空气预热器设计说明书

合集下载

热管型空气预热器设计说明书(结构设计)

热管型空气预热器设计说明书(结构设计)

热管空气预热器
设计说明书
班级: XX1
姓名: XXX 学号: 0 X
目录
热管空气预热器设计任务书 (2)
热管空气预热器热力计算 (3)
热管空气预热器结构设计计算 (10)
热管空气预热器设计任务书
设计题目:热管空气预热器的设计
设计要求:烟气、空气为清洁气体,不含任何杂质,烟气成分按标准烟气进行计算
设计参数:烟气进口温度 t 1h = 280℃ ; 烟气出口温度 t 2h = 180℃ ; 空气进口温度 t 1c = 20℃ ;
烟气流量(标准状况) G h =8000 Nm 3/h ;
空气流量(标准状况) G c =6400 Nm 3/h;
烟气标况下的密度 错误!未找到引用源。

f h =1.295kg/m 3;
空气标况下的密度 错误!未找到引用源。

f c =1.293 kg/m 3
选用水为热管工质,管壳材料为20号锅炉无缝钢管,翅片材料为低碳钢,翅片与管壳连接方式为高频焊接。

这种热管的参数为:
光管外径d o =0.032m ;热管内径d i =0.026m ;
翅片高度l f =0.015m ;翅片厚度f =0.0012m ;翅片间距 s f =4mm ; 翅片节距s
f ’= s f + f=5.2mm ;
每米热管长的翅片数n f =错误!未找到引用源。

热管换热器管子排列形式为等边三角形排列,如图,横向管子中心距S T =0.081m ;S L =S T =0.081m 。

其热力设计计算和结构设计计算如下:


........忽略此处.......。

FV-01NP1C 说明书

FV-01NP1C 说明书

FV-01NP1C 说明书
1、通过空气预热器向炉膛输送燃烧所需的热空气,通过一次风机和空气预热器向制粉系统提供干燥和输送煤粉所需的热空气。

送风机输送的风是由空气预热器出口的加热的热风是二次输送至炉膛的所以也称二次风机。

2、送风机将燃料燃烧所需空气送进锅炉的动力装置,多用离心式风机。

在平衡通风时,送风机要克服自风道入口到炉膛的全部阻力,其中包括空气预热器、送风管道、炉排和燃料层的阻力。

3、在正压通风时,送风机要克服自风道入口到烟囱出口的全部烟、风道阻力。

其中包括空气预热器、送风管道、炉排、燃料层、直至烟囱出口的全部烟道阻力。

4、供给锅炉燃料燃烧所需空气的风机。

布置在锅炉空气预热器之前。

将从大气中吸入的空气送入空气预热器,加热到设计温度后,一部分作为锅炉的二次风。

空预器说明书

空预器说明书

空预器我厂空预器型号为LAP10320/883,为容克式预热器,转子直径10320毫米,蓄热元件高度自上而下为800、800和300毫米,下层300毫米冷端蓄热元件为耐腐蚀钢,其余热段蓄热元件为碳钢,本空预器是三分仓型式。

一、原理LAP10320/883这种三分仓容克式空气预热器是一种以逆流方式运行的再生热交换器,加工成特殊波纹的金属蓄热元件被紧密地放置在转子扇形隔仓内,转子以 1.14转/分的转速旋转,其左右两半部份分别为烟气和空气通道,空气侧又分一次风道及二次风道,当烟气流经转子时,烟气将热量释放给蓄热元件,烟气温度降低,当蓄热元件旋转到空气侧时,又将热量释放给空气,空气温度升高,如此周而复始地循环,实现烟气与空气的热交换。

转子由置于下梁中心的推力轴承及置于上梁中心的导向轴承支撑,并处在一个九边形的壳体中,上梁、下梁分别与壳体相连,壳体则坐落在钢架上,装在壳体上的驱动装置通过转子外围的围带,使转子以 1.14转/分的转速旋转,为了防止空气向烟气泄露,在转子上、下端半径方向,外侧轴线方向以及圆周方向分别设有径向、轴向及旁路密封装置。

二、主要部件及其性能1.转子本预热器转子采用模数仓格式结构,全部蓄热元件分装在24个扇形仓格内(每个仓格为15°),每个模数仓格利用一个定位销和一个固定销与中心筒相连接,由于采用这种结构,大大减少了工地安装工作量,并减少了转子内焊接应力及热应力,中心筒上、下两端分别用M42合金钢螺栓互相连接,外周下部装有一圈传动围带,围带也分成24段。

热段蓄热元件由模数仓格顶部装入,冷端蓄热元件由模数仓格外周上所开设的门孔装入。

2. 蓄热元件热段蓄热元件由压制成特殊波形的碳钢板构成,按模数仓格内各小仓格的形状和尺寸,制成各种规格的组件,每一个组件都是由一块具有垂直大波纹和扰动斜波的定位板,与另一块具有同样斜波的波纹板,一块接一块地交替层叠捆扎而成,钢板厚0.6MM。

冷段蓄热元件由1.2MM厚的低合金耐腐蚀钢板构成,也按仓格形状制成各种规格的组件,每一个组件都是由一块具有垂直大波纹的定位板与另一块平板、交替层叠捆扎而成。

空气预热器说明书

空气预热器说明书

空气预热器技术说明2007-9-19空气换热器1、前言冶金行业是国家能源消耗大户,同时也是环境污染的主要制造者之一。

国家制订的可持续发展的长期目标,其重要保证条件就是降低冶金行业能耗,提高能源利用率,减少污染排放,实现和谐发展。

冶金行业要降低能耗,除了改善生产工艺和条件,另外的一个重要途径就是充分利用排放掉的能源,从而提高能源利用效率。

利用排放掉能源的主要设备就是换热器。

管壳式换热器是一种常见的换热设备,已经有近百年的历史。

目前已经已经有非常多的种类,广泛应用于各种行业。

管壳式换热器的特点是:换热空间是管束以及管束外面的壳体与管束形成的空间。

一种流体走管内,另外的流体走管与壳之间。

两种流体通过管壁进行换热。

管壳换热器的优点是应用广泛,可以耐高温高压,可以大型化,它的缺点是传热系数比较低,单位换热面积消耗的金属材料比较多。

为了解决这个问题,人们采取了很多方法来改善管壳换热器的传热条件。

2、螺纹管螺纹管是上世纪末出现的一种异形传热管,它通过对光滑钢管进行压力加工,使其发生螺纹状形变,表面形成螺纹凹槽而成。

螺纹管同光滑管比有非常明显的性能增强:①由于螺纹凹槽的形成,可以使管内气流形成旋流,增强了紊流状态下的对流传热能力;②螺纹凹槽使得管子表面变得粗糙,破坏了气流边界层,使得在层流状态下气体对流传热有明显提高;③螺纹凹槽可使管子传热表面积有所增加;④螺纹管比光滑管的固有频率提高,降低了换热器的振动。

但是螺纹管的阻力比光滑管大,管子刚度也比光滑管小,这是螺纹管存在的缺点。

AA2机组空气预热器的换热元件就采用单程轧槽螺纹管。

3、换热器结构换热器采用高温列管式,风箱为方形,烟气走管外行程,空气走管内行程。

整个换热器嵌入烟气通道内,没有外壳。

烟气经过换热管外换热后直接排放掉,为一个行程。

空气经过四个管行程被烟气加热,管束用风箱和连接管连接,连接管高温端有膨胀节。

空气流与烟气流呈逆差流的流动分布。

4、换热器参数4.1烟气参数:入口温度:850℃出口温度:393℃烟气量:9636m3/h·℃阻力损失:62Pa烟气放出热量:1.405×106kcal/h4.2空气参数:入口温度:20℃出口温度:550℃空气量:7524m3/h·℃阻力损失:770Pa空气吸收热量:1.286×106kcal/h4.3换热管参数:管子类型:单程轧槽螺纹管光管规格:φ45×2.5×1900,中间有折弯管子数量:276×4=1104根4.4管子排布:迎风面截距110mm,气流方向截距67mm,三角形错排4.5传热参数:管外传热系数:28.8kcal/m2·h·℃管内传热系数:84.1 kcal/m2·h·℃综合传热系数:20.8kcal/m2·h·℃传热面积:215m24.6材质:由于换热器管壁温度有超过500℃的部分,所以前两行程的管材为1Cr18Ni9Ti,并且热浸镀渗铝,后两行程的管材为20g,符合GB3087-99标准,样也热浸镀渗铝。

回转式空预器说明书

回转式空预器说明书

回转式空气预热器一. 作用空予器是利用锅炉尾部烟气热量加热燃烧所需空气的一种热交换装置。

空预器可以进一步降低排烟温度,减少排烟热损失;同时提高燃烧所需空气温度,改善燃料着火和燃烧条件,降低各项不完全燃烧损失,提高锅炉机组热效率等。

二. 原理1.本空气预热器型号LAP8650/1900是根据美国ABB-CE预热器公司的技术进行设计和制造。

这种三分仓回转式空气预热器是一种以逆流方式运行的再生式热交换器。

转子直径8650毫米,蓄热元件高度自上而下分别为800、800和300毫米,冷段300毫米,蓄热元件为低合金耐腐蚀的考登钢,其余热段蓄热元件为碳钢。

预热器左右两半部份分别为烟气和空气通道,空气侧又分为一次风道及二次风道。

当烟气流经转子时烟气将热量释放给蓄热元件,烟气温度降低;当受热后的蓄热元件旋转到空气侧时,又将热量释放给空气,空气温度升高。

如此周而复始地循环,实现烟气与空气地热交换。

2.装在壳体上地驱动装置通过转子外围地围带,使转子以1.28转/分的转速旋转。

为了防止空气向烟气侧泄漏,在转子的上、下端半径方向,外侧轴线方向以及圆周方向分别设有径向、轴向及旁路密封装置,此密封装置采用双密封结构以减小漏风。

此外,预热器上还设有火灾监测消防及清洗系统、吹灰装置、润滑及控制等设备。

三. 空气预热器技术特性见下表四. 空气预热器主要构件及性能1.空气预热器为回转再生式三分仓结构,逆流,转动轴垂直,具有气密保温外壳,用以从烟气流中有效地回收热量。

设计时应考虑预热器低温端的防腐问题。

回转式空气预热器的设计应满足二次风和一次风的总需求,以保证在燃烧劣质煤和所有负荷情况下,达到所需要的风温。

每台空气预热器应包括一套带二台电机的驱动装置:-一台用于正常运行;-一台用于事故运行,或用于冲洗过程。

每台空气预热器均配有用于火焰检测的热电偶、防火保护、冲洗通道和吹灰器。

空气预热器的外壳上配有门孔,以便在不拆下预热器的情况下检查和更换冷端部件。

热管型空气预热器设计说明书(结构设计)

热管型空气预热器设计说明书(结构设计)
热管空气预热器 设计说明书
班级: 姓名: 学号:
热能 0801 李佳
04
目录
热管空气预热器设计任务书· ·······················2 热管空气预热器热力计算· ·························3 热管空气预热器结构设计计算· ·····················10
MPa
查附录 7,工作温度 221℃
2.42
10
工作最 107 大压力
MPa
,安全
序 号
项目
符号
基管外
1

do
管壁厚
2

翅片外
3




翅片高
管4



翅片厚
的5



翅片间
选6


横向管
7 子中心

纵向管 8 子中心

热侧迎 9 风速度
冷侧迎 10 风速度
热侧迎 11 风面积

、 换
12
冷侧迎 风面积
每米热管长的翅片数 nf=

热管换热器管子排列形式为等边三角形排列, 如图,横向管子中 心距 ST=0.081m;SL=ST=0.081m。
2
其热力设计计算和结构设计计算如下:
序 号
项目
符号
烟气进 1 口温度
t1h
烟气出 2 口温度
t2h
烟气定 3 性温度
tfh
热力计算
单位
计算公式

给出

给出

一 、
10.9 24.1 × 1-60 3.55 × 1-20

空气预热器方案说明

空气预热器方案说明

10吨蒸汽锅炉空气预热器方案(节煤率5%以上;提高锅炉岀功10%以上)一、热管式空气预热器的工作原理及优点热管式空气预热器的主要传热元件为重力式热管,重力式热管的基本结构如图1所示。

热管由管壳、外部扩展受热面、端盖等部分组成,其内部被抽成1.3×(10-1—10-4)Pa的真空后,充入了适量的工作液体。

图1 热管传热原理简图热管的传热机理是:当热流体流经热管的蒸发段时热量经由扩展受热面和管壁传递给工质,由于管内的真空度较高,工质在较低温度下开始沸腾,沸腾产生的蒸汽流向冷凝段冷凝放出热量,热量再经管壁和扩展受热面传递给冷流体,冷凝后的工质在重力的作用下流回蒸发段,如此循环不已,热量就不断的由热流体传递给了冷流体。

热管的传热机理决定着热管有以下基本特性:①极高的轴向导热性:因在热管内部主要靠工作液体的汽、液相变传热,热阻趋于零,所以热管具有很高的轴向导热能力。

与银、铜、铝等金属相比,其导热能力要高出几个数量级。

②优良的等温性:热管内腔中的工质蒸汽处于饱和状态,蒸汽在从蒸发段流向冷凝段时阻损很小,在整个热管长度上,蒸汽的压力变化不大,从而也就决定着在整个热管长度上温度变化不大,所以说热管具有优良的等温性。

由热管组成的热管式空气预热器具有以下的优点:①由热管的等温性决定着在预热器中每排热管都工作在一个较窄的温度范围内,这样就可以通过结构调整使每排热管的壁温高于露点温度,从而避免发生结露、腐蚀和堵灰的现象,从而保证了锅炉不会因为空气预热器的堵灰、引风机出力不足,影响锅炉的正常运行的情况。

而管式预热器由于烟气在管内流动时烟温逐渐降低,所以每根管子的壁温都是沿烟气的流动方向逐渐降低的,在每根管子的烟气出口部位,由于烟温和空气温度均较低,很容易发生结露、黏灰、堵灰的现象,影响引风机的抽力,从而影响锅炉的正常运行。

②一般管式空气预热器设计和烟气流速较高(11—14m/S),且换热管用壁厚较小(约1.5mm)的焊接管,所以管子很容易磨穿,产生漏风,引起鼓、引风机的电耗增加。

空预器器扇形板自动调节说明书

空预器器扇形板自动调节说明书

空预器漏风控制系统说明书一、概述回转式空气预热器是指转子旋转而风罩固定的一种空气预热器。

自锅炉炉膛排出的高温烟气自上而下流经预热器转子一侧时,加热转子中的蓄热元件。

当已加热的蓄热元件随转子转到另一侧(空气侧)时,冷空气从下往上流经蓄热元件,把热量带走,从而达到预热冷空气的目的。

由于转子受热时上下存在温差,发生蘑菇状变形,使上部扇形板与转子径向密封片间的间隙增大。

(见图一)图一由于密封间隙增大,造成空气预热器的泄漏量增加,使能量损耗增大。

如果控制住了漏风量,就可以在不增加送风机能耗的情况下,保证锅炉的总风量供应。

空气预热器漏风间隙调整控制系统,就是通过测量并调节上部扇形板与转子径向密封片之间的间隙,以保证在任何运行工况下,该部的间隙保持最小,从而减少了漏风量,达到节能降耗,提高整个机组效率的目的。

本系统同时可以检测多路故障(如转子停转、传感器异常、电机过载等)并进行故障处理和报警。

◇本系统适用于河北定曲发电厂三分仓式空气预热器1.使用环境条件环境条件应满足:●相对湿度:<85%RH●大气压力L:86—106Kpa●无爆炸和破坏绝缘的介质※建议将控制柜安装在远离热源的地方2.安全应将控制柜、动力柜、现场信号变送箱可靠地固定在平台上,并保持良好的接地。

二、设备描述每台锅炉有两台空气预热器,每台预热器热端有三块扇形板,每块扇形板对应有一套高温间隙传感器和一台提升机构。

本系统由高温间隙传感器、扇形板提升机构、转子停转检测开关和控制柜、动力柜五部分组成,具体如下:●高温间隙传感器探头六个(含安装板)●现场信号变送箱六个(内有接线盒、电缆及信号变送器)●扇形板提升机构六台●控制柜一台●动力柜一台●转子停转检测开关两个(含安装支架)1.高温间隙传感器本传感器属电涡流式传感器,它可以连续测量密封扇形板下表面与转子法兰上表面之间的间隙,并把间隙值转化为电信号,具有较好的稳定性和较宽的线性范围,可以在烟气腐蚀及多粉尘的环境中工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【2】P556式16-15
可以计算得入口处辐射换热系数为
烟气侧综合传热系数计算
入口:
出口:
b)空气侧传热系数确定
进口侧空气传热系数确定
进口处空气温度为0℃,查表得
入口处雷诺数
出口侧空气传热系数确定
出口处空气温度为250℃,查表得
入口处雷诺数
c)总传热系数计算
(5)换热面积计算
(6)管子排列计算
管子单位长度换热面积
空气在管内流动速度为10m/s
具体尺寸如下图:
【5】P42表5-2
=380.6℃
【4】P152式6-12
【4】P152图6-12
=358℃
a)烟气侧传热系数
入口处对流传热系数计算:
假设烟气入口侧壁温为380℃
查表得
式中:d为特征长度,这里为管径0.05
取管道排列为10排
出口处对流传热计算
假设烟气出口处壁温为300℃
【6】P560附录6
Re=1335
【6】P261表6-7式6-13c
查表得
式中:d为特征长度,这里为管径0.05
取管道排列为10排
入口处辐射传热系数计算
平均射线自由程
查表得入口处二氧化碳和水蒸气黑度为:
可以计算得入口处辐射换热系数为
出口处辐射换热系数计算
查表得入口处二氧化碳和水蒸气黑度为:
【2】P255图7-63、7-64
需要管子总长
管子数计算
当管内流速为10m/s时,每根管子空气流量为62
单程管子数 根
按双程设计时管子长度
管群列数

管群排数

所以换热器设计结果为:
金属双行程错流换热器,管子直径50mm,壁厚3mm,管子数240根,管子排列为12×20。
(7)管壁温度核算
查图得
=320℃ =300℃
与假设相近,预热器设计合理。
式中: 分别为 时的平均比热
=1.3009 =1.3139
预热器后烟气温度
式中:
、 分别为进出预热器烟气温度
、 分别为 、 时烟气平均比热
=14612
=600℃
=15459
【1】P99式3-143
【1】P99式3-144
Q=1343189w
、 进出预热器的烟气量
m:考虑预热器损失的修正系数,一般为1.05~1.1
【2】P558图16-7
则预热空气量
(4)烟气预热温度
计算 时应考虑废气的管道温降,一般为50~200℃,这里取100℃
(5)进预热器烟气量
视出炉烟气量等于进预热器烟气量
2、预热器设计计算的内容和步骤
(1)确定预热介质的流动形式
由于预热温度为250℃,兼顾考虑预热器壁温限制,选择双行程错流
(2)预热器后废气温度
预热空气需要热量
空气预热器设计
由于预热段出口烟气温度为700℃,所以选择金属预热器
1、预热器设计的已知条件
(1)空气预热温度
在计算 时,应考虑预热空气的管道温降,一般为30~50℃,与管道的保温措施有关,这里取50℃
(2)空气预热前温度
一般为冷季节的平均温度
这里取 =0℃
=250℃
=0℃
(3)预热空气量
对于金属预热器而言,其漏风可以省略不计
这里取1.1
=600℃查表得 =1.47
假设出口烟气温度 =400℃ =1.42
= =15459
由以上数据计算得
(3)烟气与被预热空气的平均温差
这里取对数平均温差
式中: 为修正系数,与下列参数有关
查图得 =0.98
=8℃
(4)传热系数计算
选择预热器内管子排列方式为顺排,空气管道
,壁厚3mm
烟气在外侧最窄处流速为2.5m/s
相关文档
最新文档