拉普拉斯变换
拉普拉斯变换

在半平面 Re s > C 上一定存在.此时右端的积分绝对 收敛而且一致收敛.并且在此半平面内 F s 为解析 函数
1.3 一些常用函数的拉普拉斯变换
例1 求单位脉冲函数 t 的拉氏变换
解
ℒ (t ) 0 (t ) e st dt 1
t 1
所以
f t 1 et
s s s5 例14 已知 F s 求 f (t ) s 3 2 s s s5 5 2 解 F s s s 1 s s
3 2
所以
f t t t t 5
求 f (t ) s 2 9 2 s 2 2s 5 1 3 解 F s 2 2 2 2 2 3 s 2 9 s 2 3 s 2 3
0
我们称上式为函数
f (t ) 的拉普拉斯变换式 ,记做
F ( s ) ℒ f (t ) F ( s) 叫做 f (t ) 的拉氏变换,象函数.
f (t ) 叫做 F ( s ) 的拉氏逆变换,象原函数, f (t ) = ℒ
1
F ( s)
1.2 拉普拉斯变换存在定理
若函数 f (t ) 满足下列条件 Ⅰ 在 t 0 的任一有限区间上连续或分段连续,
3.1 利用拉普拉斯变换表和性质求拉普拉斯逆 变换 一些常用函数的拉氏变换
(t ) 1
1 e sk
kt
1 u (t ) s
tn n! s n 1
k sin kt 2 s k2
s cos kt 2 s k2
拉氏逆变换的性质 1 ℒ F 1 (s) F 2 (s) f1 (t ) f 2 (t )
拉普拉斯变换法

拉普拉斯变换法
拉普拉斯变换法是一种数学积分变换,其核心是把时间函数f(t) 与复变函数F(s) 联系起来,把时域问题通过数学变换为复频域问题,把时间域的高阶微分方程变换为复频域的代数方程,在求出待求的复变函数后,再作相反的变换得到待求的时间函数。
由于解复变函数的代数方程比解时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。
拉普拉斯变换的定义
一个定义在[0,+∞) 区间的函数f(t) ,它的拉普拉斯变换式F(s) 定义为
式中s=σ+jω为复数,被称为复频率;F(s)为f(t)的象函数,f(t)为F(s)的原函数。
由F(s) 到f(t) 的变换称为拉普拉斯反变换,它定义为
式中c 为正的有限常数。
留意:
1)定义中拉氏变换的积分从t=0-开头,即:
它计及t=0-至0+ ,f(t) 包含的冲激和电路动态变量的初始值,从而为电路的计算带来便利。
2)象函数F(s) 一般用大写字母表示, 如I(s),U(s) ,原函数f(t)
用小写字母表示,如i(t),u(t)。
3)象函数F(s) 存在的条件:。
拉普拉斯变换

拉普拉斯变换定义式:设有一时间函数f(t) [0,∞] 或 0≤t≤∞单边函数 ,其中,S=σ+jω是复参变量,称为复频率。
左端的定积分称为拉普拉斯积分,又称为f(t)的拉普拉斯变换;右端的F(S)是拉普拉斯积分的结果,此积分把时域中的单边函数f(t)变换为以复频率S为自变量的复频域函数F(S),称为f(t)的拉普拉斯象函数。
以上的拉普拉斯变换是对单边函数的拉普拉斯变换,称为单边拉普拉斯变换。
如f(t)是定义在整个时间轴上的函数,可将其乘以单位阶跃函数,即变为f(t)ε(t),则拉普拉斯变换为F(s),=mathcal left =int_ ^infty f(t),e^ ,dt 其中积分下标取0-而不是0或0+ ,是为了将冲激函数δ(t)及其导函数纳入拉普拉斯变换的范围。
z变换可将分散的信号(现在主要用于数字信号)从时域转换到频域。
作用和拉普拉斯变换(将连续的信号从时域转换到频域)是一样的。
拉普拉斯变换是将时域信号变换到“复频域”,与傅里叶变换的“频域”有所区别。
FT[f(t)]=从负无穷到正无穷对[f(t)exp(-jwt)]积分 ,LT[f(t)]=从零到正无穷对[f(t)exp(-st)]积分 ,(由于实际应用,通常只做单边拉普拉斯变换,即积分从零开始) .具体地,在傅里叶积分变换中,所乘因子为exp(-jwt),此处,-jwt显然是为一纯虚数;而在拉普拉斯变换中,所乘因子为exp(-st),其中s为一复数:s=D+jw,jw是为虚部,相当于Fourier变换中的jwt,而D则是实部,作为衰减因子,这样就能将许多无法作Fourier变换的函数(比如exp(at),a>0)做域变换。
拉普拉斯变换主要用于电路分析,作为解微分方程的强有力工具(将微积分运算转化为乘除运算)。
但随着CAD的兴起,这一作用已不怎么受重视了,但关于其收敛域的分析(零极点图)依然常用。
Fourier 变换则随着FFT算法(快速傅立叶变换)的发展已经成为最重要的数学工具应用于数字信号处理领域。
拉普拉斯变换公式大全

拉普拉斯变换公式大全1.原始函数的拉普拉斯变换F(s)=L{f(t)}2.常数的拉普拉斯变换对于任意实常数A,其拉普拉斯变换为:L{A}=A/s3.单位冲激函数的拉普拉斯变换单位冲激函数δ(t)的拉普拉斯变换为:L{δ(t)}=14.时延定理时延定理指出,当原始函数向右延时T秒时,其拉普拉斯变换会乘以e^(-sT)。
具体公式如下:L{f(t-T)}=e^(-sT)F(s)5.缩放定理缩放定理指出,当原始函数的变量变为原来的α倍时,其拉普拉斯变换会变为原来的1/α倍。
具体公式如下:L{f(αt)}=1/αF(s/α)6.积分定理积分定理指出,对于原始函数的积分,其拉普拉斯变换可以通过将变换域上的变量s除以s平方。
具体公式如下:L{∫f(t)dt} = 1/sF(s)7.乘积定理乘积定理指出,对于原始函数的乘积,其拉普拉斯变换可以通过将变换域上的变量s替换为s减去相应函数的变换。
具体公式如下:L{f(t)g(t)}=F(s)*G(s)8.指数函数的拉普拉斯变换指数函数e^(at)的拉普拉斯变换为:L{e^(at)} = 1/(s-a)9.幂函数的拉普拉斯变换幂函数t^n的拉普拉斯变换为:L{t^n}=n!/(s^(n+1))10.正弦函数的拉普拉斯变换正弦函数sin(ωt)的拉普拉斯变换可通过欧拉公式和拉普拉斯变换公式进行变换。
具体公式如下:L{sin(ωt)} = ω/(s^2 + ω^2)以上是拉普拉斯变换的一些重要公式。
通过应用这些公式,我们可以将原始函数在时域上的操作转换为变换域上的操作,从而解决各种线性常微分方程、控制系统和信号处理问题。
拉普拉斯变换

d f (t ) s n F (s) s n1 f (0 ) f ( n1) (0 ) L[ ] n dt
n
返 回
上 页
下 页
若初始条件为零
3.积分定理 若
f (t ) F ( s)
则
若初始条件为零,则
1 为积分算子 s
4.延迟性质 若: L[ f (t )] F (s)
返 回
pn t
上 页 下 页
待定常数的确定: 方法1
K i F ( s)( s pi ) s pi i 1 2、 、 n 、 3
K2 Kn ( s p1 ) F (s) K1 ( s p1 ) s p s pn 2
f (t ) f1 (t ) f 2 (t ) f n (t )
部分分式 展开法
上 页 下 页
返 回
N ( s) a0 s a1s am F ( s) (n m) n n 1 D( s) b0 s b1s Fra bibliotek bn 3
d K 21 [( s 1) 2 F ( s)] s 1 d [ s 4 ] s 1 4 ds ds s
f (t ) 4 4e 3te
t
t
返 回
上 页
下 页
小结 由F(s)求f(t) 的步骤: n =m 时将F(s)化成真分式和多项式之和 N 0 (s) F (s) A D(s)
0
t
6.衰减定理 若 f (t ) F ( s) 则
返 回 上 页 下 页
F1 ( s) F2 ( s)
7.初值定理
若
拉普拉斯变换基础知识讲解

0
0
0
在t=0 至t=0+ f(t)=(t)时此项 0
2 象函数F(s) 用大写字母表示,如I(s),U(s)。 原函数f(t) 用小写字母表示,如 i(t), u(t)。
3 象函数F(s) 存在的条件:
0 f (t )est dt est为收敛因子
如果存在有限常数M和c使函数f(t)满足:
s2
s
2
初值定理: f(t)在t = 0处无冲激则
f (0 ) lim f (t) lim SF (S)
t0
s
终值定理:
lim f (t)存在时 t
f () lim f (t) lim SF (S)
t
s0
f () lim f (t) lim SF (S)
t
s0
证:利用导数性质
lim
s0
t (t) t n (t)
1
1
1
n!
S
S2 S n1
微分
sint (t)
S2 2
e-tt n (t )
n!
(S )n1
cost (t)
S
S2 2
e-t (t )
1
S
e-t sint (t)
(S )2 2
L[ f (t t0 ) (t t0 )] est0 F (S )
e sT
/
2
)
[
f
(t )]
1 1 esT
1 ( s
1 s
e ) sT /2
1 S
( 1
1 e ST
/2)
F (S ) L[et f (t)]
例1:L[tet (t)]
(S
1
拉普拉斯变换

求积分余弦函数Ci (t)
cos d的拉氏变换。 t
例3(补充例题)求解初始问题
dy 2 y et dt y t0 0
例4(补充例题)求解初始问题
y'' y t
y
t0
y'
t0
0
例5(补充题,利用原函数积分法求解 积分方程)设C,R,E为正常数,求解 积分方程(该方程来自电路理论)
lim e pt f (i) (t) 0
t
注意: 一、初始条件进入Lapace 变换公式中,这一点在实际
应用中非常重要。 二、原函数对 t 的求导,变成像函数 与p 相乘。
三 原函数积分定理:
ℒ
t
0
(
)d
1 s
ℒ [ (t)]
原函数对 t 的积分变成像函数与 s 相除
四 相似性定理
ℒ
f
(at)
L [ f (t)] test dt 1 t d(est )
0
s0
1 test s
|
0
1 s
e st dt
0
1 s2
e st
0
d( st )
1 s2
est
|
0
1 s2
(Res 0)
例4 f (t) t eat
L[teat ]
t
e(sa)t
dt
1
t d e(sa)t
f (t) Res[F(s)est ]
因在 L 的右边无奇点,所以可以说:pk 是全平面上像 函数的奇点。(如果像是多值函数,问题比较复杂)
Fourier变换与Laplace变换的比较
1 Fourier 变换 与 逆变换比较对称,但 Fourier 变换对函数要求较严;数值计算 比较成熟(FFT);
完整版拉普拉斯变换表3篇

完整版拉普拉斯变换表拉普拉斯变换是一种用来描述动态系统的数学工具。
它可以将时间域的函数转换为复频域的函数,使得复杂的微积分运算变得简单。
下面是拉普拉斯变换常用的函数表。
1. 常数函数拉普拉斯变换表达式:L{1} = 1/s解释:常数函数的拉普拉斯变换等于1除以s。
这个表达式可以直接从拉普拉斯变换的定义得出。
2. 单位阶跃函数拉普拉斯变换表达式:L{u(t)} = 1/s解释:单位阶跃函数是在t=0处取值为0,t>0处取值为1的函数。
它的拉普拉斯变换等于1除以s。
因为当s>0时,1/s表示连续求导的意义,也就是说,一个单位阶跃函数的拉普拉斯变换就是一个连续求导的过程。
3. 指数函数拉普拉斯变换表达式:L{e^at} = 1/(s-a)解释:指数函数的拉普拉斯变换等于1除以s减去指数函数的指数。
这个表达式可以通过对指数函数求拉普拉斯变换的定义进行求解。
4. 正弦函数拉普拉斯变换表达式:L{sin(at)} = a/(s^2 + a^2)解释:正弦函数的拉普拉斯变换等于a除以s平方加上正弦函数的频率a的平方。
这个表达式可以通过对正弦函数求拉普拉斯变换的定义进行求解。
5. 余弦函数拉普拉斯变换表达式:L{cos(at)} = s/(s^2 + a^2)解释:余弦函数的拉普拉斯变换等于s除以s平方加上余弦函数的频率a的平方。
这个表达式可以通过对余弦函数求拉普拉斯变换的定义进行求解。
6. 阻尼正弦函数拉普拉斯变换表达式:L{e^(-bt)sin(at)} = a/(s^2 + (a+b)^2)解释:阻尼正弦函数的拉普拉斯变换等于a除以s平方加上阻尼正弦函数的频率a加上阻尼b的平方。
这个表达式可以通过对阻尼正弦函数求拉普拉斯变换的定义进行求解。
7. 阻尼余弦函数拉普拉斯变换表达式:L{e^(-bt)cos(at)} =(s+b)/(s^2 + (a+b)^2)解释:阻尼余弦函数的拉普拉斯变换等于s加上阻尼余弦函数的频率a加上阻尼b的平方,除以s平方加上阻尼余弦函数的频率a加上阻尼b的平方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章 拉普拉斯变换 —学习过渡过程的复频域分析方法
本章内容:
1.复习拉氏变换及拉氏变换的性质 ( 列写微分方程→求时域响应 2.拉氏变换的部分分式展开 列代数方程 → 求复频域响应 3.拉氏变换的运算电路 →积分变换→求时域响应) 4.拉氏变换的线性电路的分析 本章重点:
1.拉氏变换的部分分式展开 2.拉氏变换的运算电路
本章重点:应用运算电路求电路的频率响应
§13-1 拉普拉斯变换的定义
对于一个多个动态元件的电路,用直接求解微分方程的方法比较困难,麻烦;故通过积分变换法,把已知的时域函数(时间域)变换为频域(s 域)函数,从而将时域的微分方程化为频域函数的代数方程。
求出频域函数后,再作变换,返回时域,即可求出响应。
积分变换的方法有:拉普拉斯变换和傅里叶变换,拉普拉斯变换应用广,故采用。
一、拉普拉斯变换(拉氏变换)
如果函数f(t)在t ≥0时有定义,且⎰∞
--0)(dt e t f st 为有限值(收敛)则,f(t)的拉氏变换为:
⎰
∞
--
=
0)()(dt e t f S st F
式中:ωσj S +=为复数变量,称复频率,单位为HZ ; F (S )是f(t)的象函数(F (S )象函数) f(t)是 F (S )的原函数(f(t)是原函数)。
二、拉普拉斯反变换(拉氏反变换)
⎰
∞
+∞
-=
j c j c st dt e S F j
)(21πf(t)
三、举例
例13-1求以下函数的象函数
(1) 单位阶跃函数(2)单位冲激函数(3)指数函数。
解:(1)单位阶跃函数
(2) 单位冲激函数
(3)指数函数。
§13-2 拉普拉斯变换的性质
一、线性(组合)性质
设F1(S)、F2(S)是f1(t)和f2(t)的象函数,A1A2是两个任意实数则有:
二、微分性质
设F(S)是f(t)的象函数,则有
三、积分性
设F(S)是f(t)的象函数,则有
四、延迟性质
设F(S)是f(t)的象函数,则有
应用拉普拉斯变换可求出原函数和象函数的对应关系,得出294页表,那么,
如何利用表中函数对应的关系,由象函数求原函数呢,我们复习部分分式法。
§13-3 拉普拉斯反变换的部分分式展开
在用拉普拉斯变换求解线性电路的时域响应时,需要将频域响应的拉氏变换式子反变换为时间函数,如果象函数较简单,则可查表求原函数;如较复杂,则要分解为简单的、能从表中查到的项,再利用查表求原函数。
电路响应的象函数可表示为两个实系数的s多项式之比(有理分式)为:
把F(s)分解成若干个简单项之和,利用拉氏变换表求原函数,这种方法称为部分分式展开法(分解定理)
用部分分式展开法要化成真分式
一、实数单根
设D(s)=0有n个实数单根,p1、p2…p n。
则有:
求待定系数
1.
2.当求待定系数遇到零比零(不定式)时用下面极限的方法
因为
确定待定系数后,原函数查表13-1为
例13-6求的原函数。
解:
各待定系数为:
原函数为:
二、共轭复根
设共轭复根为:
K1、K2是一对共轭复根,设则有则:
例13-7 求的原函数
解:
三、重根
若D(S)含有重根,则应含有(s-p1)n因式,设含有3重根,F(S)可分解为(含有单根P2和重根P1):
单根的求解方法不变;重根K值的求法为将式的两边乘以3重因子有
(1)
对(1)求导可求K12
同理可求导可求K13为:
当有q阶重根时有:
例题13-8 求的原函数解:D(S)有2个重根P1=-1,P2=-0
由原式知两边同乘以(s+1)3有
则有:
同理:
K21=1 K22=-3可得像函数为
原函数为:
§13-4 运算电路
要进行复频域分析,就要把时域电路变成复频域电路,即运算电路一、基尔霍夫的复频域形式:
二、RLC的运算电路
1.电阻元件
2.电感元件
**
3.电容元件
**
4.两个耦合电感的运算电路为
5.RLC 串联运算电路
§13-5 拉普拉斯变换法分析线性电路
例题13-9 电路处于稳态,t=0时s 闭合,试用运算法求电流i 1(t) 解:U s 的拉氏变换为1/s ;由于开关闭合前电路稳态,则
i L (0-)=0 u c (0-)=1V
设出回路电流,应用回路法可列出方程为:
求0)22(2=++s s s 的根为s=0 , s=-1+j , s=-1-j
待定系数2
12
4310
2=
++=
=S S S 1K
0145122
21
2212
431j j
S e j S S =--=++=+-=2K
1451232
212212
431j j S e
j S S K ---==+-=
++=
响应为:
例13-10 电路为RC 并联,激励为电流源,分别求激励为阶跃函数和冲激函数时电路的响
应u(t)。
解:
(1)
(2)
例13-11 电路如图,t=0时开关s 闭合,求响应u L (t)。
已知u s1=2e -2t ,u s2=5v,R 1=R 2=5Ω,
L=1H 。
解:
电感的初始值为:
用结点电压法求解得:
45222
1-=+=
-=S S S K 55
225
.22=+=
-=S S S
K
小结:
1.部分分式法展开 2.R 、L 、C 运算电路 3.复频域分析方法。