F、E,则图中阴影部分的面积为 mn﹣m2.【过程解答】解:∵四边形ABEF是正方形.∴EF=AF,∵以线段AE为直径的半圆交长方形于点A、F、E,∴S阴影=mn﹣m2,故答案为mn﹣m2.6.如图,在矩形ABCD中,AB=3,AD=2,以A为圆心,AD为半径作圆交AB于点E,F为的中点,过F作CD的平行线,交AD于点G,交BC于点H,则阴影部分的面积为 3﹣2.【过程解答】解:连接AF,作FM⊥AB于M,∵F为的中点,∴∠DAF=∠EAF=45°,∴∠AFM=90°﹣45°=45°,∴∠F AM=∠AFM,∴AM=FM,∵AF=AD=2,∴FM=AM=×2=,∴BM=3﹣,∴S阴影=BM•FM=(3﹣)•=3﹣2,故答案为3﹣2.7.如图,矩形ABCD中,AB=1,AD=2,以A为圆心AD为半径作弧与BC交于点E,再以C为圆心,CD为半径作弧交BC于点F,则图中阴影部分的面积为 4﹣﹣.【过程解答】解:如图,连接AE,则AD=AE=2,∵四边形ABCD是矩形,AB=1,∴∠A=∠C=∠B=90°,AD=BC=2,AB=CD=1,AD∥BC,∴AB=AE,∴∠AEB=30°,∵AD∥BC,∴∠DAE=∠AEB=30°,由勾股定理得:BE===,∴阴影部分的面积S=(S矩形ABCD﹣S扇形DAE﹣S△ABE)+(S矩形ABCD﹣S扇形DCF)=(1×2﹣﹣×1×)+(1×2﹣)=4﹣﹣,故答案为:4﹣﹣.8.如图,矩形ABCD的对角线AC,BD交于点O,分别以点A,C为圆心,AO长为半径画弧,分别交AB,CD于点E,F.若BD=4,∠CAB=36°,则图中阴影部分的面积为π.(结果保留π)【过程解答】解:∵四边形ABCD是矩形,∴AC=BD=4,OA=OC=OB=OD,AB∥CD,∴OA=OC=2,∠ACD=∠CAB=36°,∴图中阴影部分的面积为:2×=π,故答案为:π.9.如图,在矩形ABCD中,BC=1,以点A为圆心,以AD长为半径画弧交BC于点E,∠DAE=60°,则图中阴影部分的面积为 ﹣.【过程解答】解:∵四边形ABCD是矩形,∴AD=BC=1,AD∥BC,∴∠AEB=∠DAE=60°,∵∠B=90°,AE=AD=1,∴AB=AE•sin60°=,∴S阴=S矩形ABCD﹣S扇形ADE=﹣=﹣,故答案为﹣.10.如图,矩形ABCD中,O是对角线BD的中点,连接CO,以B为圆心,BO为半径画弧,弧线刚好过点A,以O为圆心,OC为半径画弧CD,若BD=2,则图中阴影部分的面积为 ﹣.(结果保留π)【过程解答】解:∵四边形ABCD是矩形,∴OA=OC=OB=OD,∵AB=BO,∴△ABO和△CDO是等边三角形,∴∠BAO=60°,∠COD=60°∵BD=2,∴OB=OD=1,∴图中阴影部分的面积为:2S扇形ABO﹣S△COD=2×﹣=﹣,故答案为:﹣.11.如图,矩形ABCD,AB=2,AD=4,E是AD中点,连接BE、CE,分别以B、C为圆心,BE、CE为半径画弧交BC于点G、F,则图中阴影部分面积为 2π﹣4.【过程解答】解:矩形ABCD,AB=2,AD=4,E是AD中点,∴AB=AE=2,AD∥BC,∴∠ABE=∠AEB=45°,∴∠GBE=∠AEB=45°,∴AB=AE=2,BE=2,∴图中阴影部分的面积=2S扇形EBF﹣S△BEC=2×﹣×4×2=2π﹣4, 故答案为2π﹣4.12.如图,矩形ABCD中,对角线相交于O,以D为圆心,CD长为半径画弧,交AD于F,点O在圆弧上,若AB=4,则阴影部分的面积为 12﹣4π.【过程解答】解:∵四边形ABCD是矩形,∴AC=BD,OD=BD,OC=AC,∴OD=OC,∵CD=OC,∴CD=OD=OC,∴△CDO是等边三角形,∴∠DOC=60°,∵∠ADC=90°,AB=CD=4,∴AD=CD=4,∴S阴=S矩形﹣S△AOB﹣S扇形DFC=AD•CD﹣AB•﹣=4×﹣﹣4π=12﹣4π,故答案为12﹣4π.13.如图,矩形ABCD中,AB=4,BC=4,点E,F分别是BC,AD的中点,以点E 为圆心线段EF为半径画弧分别交AB,CD于G,H点,则阴影部分的面积为 12﹣π.【过程解答】解:如图,连接GE,EF,则EF=EG=AB=4,∵BC=4,∴BE=2,∴cos∠BEG===,∴∠BEG=30°,∴∠GEF=60°,GB=EG=2,∵S阴影=2(S四边形ABEF﹣S△BEG﹣S扇形GEF)=2(2×4﹣×2×2﹣)=2(6﹣π)=12﹣π,故答案为12﹣π,14.矩形ABCD中,AB=2,BC=2,以A为圆心,AB为半径的圆交对角线AC于E,交AD于F,以C为圆心,CB为半径的圆分别交AC、AD于G、H.则图中阴影部分面积之和为 4﹣.【过程解答】解:连接AE,∵矩形ABCD中,AB=2,BC=2,∴∠B=90°,∴tan∠ACB===,∴∠CAD=∠ACB=30°,∴图中阴影部分的面积=2×2﹣﹣=4﹣, 故答案为:4﹣.15.如图,在矩形ABCD中,AD=2,AB=2,对角线AC、BD交于点O,以A为圆心,AB长为半径画圆,交CD于点F,连接FO并延长交AB于M,如图所示,则图中阴影部分的面积是 π﹣2+2.(结果保留x)【过程解答】解:在矩形ABCD中,AD=2,AB=2,∴∠ADC=90°,AB∥CD,OB=OD,∴∠ABD=∠CDB,∵AF=AB=2,AF2=AD2+DF2,∴(2)2=22+DF2,∴DF=2,∴AD=DF,∴∠DAF=∠DF A=45°,∴∠BAF=45°,在△BOM和△DOF中,,∴△BOM≌△DOF(ASA),∴BM=DF=2,∴AM=2﹣2,∴图中阴影部分的面积为:﹣=π﹣2+2,故答案为:π﹣2+2.16.如图、在等边△ABC中,BC=4,以BC为直径画半圆,交AB于点D,交AC于点E,则图中阴影部分的面积为 ﹣2(结果保留π).【过程解答】解:如图,设BC的中点为O,连接OD、OE,∵△ABC为等边三角形,∴∠B=∠C=60°,∴∠BOD=60°,∠COE=60°,∴∠DOE=60°,△DOB和△EOC为等边三角形,∵BC=4,∴OB=OC=OD=OE=2,∴S阴影=S半圆﹣S扇形ODE﹣2S△ODB=﹣﹣2××2×2×=﹣2.故答案为﹣2.17.如图,在长方形ABCD中,AB=5,AD=3,以点D为圆心,AD长为半径画弧,交线段CD延长线于点E,点F为BC边上一点,若CF=2BF,连接EF,则图中阴影部分的面积为7+(结果保留π).【过程解答】解:如图,在长方形ABCD中,AB=5,AD=3,∴S四边形ABCD=5×3=15,∵∠ADC=90°,∴∠ADE=90°,∴S扇形ADE==,∵ED=AD=BC=3,CD=AB=5,∴S△ECF=×(3+5)×2=8,∴S阴影=S四边形ABCD+S扇形ADE﹣S△ECF=15+﹣8=7+,故答案为:7+,18.如图,长方形ABCD中,AB=2,AD=6,以点B为圆心,AB长为半径画圆交BC于点F,以点D为圆心,AD长为半径画圆交DC的延长线于点E,则图中阴影部分面积为 10π﹣12.【过程解答】解:在长方形ABCD中,∠B=∠D=90°,AB=2,AD=6,阴影部分的面积=S扇形AED+S扇形AFB﹣S长方形ABCD=+﹣2×6=10π﹣12.故答案为:10π﹣12.19.如图,在矩形ABCD中,AB=6,AD=4,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是 24﹣4π(结果保留π).【过程解答】解:在矩形ABCD中,AB=6,AD=4,∴S阴影=S矩形﹣S四分之一圆=6×4﹣π×42=24﹣4π,故答案为:24﹣4π.20.如图,在半径为,圆心角等于60°的扇形AOB内部作一个矩形CDEF,使点C在OA上,点D、E在OB上,点F在上,且CD:DE=:1,则阴影部分的面积为﹣.【过程解答】解:连接OF,设DE=x,则CD=x∵∠O=60°,∴tan60°=,即=,∴OD=x,在直角三角形OEF中,由勾股定理得OE2+EF2=OF2,即(2x)2+(x)2=()2,解得x=±1(舍去负数),∴OD=1,CD=,S阴影=S扇形AOB﹣S△OCD﹣S矩形CDFE=﹣﹣1×,=﹣,故答案为:﹣.。

初中数学求阴影面积的试卷

初中数学求阴影面积的试卷

一、选择题(每题5分,共25分)1. 下列图形中,阴影部分的面积最大的是()A. 矩形B. 正方形C. 菱形D. 梯形2. 已知圆的半径为R,下列关于圆中阴影部分面积的说法正确的是()A. 阴影部分面积等于圆面积的一半B. 阴影部分面积等于圆面积的四分之一C. 阴影部分面积等于圆面积的三分之一D. 阴影部分面积等于圆面积的二分之一3. 下列关于求阴影部分面积的方法,说法正确的是()A. 公式法适用于不规则图形B. 和差法适用于规则图形C. 割补法适用于复杂图形D. 以上说法都不正确4. 已知等腰梯形的上底为a,下底为b,高为h,下列关于梯形中阴影部分面积的说法正确的是()A. 阴影部分面积等于梯形面积的一半B. 阴影部分面积等于梯形面积的三分之一C. 阴影部分面积等于梯形面积的四分之一D. 阴影部分面积等于梯形面积的一半减去上底和下底之差5. 下列关于求阴影部分面积的方法,说法正确的是()A. 全等法适用于不规则图形B. 对称法适用于规则图形C. 平移法适用于复杂图形D. 旋转法适用于所有图形二、填空题(每题5分,共25分)6. 已知圆的半径为r,则圆中阴影部分的面积是πr^2 。

7. 已知等腰梯形的上底为a,下底为b,高为h,则梯形中阴影部分的面积是(a+b)h/2 。

8. 已知长方形的长为a,宽为b,则长方形中阴影部分的面积是 ab/2 。

9. 已知正方形的边长为a,则正方形中阴影部分的面积是 a^2/2 。

10. 已知圆的半径为R,则圆中阴影部分的面积是πR^2/4 。

三、解答题(每题15分,共30分)11. (15分)已知一个正方形和一个半圆,正方形的边长为a,半圆的半径为b,求阴影部分的面积。

12. (15分)已知一个等腰三角形和一个半圆,等腰三角形的底边长为a,高为h,半圆的半径为b,求阴影部分的面积。

专题 求阴影部分的面积---四种方法(五大题型)(解析版)

专题 求阴影部分的面积---四种方法(五大题型)(解析版)

(苏科版)九年级上册数学《第2章对称图形---圆》专题求阴影部分的面积---四种方法【典例一】(2023•锦州)如图,点A ,B ,C 在⊙O 上,∠ABC =40°,连接OA ,OC .若⊙O 的半径为3,则扇形AOC (阴影部分)的面积为( )A .23πB .πC .43πD .2π【分析】先由圆周角定理可得∠AOC 的度数,再由扇形的面积公式求解即可.【解答】解:∵∠ABC =40°,∴∠AOC =2∠ABC =80°,∴扇形AOC 的面积为80×π×32360=2π,故选:D .【点评】此题主要是考查了扇形的面积公式,圆周角定理,能够求得∠AOC 的度数是解答此题的关键.【变式1-1】(2023•新抚区模拟)如图,正五边形ABCDE 边长为6,以A 为圆心,AB 为半径画圆,图中阴影部分的面积为( )A .185πB .4πC .545πD .12π【分析】首先确定扇形的圆心角的度数,然后利用扇形的面积公式计算即可.【解答】解:∵正五边形的外角和为360°,解题技巧提炼所求阴影部分是规则图形,直接用几何图形的面积公式求解.∴每一个外角的度数为360°÷5=72°,∴正五边形的每个内角为180°﹣72°=108°,∵正五边形的边长为6,∴S阴影=108⋅π×62360=545π,故选:C.【点评】考查了正多边形和圆及扇形的面积的计算的知识,解题的关键是求得正五边形的内角的度数并牢记扇形的面积计算公式,难度不大.【变式1-2】(2023•大武口区模拟)如图,在矩形ABCD中,AD=1,AB=A为圆心,AB长为半径画弧交CD于点E,则阴影部分的面积为 .【分析】根据矩形的性质得出∠D=∠DAB=90°,AB=AE DE,即可证得∠DAE=45°,进而求得∠BAE=45°,再求出扇形ABE的面积,即可得出答案.【解答】解:∵在矩形ABCD中,AD=1,AB∴∠D=∠DAB=90°,∵AE=AB,∴DE1,∴AD=DE,∴∠DAE=45°,∴∠BAE=45°,∴阴影部分的面积S=S扇形ABE=π4.故答案为:π4.【点评】本题考查了矩形的性质、扇形的面积公式和勾股定理等知识点,能求出∠EAB 的度数是解此题的关键.【变式1-3】如图,有公共顶点O 的两个边长为3的正五边形(不重叠),以O 点为圆心,半径为3作圆,构成一个“蘑菇”形图案,则这个“蘑菇”形图案(阴影部分)的面积为( )A .4πB .185πC .3πD .52π【分析】利用扇形的面积公式计算即可.【解答】解:S 阴=(360108×2)⋅π⋅32360=18π5,故选:B .【点评】本题考查正多边形与圆,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式1-4】(2022•二道区一模)如图,在△ABC 中,∠ACB =90°,∠A =60°,以点A 为圆心,AC 长为半径画弧,交边AB 于点D ,以点B 为圆心,BD 长为半径画圆弧,交边BC 于点E ,若AC =2,则图中阴影部分图形的面积和为 (结果保留π).【分析】根据题意和图形可知阴影部分的面积S =S 扇形BDE +S 扇形ACD .【解答】解:在Rt △ABC ,∠C =90°,∠A =60°,AC =2,∴∠B =30°,AB =2AC =4,∴BC =∴阴影部分的面积S =S 扇形BDE +S 扇形ACD =30π×22360+60π×22360=π,故答案为:π.【点评】本题考查扇形面积的计算、含30°角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-5】(2023•三台县模拟)如图,正六边形ABCDEF的边长为2,以A为圆心,AC的长为半径画弧,得EC,连接AC,AE,则图中阴影部分的面积为( )A.2πB.3πC D【分析】由正六边形ABCDEF的边长为2,可得AB=BC=2,∠ABC=∠BAF=120°,进而求出∠BAC =30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH,BH=1,在Rt△ABH中,由勾股定理求得AH=AC=可得到阴影部分的面积.【解答】解:∵正六边形ABCDEF的边长为2,∴AB=BC=2,∠ABC=∠BAF=(62)×180°6=120°,∵∠ABC+∠BAC+∠BCA=180°,∴∠BAC=12(180°﹣∠ABC)=12×(180°﹣120°)=30°,过B作BH⊥AC于H,∴AH=CH,BH=12AB=12×2=1,在Rt△ABH中,AH=∴AC=同理可证,∠EAF=30°,∴∠CAE=∠BAF﹣∠BAC﹣∠EAF=120°﹣30°﹣30°=60°,∴S扇形CAE=2π,∴图中阴影部分的面积为2π,故选:A .【点评】本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键.【典例二】(2022秋•恩施市期末)如图,在△ABC 中,∠ACB =90°,点D 为边AB 的中点,以点A 为圆心,线段AD 的长为半径画弧,与AC 边交于点E ;以点B 为圆心,线段BD 的长为半径画弧,与BC 边交于点F .若BC =6,AC =8,则图中阴影部分的面积为( )A .48―25π2B .48―25π4C .24―25π2D .24―25π4【分析】根据勾股定理得到AB=10,根据线段中点的定义得到AD =BD =5,根据扇形和解题技巧提炼将不规则阴影部分看成是以规则图形为载体的一部分,其他部分空白且为规则图形,此时采用整体作差法求解.三角形的面积公式即可得到结论.【解答】解:∵∠ACB=90°,BC=6,AC=8,∴AB==10,∠A+∠B=90°,∵点D为边AB的中点,∴AD=BD=5,∴图中阴影部分的面积=12×6×8―90⋅π×52360=24―25π4,故选:D.【点评】本题考查了扇形面积的计算,三角形的面积公式,勾股定理,熟练掌握扇形的面积公式是解题的关键.【变式2-1】(2023•北京模拟)如图,以O为圆心AB为直径的圆过点C,C为弧AB的中点,若AB=4,则阴影部分面积是( )A.πB.2+2πC.2πD.2+π【分析】求出∠AOC=∠BOC=90°,OA=OC=OB=2,求出阴影部分的面积=S扇形AOC,再根据扇形的面积公式求出答案即可.【解答】解:∵AB是⊙O的直径,C为AB的中点,∴∠AOC=∠BOC=90°,∵AB=4,∴OA=OC=OB=2,∴S△AOC =S△BOC=12×2×2=2,∴阴影部分的面积S=S△COB +S扇形AOC﹣S△AOC=S扇形AOC =90π×22360=π,故选:A.【点评】本题考查了垂径定理,扇形的面积计算等知识点,能把求不规则图形的面积转化成求规则图形的面积是解此题的关键,注意:已知扇形的圆心角是n °,半径是r ,那么这个扇形的面积=nπr 2360.【变式2-2】(2023•蜀山区校级三模)如图是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角∠O =120°形成的扇面,若OA =4m ,OB =2m ,则阴影部分的面积是( )A .43πB .83πC .4πD .163π【分析】利用扇形面积公式,根据S 阴影=S 扇形AOD ﹣S 扇形BOC 即可求解.【解答】解:S 阴影=S 扇形AOD ﹣S 扇形BOC=120π⋅OA 2360―120π⋅OB 2360=120π(OA 2OB 2)360=π(4222)3=4π(m 2),故选:C .【点评】本题考查了求扇形面积,熟练掌握扇形面积公式是解题的关键.【变式2-3】(2022秋•松滋市期末)如图,点A 、B 、C 在⊙O 上,若∠BAC =30°,OB =2,则图中阴影部分的面积为( )A .π3―B .2π3―C .2π3―D .π3―【分析】根据S 阴=S 扇形OBC ﹣S △OBC ,计算即可.【解答】解:∵∠BAC =30°,∴∠BOC =2∠BAC =60°,∴△BOC 是等边三角形,∴S 阴=S 扇形OBC ﹣S △OBC =60⋅π×22360―12×2×=23π―故选:B .【点评】本题考查扇形的面积,圆周角定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式2-4】(2022秋•鄞州区期末)如图,扇形AOB 圆心角为直角,OA =10,点C 在AB 上,以OA ,CA 为邻边构造▱ACDO ,边CD 交OB 于点E ,若OE =8,则图中两块阴影部分的面积和为( )A .10π﹣8B .5π﹣8C .25π﹣64D .50π﹣64【分析】连接OC .利用勾股定理求出EC ,根据S 阴=S 扇形AOB ﹣S 梯形AOEC ,计算即可.【解答】解:连接OC .∵四边形OACD 是平行四边形,∴OA ∥CD ,∴∠OEC +∠EOA =180°,∵∠AOB =90°,∴∠OEC =90°,∴EC =6,∴S 阴=S 扇形AOB ﹣S 梯形OECA =90π×102360―12×(6+10)×8=25π﹣64.故选:C .【点评】本题考查扇形的面积的计算,平行四边形的性质,勾股定理等知识,解题的关键是掌握割补法求阴影部分的面积.【变式2-5】(2023•双柏县模拟)如图,在菱形ABCD 中,点E 是AB 的中点,以B 为圆心,BE 为半径作弧,交BC 于点F ,连接DE 、DF ,若AB =2,∠A =60°,则图中阴影部分的面积为( )A .π3B π3C π3D ―2π3【分析】连接AC ,根据菱形的性质求出∠BCD 和BC =AB =2,求出AE 长,再根据三角形的面积和扇形的面积求出即可.【解答】解:∵四边形ABCD 是菱形,AB =2,∠A =60°,点E 是AB 的中点,∴△ABD 是等边三角形,DE ⊥AB ,∠ABC =120°,BE =1,∴DE BF =1,DF =DF ⊥BC ,∴阴影部分的面积S =S △BDE +S △BDF ﹣S 扇形BEF =2―120π×12360=π3,故选:B .【点评】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出△AEC 、△AFC 和扇形ECF 的面积是解此题的关键.【变式2-6】(2022秋•余杭区校级月考)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连结AC ,BC .(1)求证:∠ACO =∠BCD ;(2)若CD =6,∠A =30°,求阴影部分的面积.【分析】(1)根据垂径定理得到BC=BD,根据圆周角定理证明结论;(2)根据等边三角形的判定定理得到△BOC为等边三角形,求出∠AOC,根据正弦的定义求出OC,利用扇形面积公式计算即可.【解答】(1)证明:∵AB是⊙O的直径,弦CD⊥AB,∴BC=BD,∴∠A=∠BCD,∵OA=OC,∴∠A=∠ACO,∴∠ACO=∠BCD;(2)解:∵∠A=30°,∴∠BOC=60°,∴∠AOC=120°,∵AB是⊙O的直径,弦CD⊥AB,∴CE=12CD=3,在Rt△COE中,OC=CEsin60°=∴扇形OAC(阴影部分)的面积=4π,答:阴影部分的面积为4π.【点评】本题考查的是扇形面积计算、垂径定理、圆周角定理,掌握扇形面积公式是解题的关键.【典例三】(2023•大同模拟)如图,在扇形AOB 中,∠AOB =90°,半径OA =3,将扇形AOB 沿过点B 的直线折叠,使点O 恰好落在AB 上的点D 处,折痕为BC ,则阴影部分的面积为( )AB .9π4―C .π34D .3π34【分析】连接OD ,可得△OBD 为等边三角形,再求出∠COD 以及OC ,得到三角形BOC 的面积,又因为△BOC 与△BDC 面积相等,最后利用S 阴影=S 扇形AOB ﹣S △BOC ﹣S △BDC 求解即可.【解答】解:如图,连接OD ,根据折叠的性质,CD =CO ,BD =BO ,∠DBC=∠OBC ,∴OB =BD =OD,解题技巧提炼先将不规则阴影部分与空白部分组合,构造规则图形或分割后为规则图形,再进行面积和差计算.∴△OBD 为等边三角形,∴∠DBO =60°.∵∠CBO =12∠DBO =30°,∵∠AOB =90°,∴OC =OB •tan ∠CBO =3=∴S △BOC =12OB •OC =∵△BOC 与△BDC 面积相等,∴S 阴影=S 扇形AOB ﹣S △BOC ﹣S △BDC=14π×32=9π4―故选:B .【点评】本题考查与扇形有关的不规则图形的面积求法,掌握割补法求面积是解题的关键.【变式3-1】(2023•乡宁县二模)如图,AB 是⊙O 的直径,AC 是弦,∠BAC =30°,在直径AB 上截取AD =AC ,延长CD 交⊙O 于点E ,若CE =2,则图中阴影部分的面积为( )A B .π2―1C .π﹣2D .π2【分析】连接OE ,OC ,BC ,推出△EOC 是等腰直角三角形,根据扇形面积减三角形面积计算即可.【解答】解:连接OE ,OC ,BC ,由旋转知AC =AD ,∠CAD =30°,∴∠BOC =60°,∠ACE =(180°﹣30°)÷2=75°,∴∠BCE =90°﹣∠ACE =15°,∴∠BOE =2∠BCE =30°,∴∠EOC =90°,即△EOC 为等腰直角三角形,∵CE =2,∴OE =OC =∴S 阴影=S 扇形OEC ﹣S △OEC ―12×=π2―1,故选:B .【点评】本题主要考查旋转的性质及扇形面积的计算,熟练掌握扇形面积的计算是解题的关键.【变式3-2】(2022秋•合川区期末)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接BC .若BO =BC =2 .【分析】证明△OBD 是等边三角形,根据S 阴=S △DEB +(S 扇形DOB ﹣S △BOD )求解即可.【解答】解:连接BD .∵OC =OB =BC =∴△OBC 是等边三角形,∵CD ⊥AB ,AB 是直径,∴BC =BD ,∴BC =BD =OB =OD ,∴△OBD 是等边三角形,∵DE ⊥OB ,∴OE =EB∴DE =∴S 阴=S △DEB +(S 扇形DOB ﹣S △BOD )=12×(2=4π﹣故答案为:4π﹣【点评】本题考查了扇形面积的计算以及垂径定理、等边三角形的判定和性质,解答本题的关键是理解性质和定理,注意掌握扇形的面积公式.【变式3-4】(2023•如皋市一模)如图,⊙O 的直径AB =8,C 为⊙O 上一点,在AB 的延长线上取一点P ,连接PC 交⊙O 于点D ,PO =OPC =30°.(1)求CD 的长;(2)计算图中阴影部分的面积.【分析】(1)作OE ⊥CD 于点E ,连接OC ,OD ,根据垂径定理得CE =DE ,再根据PO =OPC=30°,得OE =(2)根据阴影部分的面积为扇形COD 的面积减去△COD 的面积即可.【解答】解:(1)作OE ⊥CD 于点E ,连接OC ,OD ,∴CE =DE ,∵PO =OPC =30°,∴OE =12PO =∵直径AB =8,∴OD =4,∴DE ==2,∴CD =2DE =4;(2)∵OD =2DE ,∴∠DOE =30°,∴∠COD =60°,∴阴影部分的面积为60π×42360―12×4×=8π3―【点评】本题考查了垂径定理,扇形面积的计算,含30°的直角三角形的性质等知识,解题的关键是熟练掌握扇形的面积公式.【变式3-5】(2023•蒙阴县一模)已知AB 是圆O 的直径,半径OD ⊥BC 于点E ,BD 的度数为60°.(1)求证:OE =DE ;(2)若OE =1,求图中阴影部分的面积.【分析】(1)连接BD ,证明△OBD 是等边三角形,可得结论;(2)根据S 阴=S 扇形AOC +S △COE ,求解即可.【解答】(1)证明:连接BD ,∵BD 的度数是60°,∴∠BOD =60°,∵OB =OD ,∴△OBD 是等边三角形,∵OD ⊥BC ,∴OE =DE ;(2)解:连接OC .∵OD ⊥BC ,OC =OB ,∴∠COE =∠BOE =60°,∴∠OCE =30°,∴OC =2OE =2,∴CE =∴S 阴=S 扇形AOC +S △COE =60π⋅22360+12×1=2π3【点评】本题考查了扇形面积、三角形的面积的计算,正确证明△BOD 是等边三角形是关键.【变式3-6】(2023•长沙模拟)如图,已知AB 为⊙O 的直径,CD 是弦,AB ⊥CD ,垂足为点E ,OF ⊥AC ,垂足为点F ,BE =OF .(1)求证:AC =CD ;(2)若BE =4,CD =【分析】(1)根据AAS 证明△AFO ≌△CEB 即可判断;(2)根据S 阴=S 扇形OCD ﹣S △OCD 计算即可.【解答】(1)证明:∵AB 为⊙O 的直径,AB ⊥CD ,∴BC =BD ,CE =12CD ,∴∠A =∠DCB ,∴OF ⊥AC ,∴∠AFO =∠CEB ,AF =12AC ,∵BE =OF ,∴△AFO ≌△CEB (AAS ),∴AF =CE ,∴AC =CD ;(2)∵AB 为⊙O 的直径,AB ⊥CD ,∴CE =12CD =设OC =r ,则OE =r ﹣4,∴r 2=(r ﹣4)2+(2∴r =8,连接OD ,如图,在Rt △OEC 中,OE =4=12OC ,∴∠OCE =30°,∠COB =60°,∴∠COD =120°,∵△AFO ≌△CEB ,∴S △AFO =S △BCE ,∴S 阴=S 扇形OCD ﹣S △OCD=120π×82360―12×4=643π﹣【点评】本题主要考查了垂径定理,勾股定理,以及扇形的面积的计算,正确求得∠COE 的度数是解决本题的关键.【典例四】(2023•凤台县校级三模)如图,点B 在半圆O 上,直径AC =10,∠BAC =36°,则图中阴影部分的面积为( )A .5πB .52πC .10πD .54π【分析】先根据三角形的中线把三角形分成面积相等的两个三角形得到△AOB 的面积与△COB的面积相解题技巧提炼通过对图形的变换,为利用公式法或和差法求解创造条件.有两种方法:(1)直接等面积转化法(2)平移转化法(3)对称转化法(4)旋转转化法等,从而把阴影部分的面积转化为扇形OBC 的面积,再根据扇形面积计算公式求出即可.【解答】解:∵点O 是AC 的中点,∴线段BO 是△ABC 的中线,∴S △AOB =S △COB ,∴S 阴影=S 扇形OBC ,∵∠BAC =36°,∴∠BOC =2∠BAC =72°,∵直径AC =10,∴OC =5,∴S 扇形OBC =72π×52360=5π,∴S 阴影=5π,故选:A .【点评】本题考查了扇形的面积,圆周角定理,三角形的中线的性质,熟练掌握扇形的面积公式是解题的关键.【变式4-1】(2023•孝义市三模)如图,AB 为半圆O 的直径,CD 垂直平分半径OA ,EF 垂直平分半径OB ,若AB =4,则图中阴影部分的面积等于( )A .4π3B .2π3C .16π3D .8π3【分析】根据图形可得,阴影部分的面积=S 半圆﹣2S 扇形 ACO ,根据扇形面积公式计算即可.【解答】解:如图所示:连接OC ,∵CD 垂直平分半径OA ,∴AC =OC ,∵OC =OA ,∴OA =OC =AC ,∴△AOC 是等边三角形,∴∠A =60°,∴S 阴影=12S ⊙O ﹣2S 扇形ACO =12×(AB 2)2π―2×60×(AB 2)2π360 =12×4π﹣2×16×4π=2π―43π=23π.故选:B .【点评】本题考查了扇形的面积计算,掌握垂直平分线的性质,等边三角形的判定与性质,扇形的面积公式是解题的关键.【变式4-2】(2023•锦州二模)如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与AB ,BC 分别交于点D ,E ,连接AE ,DE ,若∠BED =45°,AB =2,则阴影部分的面积为( )A .π4B .π3C .2π3D .π【分析】根据直径所对的圆周角是直角得到∠AEC =90°,再根据等腰三角形三线合一得出点E 是BC 的中点,从而得出OE 是△ABC 的中位线,于是OE ∥AB ,根据同底等高得到△AOD 和△AED 的面积相等,从而阴影部分的面积转化为扇形AOD 的面积,根据扇形面积公式计算出扇形AOD 的面积即可得出阴影部分的面积.【解答】解:连接OE,OD,∵AC为⊙O的直径,∴∠AEC=90°,∵AB=AC,∴BE=CE,即点E是BC的中点,∵点O是AC的中点,∴OE是△ABC的中位线,∴OE∥AB,∴S△AOD =S△AED,∴S阴影=S扇形OAD,∵∠AEC=90°,∴∠AEB=90°,∵∠BED=45°,∴∠AED=45°,∴∠AOD=90°,∴S扇形OAD=90π×12360=π4,∴S阴影=π4,故选:A.【点评】本题主要考查了扇形的面积,圆周角定理,中位线定理,平行线间的距离相等,等腰三角形的三线合一,不规则图形的面积求法,把不规则图形转化为规则图形计算面积是解题的关键.【变式4-3】(2023•东兴区校级二模)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为BD,则图中阴影部分的面积为( )A .512πB .43πC .34πD .2512π【分析】根据AB =5,AC =3,BC =4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED 的面积=△ABC 的面积,得到阴影部分的面积=扇形ADB 的面积,根据扇形面积公式计算即可.【解答】解:∵AB =5,AC =3,BC =4,∴△ABC 为直角三角形,由题意得,△AED 的面积=△ABC 的面积,由图形可知,阴影部分的面积=△AED 的面积+扇形ADB 的面积﹣△ABC 的面积,∴阴影部分的面积=扇形ADB 的面积=30π×52360=2512π,故选:D .【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB 的面积是解题的关键.【变式4-4】(2023•郸城县模拟)如图,扇形ABC 圆心角为90°,将扇形ABC 沿着射线BC 方向平移,当点B 落到线段BC 中点E 时平移停止,若AC 的长为2π,则图中阴影部分的面积是 .【分析】根据S 阴影=S 扇形DEF +S 矩形ABED ﹣S 扇形BAC =S 矩形ABED 求解即可.【解答】解:∵扇形ABC 圆心角为90°,AC 的长为2π,∴2π=90π⋅r 180,∴r =4,∴AB =BC =4,∵点E 是BC 的中点,∴BE =2,∴S阴影=S扇形DEF+S矩形ABED﹣S扇形BAC=S矩形ABED=2×4=8.故答案为:8.【点评】本题考查平移性质,扇形面积,熟练掌握求不规则图形面积,通过转化成规则图形面积的和差求解是解题的关键.【变式4-5】如图,将一个直径AB等于12厘米的半圆绕着点A逆时针旋转60°后,点B落到了点C的位置,半圆扫过部分的图形如阴影部分所示.求:(1)阴影部分的周长;(2)阴影部分的面积.(结果保留π)【分析】(1)由阴影部分的周长=两个半圆弧的长度+弧BC的长,利用弧长公式可求解;(2)由面积的和差关系可求解.【解答】解:(1)阴影部分的周长是:2×12×2π×6+60π×12180=12π+4π=16π(厘米),答:阴影部分的周长为16π厘米;(2)∵阴影部分的面积是:S半圆+S扇形BAC﹣S半圆=S扇形BAC,∴阴影部分的面积=60×π×144360=24π(平方厘米).答:阴影部分的面积为24π平方厘米.【点评】本题考查了旋转的性质,弧长公式,扇形面积公式,掌握计算公式是解题的关键.【变式4-6】如图,AB 为⊙O 的直径,CD 是弦,AB ⊥CD 于点E ,OF ⊥AC 于点F ,BE =OF .(1)求证:△AFO ≌△CEB ;(2)若BE =4,CD =①⊙O 的半径;②求图中阴影部分的面积.【分析】(1)根据AAS 即可判断;(2)①设 OC =r ,则 OE =r ﹣4,在Rt △OCE 中,利用勾股定理构建方程即可解决问题;②根据S 阴=S 扇形OCD ﹣S △OCD 计算即可;【解答】(1)证明:∵AB 为⊙O 的直径,AB ⊥CD ,∴BC =BD ,∴∠A =∠DCB ,∴OF ⊥AC ,∴∠AFO =∠CEB ,∵BE =OF ,∴△AFO ≌△CEB (AAS ).(2)①∵AB 为⊙O 的直径,AB ⊥CD ,∴CE =12CD =设 OC =r ,则 OE =r ﹣4,∴r 2=(r ﹣4)2+(2∴r =8.②连接 OD .∵在Rt △OEC 中,OE =4=12OC ,∴∠OCE =30°,∠COB =60°,∴∠COD =120°,∵△AFO ≌△CEB ,∴S △AFO =S △BCE ,∴S 阴=S 扇形OCD ﹣S △OCD=120⋅π⋅82360―12××4=643π﹣【点评】本题考查扇形的面积,全等三角形的判定和性质,勾股定理,垂径定理,圆周角定理等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题.【典例五】(2022秋•潼南区期末)如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =2,以点A 为圆心,AC 的长为半径画弧,以点B 为圆心,BC 的长为半径画弧,两弧分别交AB 于点D 、F ,则图中阴影部分的面积是  .解题技巧提炼有的阴影部分是由两个基本图形互相重叠得到的.常用的方法是:两个基本图形的面积-被重叠图形的面积=组合图形的面积.【分析】根据题意和图形可知阴影部分的面积是扇形BCE 与扇形ACD 的面积之和与Rt △ABC 的面积之差.【解答】解:在Rt △ABC ,∠C =90°,∠B =30°,AB =2,∴∠A =60°,AC =12AB =1,BC∴阴影部分的面积S =S 扇形BCE +S 扇形ACD ﹣S △ACB 60π×12360―12×1×=5π12―故答案为:5π12【点评】本题考查扇形面积的计算、含30°角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.【变式5-1】(2022秋•北碚区校级期末)如图,正方形ABCD 的边长为1,以A 为圆心,AB 为半径画弧,连接AC ,以A 为圆心,AC 为半径画弧交AD 的延长线于点E ,则图中阴影部分的面积是 .【分析】根据正方形的性质和扇形的面积公式即可得到结论.【解答】解:∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°,∠DAC =45°,∴AC =∴图中阴影部分的面积=12×1×1]+(1×1―90π×12360)=12,故答案为12.【点评】本题考查了正方形的性质,扇形的面积的计算,正确的识别图形是解题的关键.【变式5-2】(2023•平遥县二模)如图,在Rt △ACB 中,∠ACB =90°,AC =1,∠A =60°,将Rt △ACB 绕点C 顺时针旋转90°后得到Rt △DCE ,点B 经过的路径为BE ,将线段AB 绕点A 顺时针旋转60°后,点B 恰好落在CE 上的点F 处,点B 经过的路径为BF ,则图中阴影部分的面积是( )A π12B π12C +π12D ―π12【分析】根据S 阴=S △ACB +S 扇形CBE ﹣S 扇形ABF 计算即可.【解答】解:S 阴=S △ACB +S 扇形CBE ﹣S 扇形ABF=12×1×60⋅π⋅22360+π12,故选:A .【点评】本题考查扇形的面积公式,旋转变换等知识,解题的关键是学会用分割法求阴影部分的面积.【变式5-3】如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆交对角线AC 于点E ,以C 为圆心、BC 长为半径画弧交AC 于点F ,则图中阴影部分的面积是 .【分析】根据扇形的面积公式和三角形面积公式即可得到结论.【解答】解:连接BE ,∵AB 为直径,∴BE⊥AC,∵AB=BC=4,∠ABC=90°,∴BE=AE=CE,∴S弓形AE =S弓形BE,∴图中阴影部分的面积=S半圆―12(S半圆﹣S△ABE)﹣(S△ABC﹣S扇形CBF)=12π×22―12(12π×22―12×12×4×4)﹣(12×4×4―45π×42360)=3π﹣6,故答案为3π﹣6.【点评】本题考查了扇形面积的计算,正方形的性质,正确的识别图形是解题的关键.【变式5-4】(2022•射洪市模拟)如图,在矩形ABCD中,AB=6,BC=4,以A为圆心,AD长为半径画弧交AB于点E,以C为圆心,CD长为半径画弧交CB的延长线于点F,则图中阴影部分的面积是 .【分析】根据扇形的面积公式和矩形的性质即可得到结论.【解答】解:∵在矩形ABCD中,AB=6,BC=4,∠A=∠C=90°,∴CD=AB=6,AD=BC=4,∴图中阴影部分的面积=S扇形FCD ﹣(S矩形ABCD﹣S扇形DAE)=90π×62360―(6×4―90π×42360)=13π﹣24,故答案为:13π﹣24.【点评】本题考查了扇形面积的计算,矩形的性质,正确的识别图形是解题的关键.。

阴影面积计算题

阴影面积计算题

阴影面积计算题以下是阴影面积计算题:1. 一个正方形的边长为5厘米,在光源下产生的阴影面积是多少?(答案:25平方厘米)2. 一个矩形的长为10厘米,宽为6厘米,在光源下产生的阴影面积是多少?(答案:60平方厘米)3. 一个圆形的半径为3厘米,在光源下产生的阴影面积是多少?(答案:28.27平方厘米,保留两位小数)4. 一个椭圆的长轴为8厘米,短轴为4厘米,在光源下产生的阴影面积是多少?(答案:25.13平方厘米,保留两位小数)5. 一个三角形的底边长为7厘米,高度为5厘米,在光源下产生的阴影面积是多少?(答案:17.5平方厘米)6. 一个正方形的对角线长度为10厘米,在光源下产生的阴影面积是多少?(答案:50平方厘米)7. 一个矩形的长为12厘米,宽为8厘米,在光源下产生的阴影面积是多少?(答案:96平方厘米)8. 一个圆形的直径为6厘米,在光源下产生的阴影面积是多少?(答案:28.27平方厘米,保留两位小数)9. 一个正五边形的边长为4厘米,在光源下产生的阴影面积是多少?(答案:41.57平方厘米,保留两位小数)10. 一个椭圆的长轴为10厘米,短轴为6厘米,在光源下产生的阴影面积是多少?(答案:37.7平方厘米,保留一位小数)11. 一个三角形的底边长为9厘米,高度为7厘米,在光源下产生的阴影面积是多少?(答案:31.5平方厘米)12. 一个正方形的边长为8厘米,在光源下产生的阴影面积是多少?(答案:64平方厘米)13. 一个矩形的长为15厘米,宽为10厘米,在光源下产生的阴影面积是多少?(答案:150平方厘米)14. 一个圆形的半径为5厘米,在光源下产生的阴影面积是多少?(答案:78.54平方厘米,保留两位小数)15. 一个椭圆的长轴为12厘米,短轴为8厘米,在光源下产生的阴影面积是多少?(答案:75.4平方厘米,保留一位小数)16. 一个三角形的底边长为11厘米,高度为9厘米,在光源下产生的阴影面积是多少?(答案:49.5平方厘米)17. 一个正方形的对角线长度为12厘米,在光源下产生的阴影面积是多少?(答案:72平方厘米)18. 一个矩形的长为18厘米,宽为12厘米,在光源下产生的阴影面积是多少?(答案:216平方厘米)19. 一个圆形的直径为8厘米,在光源下产生的阴影面积是多少?(答案:50.27平方厘米,保留两位小数)20. 一个正五边形的边长为6厘米,在光源下产生的阴影面积是多少?(答案:62.35平方厘米,保留两位小数)希望这些题目能对你有所帮助!如果你还有其他问题,请随时提问。

九年级数学求阴影部分的面积(有答案)

九年级数学求阴影部分的面积(有答案)
8 4
练习10
• 如图,正方形的边长 为a,分别以两个对角 顶点为圆心、以a为半 径画弧,则图中阴影 部分的面积为
1 a2 a2
2
测试1
1. 如图,AB是⊙O的直径,C是半圆O上的一点,AC平分 ∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE。
(1)判断CD与⊙O的位置关系,并证明你的结论;
练习2
如图,已知平行四边形ABCD,∠A=45°, AD=4,以AD为直径的圆O与BC相切于点
B,则图中阴影部分面积为 4
练习3
• 边长为1的正方形 ABCD绕点A逆时针旋 转30 °到正方形 ABCD,图中阴影部
分的面积为 3
3
B
B' C
D D
A
C'
练习4
• 如图,在四边形 ABCD中,AB=2, CD=1,∠A=60°, ∠B=∠D=90°,则四 边形ABCD所在阴影
回顾与思考
反思自我
驶向胜利 的彼挑战
自我岸
•想一想,你有哪些新的收获?
•说出来,与同学们分享.
回顾与思考
反思自我
驶向胜利 的彼挑战
自我岸
• (1)学会了求不规则图形的面积的一般方法
• (2)深入的理解了化归的数学思想
• (3) 体会到数学的灵活性.多变性,以不变应万 变
结束寄语
下课了!
* 数学使人聪明,数学使 人陶醉,数学的美陶冶着 你,我,他.
8
练习7
• 在等腰直角三角形 ABC中,∠C=90°, 点D为AB的中点,已 知扇形EAD和扇形 FBD的圆心分别为点 A.、点B,且AC=2, 则图中阴影部分的面
积为 2
2
练习8

初一求阴影题5题

初一求阴影题5题

初一求阴影题5题
以下是5道适合初一学生练习的求阴影部分的面积题目:
1.正方形中的阴影:
在一个边长为8cm的正方形中,有一个边长为4cm的小正方形。

求大正方形中小正方形之外的阴影部分的面积。

2.矩形中的三角形:
在一个长为10cm、宽为6cm的矩形中,有一个底为6cm、高为4cm的直角三角形。

求矩形中直角三角形之外的阴影部分的面积。

3.圆形中的扇形:
在一个半径为5cm的圆中,有一个圆心角为90°的扇形。

求圆中扇形之外的阴影部分的面积。

4.组合图形的阴影:
有一个边长为6cm的正方形和一个半径为3cm的半圆,它们有一部分重叠。

求不重叠部分的阴影面积。

5.多边形与三角形的组合:
有一个边长为6cm的正六边形和一个底为6cm、高为3cm的三角形。

它们有一部分重叠。

求不重叠部分的阴影面积。

这些题目旨在帮助学生运用几何知识,如正方形、矩形、圆形、扇形、三角形等的基本性质和面积计算公式,来求解阴影部分的面积。

通过练习这些题目,学生可以加深对几何图形面积计算的理解和应用能力。

希望这些题目对初一学生的几何练习有所帮助!。

初中求阴影面积题10题

初中求阴影面积题10题

初中求阴影面积题10题
当然,以下是10道适合初中学生的求阴影面积的几何题目:
1.在一个半径为5cm的圆中,有一个内接的正方形,求这个正方形的阴影面积。

2.已知一个直角三角形的两条直角边分别为3cm和4cm,求这个直角三角形内切圆
的阴影面积。

3.在一个边长为6cm的正方形中,挖去一个边长为2cm的小正方形,求剩余部分的
阴影面积。

4.已知一个圆的半径为6cm,从这个圆中挖去一个半径为2cm的小圆,求剩余部分
的阴影面积。

5.在一个半径为4cm的圆中,有一个内接的等腰直角三角形,求这个直角三角形的
阴影面积。

6.已知一个扇形的半径为5cm,圆心角为60°,求这个扇形的阴影面积。

7.在一个边长为8cm的正方形中,有一个内接的半径为2cm的圆,求剩余部分的阴
影面积。

8.已知一个圆的半径为5cm,从这个圆中挖去一个半径为1cm的小圆,再从小圆中
挖去一个半径为0.5cm的更小的圆,求最终剩余部分的阴影面积。

9.在一个半径为3cm的圆中,有一个内接的正六边形,求这个正六边形的阴影面
积。

10.已知一个矩形的长为8cm,宽为4cm,从这个矩形中挖去一个半径为2cm的半
圆,求剩余部分的阴影面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(求阴影部分面积的专项训练)求阴影部分面积全攻略
在近年的中考中,频频出现求阴影部分图形的面积的题目,而其阴影
部分图形大多又是不规则的,部分同学乍遇这类题目则显得不知所措.下面
将分类例谈这类问题的解法:
一.直接法:
当已知图形为我们熟知的基本图形时,先求出涉及适合该图形的面
积计算公式中某些线段、角的大小,然后直接代入公式进行计算。

例1.如图1,矩形ABCD中,AB=1,AD=3,以BC的中点E为
圆心的MPN与
AD相切于P,则图中的阴影部分的面积为()
A 2
3
B
3
4
C
3
4
D
3
图1 图2
二.和差法:
即是把阴影部分的面积转化为若干个图形面积的和、差来计算。

例2,如图2,正方形ABCD的边长为a,以A为圆心,AB为半径画
BD,又分别以BC和CD为直径画半圆,则图中的阴影部分的
面积为_______.
三.割补法:
即是把阴影部分的图形通过割补,拼成规则图形,然后再求面积。

例3,如图3(1),在以AB为直径的半圆上,过点B做半圆的切线BC,
已知AB=BC=a,
连结AC,交半圆于D,则阴影部分图形的面积是______.。

相关文档
最新文档