小学数学 工程问题 基本题型训练 带答案

合集下载

小学六年级工程问题专项练习40题(有答案过程)

小学六年级工程问题专项练习40题(有答案过程)

小学数学工程问题专题训练40题(有答案)在分析解答工程问题时,一般常用的数量关系式是:工作量=工作效率×工作时间,工作时间=工作量÷工作效率,工作效率=工作量÷工作时间。

工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。

单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。

工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。

但在不引起误会的情况下,一般不写工作效率的单位。

1、单独干某项工程,甲队需100天完成,乙队需150天完成。

甲、乙两队合干50天后,剩下的工程乙队干还需多少天?2、某项工程,甲单独做需36天完成,乙单独做需45天完成。

如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。

问:甲队干了多少天?3 、单独完成某工程,甲队需10天,乙队需15天,丙队需20天。

开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。

问:甲队实际工作了几天?4、一批零件,张师傅独做20时完成,王师傅独做30时完成。

如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。

这批零件共有多少个?5 、一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。

如果一开始是空池,打开放水管1时后又打开排水管,那么再过多长时间池内将积有半池水?6、甲、乙二人同时从两地出发,相向而行。

走完全程甲需60分钟,乙需40分钟。

出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。

甲再出发后多长时间两人相遇?7、某工程甲单独干10天完成,乙单独干15天完成,他们合干多少天才可完成工程的一半?8、某工程甲队单独做需48天,乙队单独做需36天。

甲队先干了6天后转交给乙队干,后来甲队重新回来与乙队一起干了10天,将工程做完。

小学五年级数学思维专题训练—工程问题(含答案解析)

小学五年级数学思维专题训练—工程问题(含答案解析)

小学五年级数学思维专题训练—工程问题1、一批零件由甲、乙两人合作,30天可以完成。

现在由甲先制作了22天,两人再合作12天,剩下的零件还需要乙单独制作16天才能完成。

又知甲每天比乙少生产4个零件,照这样完成任务,乙共做了多少个零件?2、仓库存有一批钢材,由两个汽车队负责运往工地。

已知甲队单独运要29天,乙队每天可以运30吨。

现在由甲、乙两队同时运输8天后,甲队的汽车坏了一辆,每天少运5吨,结果又运了4天才全部运完。

那么这批钢材共有多少吨?3、一份稿件,甲需要6天才能完成打印,乙需要10天才能完成打印,那么两人合打3天共完成这份稿件的多少?4、两位工人用砖砌墙,甲工人独自完成需要9小时,乙工人独自完成需要10小时。

当两人合作时,其每小时工作量为两人每小时原砌砖块数的总和减10块砖,假设他们共花费5小时才完工,请问要完成此道墙共需要砌砖多少块?5、甲、乙两支同样质地的蜡烛,粗细、长短不同,甲支能燃3.5小时,乙支能燃5小时,燃了2小时后,两支蜡烛剩下之长度恰好相同,那么甲支与乙支蜡烛的长度之比为多少?6、砌一面墙,甲单独做要用10天。

若甲、乙合作只用6天就可完成;乙、丙合作要用8天才能完成。

现在甲、乙、丙一共工作,砌完这面墙后发现甲比乙多砌了2400块砖。

那么丙砌了多少块砖?7、城中小学几个少先队员帮助学校清理大小两块工地,大工地比小工地大1倍。

上午,他们在大工地花了半天时间进行了清理,下午将人数对半分,一半留在大工地继续清理,另一半到小工地清理。

到手工时,大工地刚好清理完毕,小工地还剩31,需1人再清理一天才能完工。

如果每人的工作效率相等,那么共有多少人参加了清理工作?8、一项工程,甲单独完成需要10天,乙单独完成需要15天,丙单独完成需要20天,在三人合作3天后,甲有其他任务而退出,剩下乙、丙继续工作直至完工。

完成这项工程共用多少天?9、要将一堆渣土运过桥,现在有两辆车可以使用。

如果单用甲车来运送的话,需要15小时才能运送完;如果单用乙来运送的话,需要20小时才能运完。

(完整版)小学工程问题及答案

(完整版)小学工程问题及答案

(30-3×8)÷(4.2-3)=5(天). 很明显,最后转化成“鸡兔同笼”型问题.
由乙接着做,乙做的天数是甲做的天数的 3 倍,再 由丙接着做,丙做的天数是乙做的天数的 2 倍,终 于做完了这件工作.问总共用了多少天?
答:合作 3 天能完成这项工作. 解二:甲组 3 人 8 天能完成,因此 2 人 12 天能完
2400 个.问丙车间制作了多少个零件?
乙需丙帮助搬运
例 18 一个蓄水池,每分钟流入 4 立方米水.如果打
解一:仍设总工作量为 1. 甲每天比乙多完成 因此这批零件的总数是
(60- 5× 8)÷4= 5(小时). 三、水管问题
开 5 个水龙头,2 小时半就把水池水放空,如果打 开 8 个水龙头,1 小时半就把水池水放空.现在打开 13 个水龙头,问要多少时间才能把水放空?
因此,乙还要做 28+28= 56 (天). 答:乙还需要做 56 天.
我们都叫做“工程问题”.
下工作所需时间是
例 4 一件工程,甲队单独做 10 天完成,乙队单独
举一个简单例子.
(18- 2 × 3)÷ 3= 4(天).
做 30 天完成.现在两队合作,其间甲队休息了 2 天, 乙队休息了 8 天(不存在两队同一天休息).问开
一件工作,甲做 10 天可完成,乙做 15 天可完成. 解三:甲与乙的工作效率之比是
始到完工共用了多少天时间?
问两人合作几天可以完成?
6∶ 9= 2∶ 3.
解一:甲队单独做 8 天,乙队单独做 2 天,共完成
一件工作看成 1 个整体,因此可以把工作量算作 1. 所谓工作效率,就是单位时间内完成的工作量,我 们用的时间单位是“天”,1 天就是一个单位,
工作效率、工作时间这三个量,它们之间的基本数 完成.乙需要做几天可以完成全部工作?

10道小学奥数工程问题及答案解析

10道小学奥数工程问题及答案解析

10道小学奥数工程问题及答案解析一、题目1一项工程,甲队单独做需要12天完成,乙队单独做需要15天完成。

两队合作需要多少天完成?二、题目2修建一条公路,甲队独做需要20天完成,乙队独做需要30天完成。

如果两队合作,多少天能修完这条公路的一半?三、题目3一项工程,甲队独做15天完成,乙队独做10天完成。

甲队先做5天后,乙队加入,两队合作还需多少天完成?一条水渠,甲队修建需要25天,乙队修建需要20天。

如果两队同时从两端开始修建,多少天能相遇并修完整条水渠?五、题目5一项工程,甲队独做需要18天完成,乙队独做需要24天完成。

如果甲队先做3天后,乙队加入,两队合作还需要多少天才能完成?六、题目6一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成。

如果两队合作,需要多少天才能完成这项工程?一条公路,甲工程队修建需要20天,乙工程队修建需要30天。

如果两队从两端同时开始修建,多少天能修完整条公路?八、题目8一项工程,甲队独做12天完成,乙队独做15天完成。

甲队先做3天后,乙队加入,两队合作还需多少天完成?九、题目9修建一条水渠,甲队独做需要20天,乙队独做需要25天。

两队合作5天后,甲队离开,乙队还需多少天才能完成?十、题目10一个水池有甲、乙两个进水管,单开甲管15小时可将水池注满,单开乙管20小时可将水池注满。

如果两管同时打开,多少小时可以注满水池的3/4?以下是答案一、题目1一项工程,甲队单独做需要12天完成,乙队单独做需要15天完成。

两队合作需要多少天完成?答案:6.67天,约等于7天(因为天数不能为小数,所以向上取整)解析:甲队每天完成工程的1/12,乙队每天完成工程的1/15。

两队合作每天完成的工程比例为1/12 + 1/15 = 9/60 = 3/20。

因此,两队合作完成整个工程需要的时间为1 / (3/20) = 20/3天,约等于6.67天,向上取整为7天。

二、题目2修建一条公路,甲队独做需要20天完成,乙队独做需要30天完成。

小学数学 工程问题 完整版 带答案

小学数学 工程问题 完整版 带答案
如果要求甲乙同时打开的时间尽量少,效率高的应该一直开
甲开满10小时,共完成的工作量:1/12×10=5/6
剩下乙完成的工作量:1-5/6=1/6
乙开的时间:1/6÷1/24=4(小时)
即甲乙要同时开放4小时。
8、一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?
调来16人后,工效:1/10
调来4人后,工效:1/20
每人的效率:(1/10-1/20)÷(16-4)=1/240
调走2人后效率:1/10-1/240×(16+2)=1/40
需要时间:1÷1/40=40(天)
二:拔高题型
1、甲、乙两队合作挖一条水渠要30天完成,若甲队先挖4天后,再由乙队单独挖16天,共挖了这条水渠的2/5.如果这条水渠由甲、乙两队单独挖,各需要多少天?
可以看作甲乙丙三人都一直在合作,合作的工作量为:1+1=2
合作的效率为:1/6+1/7+1/14=8/21
合作的时间为:2÷8/21=21/4(小时)
甲在第一个仓库完成的工作量:21/4×1/6=7/8
丙帮助甲的工作量:1-7/8=1/8
丙帮助甲的时间:1/8÷1/14=7/4(小时)
丙帮助乙的时间:21/4-7/4=7/2(小时)
丙帮助乙的时间:18-3=15(小时)
8、甲、乙、丙三人同时分别在3个条件和工作量相同的仓库工作,搬完货物甲用10小时,乙用12小时,丙用15小时.第二天三人又到两个大仓库工作,这两个仓库的工作量相同.甲在A仓库,乙在B仓库,丙先帮甲后帮乙,用了16个小时将两个仓库同时搬完.丙在A仓库搬了多长时间?

小学六年级上学期数学 工程问题 非常完整版题型训练+详细答案

小学六年级上学期数学 工程问题 非常完整版题型训练+详细答案

工程问题板块一、基础题型1.甲、乙两辆车运一堆煤,如果只用甲车运,15小时可以运完;如果只用乙车运,10小时可以运完.请问:(1)如果两车一起运,多少小时可以运完?(2)如果甲车从早上8点开始运煤,乙车下午1点才开始运,那么几点的时候可以把煤运完? 解析:(1)1÷(151+101)= 6(小时) (2)(1-5×151)÷(151+101)= 4(小时);1+4 = 5 (点)2.一项工作,甲单独做20天可以完成,乙单独做30天可以完成,现在两人合做,用16天就完成了工作,已知在这16天中甲休息了2天,乙休息了若干天.请问:乙休息了多少天? 解析: (1-14×201)÷ 301 = 9(天);16-9 = 7(天)3.如果甲、乙两队合做一项工程,恰好24天完成;如果乙队先做5天,然后甲队来帮忙,又共同做了10天后,全部工程才完成了一半,请问:甲队单独完成这项工程需要多少天? 解析:两人合作10天完成: 10÷24 =125; 21-125 = 121; 121÷5 = 601; 241-601= 4011÷401= 40(天)4.一项工程,甲单独做要6小时完成,乙单独做要10小时完成.如果按甲、乙、甲、乙……的顺序交替工作,每人工作1小时后交换,那么需要多少小时才能完成任务? 解析:61+101 = 154; 1-154×3 = 51; (51-61)÷101 = 31(小时)2×3+1+31 = 317(小时)5.有一批工人做某项工程,原计划4天完成.如果增加6人,只需要3天就能完成.现在人数不仅没有增加,反而减少了9人,求完成这项工程需要的天数.解析:31-41 = 121; 121÷ 6 × 9 = 81; 1 ÷81= 8(天)6.甲、乙两队分别在A 、B 两块地植树,B 地需要植树的数量是A 地的两倍,已知甲队单独在A 地植树需要12天完成,乙队单独在B 地植树需要30天完成.现在甲、乙两队分别在A 、B 两地同时开始,当甲队做完后便去B 地和乙队共同工作.请问:两队要用多少天才能种完树? 解析:A 地为1份,B 地为2份 (1+2)÷(121+ 302) = 20(天)7.一水池装有一个进水管和一个排水管.如果单开进水管,5小时可将空池灌满;如果单开排水管,7小时可将整池水排完.现在先打开进水管,2小时后打开排水管,请问:再过多长时间池内将恰好存有半池水? 解析: (21-51)÷(51-71)= 143(小时)8.蓄水池有甲、乙、丙三个进水管.如果想灌满整池水,单开甲管需10小时,单开乙管需12小时,单开丙管需15小时.上午8点三个管同时打开,中间甲管因故关闭,结果到下午2点水池被灌满,问:甲管在何时被关闭? 解析: (14-8)×(101+121+151)= 211;(211-1)÷101= 5(小时) 14-5 = 9(时)9.师傅带着两名徒弟加工一批零件,按加工零件数量的比例分配3000元报酬.如果按照原定计划,师傅应该得到1800元,但开始工作前有一名徒弟生病住院,最后是师傅和另一名徒弟完成了所有工作.如果两个徒弟的工作效率相同,请问:师傅实际应得到多少元? 解析:30001800÷30001800-3000×2 = 3(倍); 3000×133= 2250(元)10.甲、乙、丙三人承包一项工程,发给他们的工资共1800元,三人完成这项工程的具体情况是:甲、乙两人合做6天完成了工程的31;因甲中途有事,由乙、丙合做2天,完成了余下工程的41;之后三人合做5天完成了这项工程.如果按完成工作量的多少来付酬,每人应得多少元? 解析: (1-31)×41 = 61; 合:(1-31-61)÷5 =101;甲:101-61÷2=601 1800×601×(6+5)=330(元) 乙:31÷6-601=18071800×1807×(6+5+2)=910(元)丙:61÷2-1807=18081800×1808×(5+2)=560(元)<或丙:1800-330-910=560(元)>板块二:拔高题型1.一条公路,甲队单独修需20天完成,乙队单独修需30天完成,请问: (1)如果甲、乙两队合做,共需要多少天完成?(2)如果甲、乙两队合修若干天之后,乙队停工休息,而甲队继续修了5天才修完,那么乙队一共修了多少天? 解析: 1÷(201+301)=12(天); (1-201×5)÷(201+301)=9(天2.有一批资料需要复印,甲复印机单独复印要11小时,乙复印机单独复印要13小时.现在甲、乙两台复印机同时工作,由于相互有些干扰,两台机器每小时共少印28张,结果用6小时15分钟印完,请问:这批资料共有多少张? 解析: 1÷(111+131)=52423(小时); 52423×28÷(641-52423)=572(张) 641×572=3575(张)3.有一条公路,甲队单独修需20天,乙队单独修需30天,丙队单独修需40天,现在让三个队合修,但中间甲队撤出去到另外工地,结果用了12天才把这条公路修完.请问:当甲队撤出后,乙、丙两队又共同合修了多少天才完成? 解析: 12×(201+301+401)-1=103;103÷201=6(天)4.甲、乙两人共同完成一件工作.如果甲、乙两人合做2天后,剩下的由乙单独做,刚好在规定时间完成;如果甲单独做需要18天完成;如果乙单独做,则要超过规定时间3天才能完成.求完成这件工作规定的天数. 解析: 乙:181×2÷3=271; (1-181×2)÷271=24(天)5.一项工程,乙单独做要14天完成;如果第一天甲做,第二天乙做,第三天甲做,第四天乙做…一两人这样轮流做,需要9天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做…一两人这样轮流做,会比上次轮流的做法多用多少天? 解析: (1-141×4)÷5=71; 1-(141+71)×4-141=141141÷71=21(天)6.甲、乙、丙三队要完成A ,B 两项工程.B 工程的工作量比A 工程的工作量多41,已知甲队单独完成A 工程要40天,乙、丙两队单独完成B 工程分别需要60天、75天.开始时甲队做A 工程,乙、丙两队共同做B 工程;几天后,又调丙队与甲队共同完成A 工程,剩下乙队单独做B 工程,结果两个工程同时完成.请问:丙队与乙队合做了多少天? 解析:A :1份;B :45份; 甲:401; 乙:45÷60=481; 丙:45÷75=601(1+45)÷(401+481+601)=36(天);(45-481×36)÷601=30(天)7.俄国文学家列夫·托尔斯泰的庄园里有大、小两片草地,每年秋天,农民们都要将草收割贮存起来,冬季当作牲畜的饲料,大草地的面积恰好为小草地面积的2倍.这一年有一些割草人去草地割草,上午他们都在大草地里干活,午后这些人平均分成两半,一半人继续留在大草地割草,到傍晚收工时(上、下午工作时间相同)恰好刚收割完;另一半人到小草地干活,收工时仅剩下一小块没有割完,这一小块草地恰好够一个人收割一天.工头去托尔斯泰那儿结账时,讲了上述情况,话音刚落,托尔斯泰就算出了共有多少个割草人,同学们你们能算出来吗? 解析:一半的人做三个半天的割草量 = 一半的人做两个半天的割草量 + 一个人做两天的割草量 一半的人做一个半天的割草量 = 一个人做两天的割草量 一半的人做一天的割草量 = 一个人做4天的割草量 所有人做一天的割草量= 一个人做8天的割草量所以共有8个割草人。

【奥数专题】精编人教版小学数学6年级上册工程问题(试题)含答案与解析

【奥数专题】精编人教版小学数学6年级上册工程问题(试题)含答案与解析

【奥数专题】精编人教版小学数学6年级上册工程问题(试题)含答案与解析奥数专题:精编人教版小学数学6年级上册工程问题(试题)含答案与解析工程问题是小学数学中常见的题型之一,能够锻炼学生的逻辑思维和综合运算能力。

本文将为大家精编人教版小学数学6年级上册的工程问题试题,并附带详细的答案与解析,希望能够帮助到同学们更好地理解和掌握这一题型。

1. 小明修建了一个半径为3米的圆形花坛,请问这个花坛的周长是多少米?答案与解析:圆的周长公式为C = 2πr,其中r为半径,π取近似值3.14。

代入已知数据,得C = 2 × 3.14 × 3 = 18.84(米),所以这个花坛的周长为18.84米。

2. 小红家的房屋正前方有一个边长为6米的正方形草坪,现在要在这个草坪上种植鲜花,请问这个草坪的面积是多少平方米?答案与解析:正方形的面积公式为A = a^2,其中a为边长。

代入已知数据,得A = 6^2 = 36(平方米),所以这个草坪的面积为36平方米。

3. 丽丽要制作一个高度为2米的三角形旗帜,其中底边长为4米,请问这个旗帜的面积是多少平方米?答案与解析:三角形的面积公式为A = 0.5 ×底边长 ×高,代入已知数据,得A = 0.5 × 4 × 2 = 4(平方米),所以这个旗帜的面积为4平方米。

4. 小华要铺设一条长为5米的沟渠,他计划将沟渠分为相等的5段,请问每段的长度是多少米?答案与解析:将沟渠分为相等的5段,则每段的长度为总长度除以段数,即5 ÷ 5 = 1(米)。

所以每段的长度为1米。

5. 小明用了21个园木将一条长20米的小路两侧都种满,请问每个园木之间的距离是多少米?答案与解析:将小路分为21段,则每个园木之间的距离为总长度除以段数减1,即20 ÷ (21-1) = 1(米)。

所以每个园木之间的距离为1米。

6. 小红需要用12个石板铺满一个长为3米的小路,请问每块石板的长度是多少米?答案与解析:将小路分为12段,则每块石板的长度为总长度除以段数,即3 ÷ 12 = 0.25(米)。

六年级数学工程问题类型

六年级数学工程问题类型

六年级数学工程问题类型一、工程问题基础题型。

1. 一项工程,甲单独做8天完成,乙单独做10天完成。

- 甲每天完成这项工程的几分之几?- 解析:把这项工程看作单位“1”,甲单独做8天完成,根据工作效率 = 工作总量÷工作时间,甲每天完成1÷8=(1)/(8)。

- 乙每天完成这项工程的几分之几?- 解析:同理,乙单独做10天完成,乙每天完成1÷10 = (1)/(10)。

- 甲乙合作每天完成这项工程的几分之几?- 解析:甲每天完成(1)/(8),乙每天完成(1)/(10),甲乙合作每天完成(1)/(8)+(1)/(10)=(5 + 4)/(40)=(9)/(40)。

- 甲乙合作多少天可以完成这项工程?- 解析:根据工作时间=工作总量÷工作效率,甲乙合作完成需要1÷(9)/(40)=(40)/(9)(天)。

2. 修一条路,甲队单独修12天完成,乙队每天修30米,如果两队合修,6天完成全长的(2)/(3)。

- 这条路全长多少米?- 解析:甲队单独修12天完成,甲队每天修全长的1÷12=(1)/(12)。

两队合修6天完成全长的(2)/(3),则两队合作一天完成(2)/(3)÷6=(2)/(3)×(1)/(6)=(1)/(9)。

那么乙队每天修全长的(1)/(9)-(1)/(12)=(4 - 3)/(36)=(1)/(36)。

因为乙队每天修30米,所以全长为30÷(1)/(36)=30×36 = 1080米。

3. 一项工程,甲单独做20天完成,乙单独做30天完成。

甲、乙合作了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天。

乙请假多少天?- 解析:甲单独做20天完成,甲每天完成(1)/(20),甲做了16天,完成的工作量为(1)/(20)×16=(4)/(5)。

那么乙完成的工作量为1-(4)/(5)=(1)/(5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程问题基础题型训练
例题讲解
1、一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?
甲效率:1÷28=1/28
乙效率:1÷21=1/21
合作时间:1÷(1/28+1/24)=12(天)
2、一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?
甲效率:1÷21=1/21
甲乙合作效率:1÷12=1/12
乙单独做的时间:1÷(1/12-1/21)=28(天)
3、一项工程,甲、乙合作需要20天完成,乙、丙合作需要15天完成,由乙单独做需要30天完成,那么如果甲、乙、丙合作,完成这项工程需要多少天?
甲+乙效率:1÷20=1/20
乙+丙效率:1÷15=1/15
乙的效率:1÷30=1/30
甲+乙+丙的效率:1/20+1/15-1/30=1/12
合作的时间:1÷1/12=12(天)
4、一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?
甲+乙效率:1÷36=1/36
乙+丙效率:1÷45=1/45
甲+丙效率:1÷60=1/60
甲的效率:(1/36+1/60-1/45)÷2=1/90
甲单独完成的时间:1÷1/90=90(天)
5、一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?
合作完成的工作量:1/30×6=1/5
剩余的工作量:1-1/5=4/5
乙的效率:4/5÷40=1/50 甲的效率:1/30-1/50=1/75
乙单独完成的时间:1÷1/50=50(天)甲单独完成的时间:1÷1/75=75(天)
6、甲、乙两人共同加工一批零件,8小时可以完成任务.如果甲单独加工,便需要12小时完成.现在甲、乙两人共同生产了12/5小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务.问乙一共加工零件多少个?
合作12/5小时完成的工作量:1/8×12/5=3/10
剩下的工作量:1-3/10=7/10
量率对应得总工作量:420÷7/10=600(个)
乙的效率:1/8-1/12=1/24
乙合作时完成的工作量:1/24×12/5×600=60(个)
乙一共加工:60+420=480(个)
7、某水池可以用甲、乙两个水管注水,单开甲管需12小时注满,单开乙管需24小时注满,若要求10小时注满水池,且甲、乙两管同时打开的时间尽量少,那么甲、乙最少要同时开放多少小时?
如果要求甲乙同时打开的时间尽量少,效率高的应该一直开
甲开满10小时,共完成的工作量:1/12×10=5/6
剩下乙完成的工作量:1-5/6=1/6
乙开的时间:1/6÷1/24=4(小时)
即甲乙要同时开放4小时。

8、一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?
打开5个水龙头的效率:1/2.5=2/5
打开8个水龙头的效率:1/1.5=2/3
所以1个水龙头的效率:(2/3-2/5)÷(8-5)=4/45
打开13个水龙头的效率:2/3+(13-8)×4/45=10/9
需要的时间:1÷10/9=9/10=0.9(小时)
9、甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需10小时,乙车单独清扫需15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米.问:东、西两城相距多少千米?
相遇的时间:1÷(1/10+1/15)=6(小时)
甲的工作量:6×1/10=3/5
乙的工作量:6×1/15=2/5
量率对应:12÷(3/5-2/5)=60(千米)
10、一项工程,甲单独完成需要12天,乙单独完成需要9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?
解法一:鸡兔同笼问题
假设全部的10天都是乙做
完成工作量:1/9×10=10/9
甲做的时间:(10/9-1)÷(1/9-1/12)=4(天)
解法二:方程法解设甲做了x天,则乙做了(10-x)天
1/12x+1/9(10-x)=1 解得x=4
11、一项工程,甲单独做20天完成,乙单独做30天完成.甲、乙合作了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天.乙请假多少天?
甲没有请假,做了完整的16天
甲16天完成:1/20×16=4/5
乙完成:1-4/5=1/5
乙做的时间:1/5÷1/30=6(天)
乙请假:16-6=10(天)
12、一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共
用了多少天?
甲的时间:乙的时间:丙的时间=1:3:6
把甲做1天,乙做3天,丙做6天看作一份,共完成工作量为:1/12+1/18×3+1/24×6=1/2
1÷1/2=2(份)总时间:2×(1+3+6)=20(天)
13、一些工人做一项工程,如果能调来16人,那么10天可以完成;如果只调来4人,就要20天才能完成,那么调走2人后,完成这项工程需要多少天?
调来16人后,工效:1/10
调来4人后,工效:1/20
每人的效率:(1/10-1/20)÷(16-4)=1/240
调走2人后效率:1/10-1/240×(16+2)=1/40
需要时间:1÷1/40=40(天)。

相关文档
最新文档