拉氏变换常用公式

合集下载

拉氏变换表(包含计算公式)

拉氏变换表(包含计算公式)

拉氏变换及反变换公式3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(式中,n s s s ,,,21 是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→或iss i s A s B c ='=)()(式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→- )()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)。

自动控制中拉氏变换常用公式

自动控制中拉氏变换常用公式

⏹ 自动控制中常用拉普拉斯变换● 拉普拉斯变换()()()0,,0st F s L f t f t e dt s j σωσ∞-===+>⎡⎤⎣⎦⎰其中 1、 指数函数00()0t t f t et α-<⎧=⎨≥⎩,其中,α为常数。

()001[]d d t t st s t L e e e t e t s αααα∞∞----+===+⎰⎰ 2、 单位阶跃函数()00()110t f t t t <⎧==⎨≥⎩,其中,A 为常数。

()01[1]1d st L t e t s ∞-=⋅=⎰ 3、 单位斜坡函数000)(≥<⎩⎨⎧=t t tt f 2000011[]d d d st st st st e e L t te t t t e t s s s s∞--∞∞∞--==-==--⎰⎰⎰ 4、 三角函数00()sin 0t f t t t ω<⎧=⎨≥⎩ 根据欧拉公式:sin 2j t j te e t jωωω--= 拉式变换为:2222112[sin ]22j t j t j L t L e e j j s s ωωωωωωω-⎛⎫⎡⎤=-== ⎪⎣⎦++⎝⎭ 同理余弦函数的拉式变换为:22[cos ]s L t s ωω=+ 5、 单位脉动函数 00010()00,t t t f t t t t ⎧<<⎪=⎨⎪<<⎩,其中,t 0为常数。

脉动函数可以看做是一个从t =0开始的高度为1/t 0的阶跃函数,与另一个从t =t 0开始的高度为1/t 0的负阶跃函数叠加而成。

即00011()()()f t u t u t t t t =-- ,可得: 0000000011111[()]()()(1)st st L f t L u t L u t t e e t t t s t st s --⎡⎤⎡⎤=--=-=-⎢⎥⎢⎥⎣⎦⎣⎦ 6、 单位脉冲函数单位脉冲函数是脉动函数的一种特殊极限情况。

拉氏变换

拉氏变换

控制原理补充讲义——拉氏变换拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。

一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。

f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。

2)当时,,M,a为实常数。

2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。

—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。

二、典型时间函数的拉氏变换在控制系统分析中,对系统进行分析所需的输入信号常可化简成一个或几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。

注意:六大性质一定要记住1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见下表:拉氏变换对照表 序号 F(s) f(t) 序号 F(s) f(t)11 1121(t) 123t13414511+Ts Tte T-1 156)(1a s s +ate --1167)1(1+Ts sTt e--117)1sin(122ϕξωξωξω----t e n t nn8189191020三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s),则有:,此式可由定义证明。

2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有,其中,当t<0时,f(t)=0,f(t-a)表示f(t)延迟时间a.证明:,令t-a=τ,则有上式=例:求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)是由正向使的f(t)值。

拉氏变换常用公式

拉氏变换常用公式

时常使用推普推斯变更归纳之阳早格格创做1、指数函数000)(≥<⎩⎨⎧=-t t Ae t f t α,其中,A 战a 为常数.2、阶跃函数000)(><⎩⎨⎧=t t A t f ,其中,A 为常数.3、单位阶跃函数4、斜坡函数000)(≥<⎩⎨⎧=t t At t f ,其中,A 为常数.A =1时的斜坡函数称为单位斜坡函数,爆收正在t=t 0时刻的单位斜坡函数写成r (t-t 0)5、单位斜坡函数6、正弦函数00sin 0)(≥<⎩⎨⎧=t t t A t f ω,其中A 为常数.根据欧推公式:推式变更为: 共理余弦函数的推式变更为:22]cos [ωω+=s Ast A L7、脉动函数t t t t t t At f <<<<⎪⎩⎪⎨⎧=00,000)(,其中,A 战t 0为常数.脉动函数不妨瞅干是一个从t =0启初的下度为A /t 0的阶跃函数,取另一个从t =t 0启初的下度为A /t 0的背阶跃函数叠加而成.8、脉冲函数脉冲函数是脉动函数的一种特殊极限情况.9、单位脉冲函数劈里积A =1的脉冲函数称为单位脉冲函数,或者称为狄推克(Disac)函数,量值为无贫大且持绝时间为整的脉冲函数杂属数教上的一种假设,而没有成能正在物理系统中爆收.然而是,如果系统的脉动输进量值很大,而持绝时间取系统的时间常数相比较非常小时,不妨用脉冲函数来近似天表示脉动输进.当形貌脉冲输进时,脉冲的里积大小利害常要害的,而脉冲的透彻形状常常本来没有要害.脉冲输进量正在一个无限小的时间内背系统提供能量.单位脉冲函数)(0t t -δ不妨瞅做是单位阶跃函数u (t-t 0)正在间断面t=t 0上的导数,即差异,如若对于单位脉冲函数)(0t t -δ积分:积分的截止便是单位阶跃函数 u (t-t 0)利用脉冲函数的观念,咱们不妨对于包罗没有连绝面的函数举止微分,进而得到一些脉冲,那些脉冲的量值等于每一个相映的没有连绝面上的量值.10、加速度函数000)(2<≥⎩⎨⎧=t t At t f ,其中,A 为常数. 推氏变更为:当A=21时称之为单位加速度函数,用a (t )表示,爆收正在t=t 0时刻的加速度函数常常写成)(0t t a -,图像如下:11、单位加速度函数:。

拉氏变换与Z变换的基本公式及性质

拉氏变换与Z变换的基本公式及性质

拉氏变换与Z变换的基本公式及性质拉氏变换(Laplace Transform)是一种重要的信号分析工具,它将时域函数转换为复域函数,使得分析和处理复杂的差分方程、微分方程、线性时不变系统等问题变得更加简单。

拉氏变换的定义如下:对于一个定义在半轴t≥0上的实值函数f(t),它的拉氏变换F(s)定义为:F(s) = L{f(t)} = ∫[0,∞] e^(-st) f(t) dt其中s是一个复变量,e^(-st)是一个复数系数。

拉氏变换的基本公式:1.映射常数L{1}=1/s2. $L{e^{at}}=\frac{1}{s-a}, Re(s)>a$3.时间平移L{f(t-a)u(t-a)} = e^(-as)F(s)4.频域平移L{e^(as)f(t)} = F(s-a)5.合并函数L{f(t)+g(t)}=F(s)+G(s)6.乘法L{f(t)g(t)}=F(s)*G(s)7.单位冲激函数L{δ(t-a)} = e^(-as)拉氏变换的性质:1.线性性质L{af(t) + bg(t)} = aF(s) + bG(s)2.积分性质L{∫[0,t]f(τ)dτ}=1/s*F(s)3.拉氏变换的导数性质L{f'(t)}=sF(s)-f(0)4.初始值定理f(0+) = lim(s->∞) sF(s)5.最终值定理lim(t->∞) f(t) = lim(s->0) sF(s)Z变换是一种由离散信号而来的变换,它将离散序列变换到复平面上。

Z变换的定义如下:对于一个离散序列x[n],它的Z变换X(z)定义为:X(z)=Z{x[n]}=∑[-∞,∞]x[n]z^(-n)其中z是一个复变量。

Z变换的基本公式:1.映射常数Z{1}=12.单位序列Z{δ[n]}=13.线性性质Z{ax[n] + by[n]} = aX(z) + bY(z)4.平移Z{x[n-a]}=z^(-a)X(z)5.单位冲激响应函数Z{h[n]}=H(z)6.时域乘法Z{x[n]y[n]}=X(z)Y(z)Z变换的性质:1.线性性质Z{ax[n] + by[n]} = aX(z) + bY(z)2.移位性质Z{x[n-k]}=z^(-k)X(z)3.初始值定理x[0] = lim(z->∞) X(z)4.最终值定理lim(n->∞) x[n] = lim(z->1) (1-z^(-1))*X(z)5.时域卷积性质Z{x[n]*y[n]}=X(z)Y(z)6.时域乘法性质Z{x[n]y[n]}=X(z)Y(z)总结:拉氏变换和Z变换都是用于信号分析和处理的重要工具。

常见的拉普拉斯变换公式

常见的拉普拉斯变换公式

常见的拉普拉斯变换公式拉普拉斯变换公式是数学中的一种重要工具,它在信号与系统、电路分析、控制理论等领域有着广泛的应用。

通过将一个函数或信号从时间域转换到复频域,拉普拉斯变换可以简化复杂的微分方程求解和系统分析问题。

以下是常见的拉普拉斯变换公式及其应用。

1. 原函数定义公式:拉普拉斯变换的第一个公式是原函数定义公式,用于将一个函数从时间域表示转换为复频域表示。

假设函数为f(t),其拉普拉斯变换为F(s),则原函数定义公式为:F(s) = L{f(t)} = ∫[0,∞] f(t)e^(-st) dt其中,s为复变量,表示函数在复频域的频率。

2. 常见的拉普拉斯变换公式:拉普拉斯变换公式包括了一系列常见函数的变换结果,以下是其中的几个常见公式及其应用:- 常数函数:L{1} = 1/s,常数函数在拉普拉斯变换后变为1除以复变量s。

- 单位阶跃函数:L{u(t)} = 1/s,单位阶跃函数在拉普拉斯变换后变为1除以复变量s。

- 指数函数:L{e^(at)} = 1/(s-a),指数函数在拉普拉斯变换后变为1除以复变量s减去常数a。

- 正弦函数:L{sin(at)} = a/(s^2 + a^2),正弦函数在拉普拉斯变换后变为常数a除以复变量s的平方加上a的平方。

- 余弦函数:L{cos(at)} = s/(s^2 + a^2),余弦函数在拉普拉斯变换后变为复变量s除以复变量s的平方加上a的平方。

3. 拉普拉斯变换的性质:拉普拉斯变换具有一系列的性质,这些性质可以方便地应用于信号处理和系统分析中。

以下是常见的拉普拉斯变换性质:- 线性性质:L{af(t) + bg(t)} = aF(s) + bG(s),其中a和b为常数,f(t)和g(t)为函数,F(s)和G(s)为它们的拉普拉斯变换。

- 平移性质:L{f(t-a)u(t-a)} = e^(-as)F(s),其中a为常数,f(t)为函数,u(t)为单位阶跃函数,F(s)为f(t)的拉普拉斯变换。

常用的拉普拉斯变换公式表

常用的拉普拉斯变换公式表

常用的拉普拉斯变换公式表常用的拉普拉斯变换公式表在数学和理论物理领域中,拉普拉斯变换是一种重要的数学工具。

它将一个函数从时间或空间域转换到复频域,这对于解决许多实际问题是很有用的。

在使用拉普拉斯变换时,人们通常需要使用一些常用的公式来简化计算。

在这篇文章中,我将列出一些常用的拉普拉斯变换公式,方便读者在实际应用中使用。

一、定义和性质拉普拉斯变换是一种线性变换,它将一个函数f(t) 映射到复平面上的函数 F(s) 。

具体而言,拉普拉斯变换可以表示为:F(s) = L[f(t)] = ∫[0,+∞) e^(-st) f(t) dt其中s是复变量,常常被看作是频域变量。

对于给定的函数f(t),我们可以求出它在复平面上的拉普拉斯变换F(s)。

与傅里叶变换类似,拉普拉斯变换也有一系列的性质和定理。

下面是一些重要的性质和定理:1. 线性性质:对于任意常数a、b和函数f(t)、g(t),有L[af(t) + bg(t)] = aL[f(t)] + bL[g(t)]2. 移位定理:对于f(t)的拉普拉斯变换F(s),有L[e^(-at) f(t)] = F(s+a)3. 初值定理:如果f(t)在t=0处有一个有限的极限,那么L[f(t)] =lim_(s->∞) sF(s)4. 终值定理:如果f(t)是一个有限长度的函数,那么L[f(t)] = lim_(s->0) sF(s)二、常用的拉普拉斯变换公式在实际应用中,常常需要用到一些标准的拉普拉斯变换公式。

下面是一些常用公式:1. 常数函数:L[1] = 1/s2. 单位阶跃函数:L[u(t)] = 1/s3. 二次函数:L[t] = 1/s^24. 指数函数:L[e^(at)] = 1/(s-a)5. 余弦函数:L[cos(at)] = s/(s^2+a^2)6. 正弦函数:L[sin(at)] = a/(s^2+a^2)7. 阻尼振荡函数:L[e^(-at) sin(bt)] = b/(s+a)^2+b^28. 阻尼振荡函数:L[e^(-at) cos(bt)] = (s+a)/(s+a)^2+b^2以上是一些常用的拉普拉斯变换公式,它们的应用非常广泛,可以用于研究电路、控制系统和信号处理等领域。

拉氏变换定义、计算、公式及常用拉氏变换反变换

拉氏变换定义、计算、公式及常用拉氏变换反变换

****拉普拉斯变换及反变换****定义:如果定义:• 是一个关于的函数,使得当时候,;•是一个复变量;• 是一个运算符号,它代表对其对象进行拉普拉斯积分;是的拉普拉斯变换结果。

则的拉普拉斯变换由下列式子给出:1线性定理齐次性)()]([s aF t af L =叠加性)()()]()([2121s F s F t f t f L ±=±2微分定理一般形式=-=][- -=-=----=-∑11)1()1(1222)()()0()()(0)0(')(])([)0()(])([k k k k nk k n nnn dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时)(])([s F s dtt f d L n nn =2.表A-2 常用函数的拉氏变换和z变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (F-1)式中,n s s s ,,,21 是特征方程A(s)=0的根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


1 2 st t e dt 2

1 2 st t e 2

0

0
te
st
dt
1 s3
写成 a(t t0 ) ,图像如下:
a (t )
8 6 4 2
0
a (t t 0 )
1 2 3 4
(a)
t
0
t0
(b)
t
图 2.6 单位加速度函数
11、单位加速度函数:
0 a(t ) 1 2 t 2
t0 t0
0
1 L t 2 u (t ) 2 1 s

L[ At ]

0
e st Ate dt At s
st

0

0
Ae st dt s

A s


0
e st d t
A s2
A=1 时的斜坡函数称为单位斜坡函数,发生在 t=t0 时刻的单位斜坡函数写成 r(t-t0)
5、单位斜坡函数
0 f (t ) t
(t t 0 )
d u (t t 0 ) dt
相反,如若对单位脉冲函数 (t t 0 ) 积分:
(t t )dt u (t t )
t0 0 0
t
积分的结果就是单位阶跃函数 u(t-t0) 利用脉冲函数的概念,我们可以对包含不连续点的函数进行微分,从而得到一些脉冲, 这些脉冲的量值等于每一个相应的不连续点上的量值。 10、加速度函数
As s 2
2
同理余弦函数的拉式变换为: L[ A cos t ] 7、脉动函数
A f (t ) t 0 0
0 t t0 t 0, t0 t
,其中,A 和 t0 为常数。
脉动函数可以看做是一个从 t=0 开始的高度为 A/t0 的阶跃函数, 与另一个从 t=t0 开始 的高度为 A/t0 的负阶跃函数叠加而成。
0
t 0 ,其中,A 为常数。 t0
A s
L[ A] Ae st dt
3、单位阶跃函数
0 u(t) 1
L [ u ( t )]
t 0 t 0
0

e
st
d t
1 s
4、斜坡函数
0 f (t ) At
t 0 t 0 ,其中,A 为常数。
常用拉普拉斯变换总结
1、指数函数
0 f (t ) t Ae
0
t0 ,其中,A 和 a 为常数。 t0
0
L[ Ae t ] Ae t e st dt A e ( s ) t dt
2、阶跃函数
A s
0 f (t ) A
0
t
(a )
0
t
(b )
图 2 .3 正 弦 函 数 和 余 弦 函 数
根据欧拉公式: 拉式变换为:
sin t
1 ( e j t e j t ) 2j
L[ Asint]
A jt jt st (e e )e dt 2 j 0 A 1 A 1 A 2 2 j s j 2 j s j s 2
t 0 t 0
L[t ]

0
e st te dt t s
st


0

0
e st dt s

1 st 1 e dt 2 s 0 s
6、正弦函数
0 f (t ) A sin t
f (t )
t0 ,其中 A 为常数。 t0
f (t )
At 2 f (t ) 0
拉氏变化为:

t0 t0
,其中,A 为常数。Βιβλιοθήκη L[ At 2 ]
0
At 2 e st d t 1 s3
A 2 st t e s
0
2 te st d t 0

2A
当 A=
1 时称之为单位加速度函数,用 a(t)表示,发生在 t=t0 时刻的加速度函数通常 2
f (t )
A A u (t ) u (t t 0 ) t0 t0
A A L[ f (t )] L u (t ) L u (t t0 ) t0 t0 A A st 0 A e (1 e st 0 ) t0 s t0 s t0 s


9、单位脉冲函数 当面积 A=1 的脉冲函数称为单位脉冲函数,或称为狄拉克(Disac)函数,
(t t0 )
0
t t0 t t0


-
(t t0 )dt 1
量值为无穷大且持续时间为零的脉冲函数纯属数学上的一种假设, 而不可能在物理系统 中发生。但是,如果系统的脉动输入量值很大,而持续时间与系统的时间常数相比较非常小 时,可以用脉冲函数去近似地表示脉动输入。 当描述脉冲输入时,脉冲的面积大小是非常重要的,而脉冲的精确形状通常并不重要。 脉冲输入量在一个无限小的时间内向系统提供能量。 单位脉冲函数 (t t 0 ) 可以看作是单位阶跃函数 u(t-t0)在间断点 t=t0 上的导数,即
8、脉冲函数 脉冲函数是脉动函数的一种特殊极限情况。
A lim g (t ) 0 0
0t t 0, t
A L[ g (t )] lim (1 e s ) 0 s d A(1 e s ) As lim d A 0 d s s d
相关文档
最新文档