拉普拉斯变换公式总结..
拉普拉斯反变换公式

拉普拉斯反变换公式拉普拉斯反变换公式是拉普拉斯变换中的一个非常重要的定理,它是将拉普拉斯变换转化回时间域的关键。
通过拉普拉斯反变换公式,我们可以通过拉普拉斯变换得到的复数函数,获取到原始信号随时间所呈现的波形。
拉普拉斯反变换公式如下:$f(t) = \frac{1}{2\pi j}\int_{\sigma-j\infty}^{\sigma+j\infty} F(s)e^{st} ds$其中,$f(t)$表示时域中的函数;$F(s)$表示频域中的函数,它是$f(t)$经过拉普拉斯变换后得到的复数函数;$s$是复平面上的变量,其实部为$\sigma$,虚部为$jw$;$j$是虚数单位,满足公式$j^2=-1$。
这个公式的意义是,从复平面上某一个起始点$\sigma-j\infty$开始,到一个结束点$\sigma+j\infty$结束时,对$F(s)$进行积分。
积分过程中,$s$在复平面中的轨迹,被称为积分路径。
在公式中,$e^{st}$表示时域中的复数因子,它在复平面上的轨迹是一个指向右上方的直线。
拉普拉斯反变换公式的使用方法,在于根据所给的$F(s)$,找到一个合适的积分路径,使得积分公示有意义,且可求。
一般而言,我们可以通过套用Look-Up表格来确定积分路径,以此找到正确的反变换。
当然,拉普拉斯反变换不同于傅里叶变换的反演公式,它比傅里叶反变换更加困难,也更加复杂。
因为在傅里叶变换中,频域和时域之间存在良好的对称关系,而且较为简单;而在拉普拉斯变换中,频域和时域之间的对称关系较为复杂,需要借助查表法或者解析法才能求解反变换。
不过,需要注意的是,虽然拉普拉斯反变换的计算较为困难,但是在实际应用中,它仍然是一种非常有用的数学工具。
它可以应用于多种领域,比如信号处理、微积分、电路理论等等。
同时,在应用中,我们可以根据情况采用不同的方法,如解析解法、分步积分法等等,以此来有效地求解反变换。
因此,拉普拉斯反变换公式是一种非常重要的数学工具。
laplace逆变换公式

拉普拉斯逆变换是将拉普拉斯变换的频域表达式转换回时间域的过程。
逆变换的具体形式取决于拉普拉斯变换的函数形式。
下面是一些常见的拉普拉斯逆变换公式:
常数项:L^-1 {1} = δ(t)
单位阶跃函数:L^-1 {1/s} = u(t)
指数函数:L^-1 {1/(s-a)} = e^(at) u(t)
正弦函数:L^-1 {s/(s^2 + a^2)} = (1/a)sin(at) u(t)
余弦函数:L^-1 {s/(s^2 + a^2)} = (1/a)cos(at) u(t)
指数衰减函数:L^-1 {1/(s+a)} = e^(-at) u(t)
指数增长函数:L^-1 {1/(s-a)} = e^(at) u(t)
这些是一些常见的拉普拉斯逆变换公式,用于将频域中的拉普拉斯变换表达式转换回时间域。
请注意,具体的逆变换形式还可能涉及到系数调整和时间偏移,具体取决于函数的形式和约定的定义。
在实际应用中,可以根据所给出的拉普拉斯变换函数表达式,通过查阅相关的数学表格或使用计算工具(如符号计算软件)来求取逆变换。
这样可以更准确地得到所需的逆变换结果。
拉普拉斯变换公式总结..

若系统对任意的有界输入,其零状态响应也是有界的,则此系统为稳定系统。
(1)稳定系统的时域判决条件 (充要条件)
若系统是因果的,则 式可改写为
(2)对于因果系统,其稳定性的s域判决条件
若系统函数 的全部极点落于s左半平面,则该系统稳定;
若系统函数 有极点落于s右半平面,或在虚轴上具有二阶以上的极点,则该系统不稳定;
若系统函数 没有极点落于s右半平面,但在虚轴上有一阶极点,则该系统临界稳定。
内容摘要
例题
·例题1:求拉氏变换
·例题2:求拉氏变换,拉氏变换的性质
·例题3:拉氏变换的微分性质
·例题4:系统函数,求解系统的响应
·例题5:用拉氏变换法分析电路·
例4-1
求下列函数的拉氏变换
分析
拉氏变换有单边和双边拉氏变换,为了区别起见,本书以 表示 单边拉氏变换,以 表示 双边拉氏变换。若文字中未作说明,则指单边拉氏变换。单边拉氏变换只研究 的时间函数,因此,它和傅里叶变换之间有一些差异,例如在时移定理,微分定理和初值定理等方面。本例只讨论时移定理。请注意本例各函数间的差异和时移定理的正确应用。
例4-4
某线性时不变系统,在非零状条件不变的情况下,三种不同的激励信号作用于系统。
为图中所示的矩形脉冲时,求此时系统的输出
阶跃响应
则
例4-5
电路如图4-5(a)所示
(1)求系统的冲激响应。
(2)求系统的起始状态使系统的零输
入响应等于冲激响应。
(3)求系统的起始状态,
解答
(1)求系统的冲激响应。
系统冲激响应 与系统函数 是一对拉氏变换的关系。对 求逆变换可求得 ,这种方法比在时域求解微分方程简便。
积分的拉普拉斯变换公式

积分的拉普拉斯变换公式拉普拉斯变换是数学中一种重要的变换方法,可以将一个函数从时间域转换到复频域。
积分的拉普拉斯变换公式是拉普拉斯变换的基本公式之一,其形式如下:$$F(s) = \int_{0}^{\infty} f(t) e^{-st} dt$$其中,$f(t)$是定义在时间域上的函数,$F(s)$是其在复频域上的拉普拉斯变换,$s$是复变量。
拉普拉斯变换公式的应用广泛,尤其在信号与系统、控制理论、电路分析等领域中起着重要作用。
通过拉普拉斯变换,可以将复杂的微分方程转化为简单的代数方程,从而简化问题的求解过程。
在信号与系统领域,拉普拉斯变换被广泛应用于信号的分析和处理。
通过拉普拉斯变换,可以将时域信号转换为复频域信号,从而更加直观地观察信号的频谱特性。
例如,通过对信号的拉普拉斯变换,可以计算信号的频谱密度、频率响应等重要指标,进而分析信号的稳定性、滤波特性等。
在控制理论中,拉普拉斯变换被广泛应用于系统的建模和分析。
通过将系统的微分方程进行拉普拉斯变换,可以得到系统的传递函数,从而分析系统的稳定性、阶跃响应、频率响应等性能指标。
基于拉普拉斯变换的控制理论,可以设计出稳定、高性能的控制器,应用于工业控制、自动化系统等领域。
在电路分析中,拉普拉斯变换被广泛应用于电路的分析和设计。
通过将电路方程进行拉普拉斯变换,可以得到电路的复频域等效电路,从而分析电路的频率响应、稳定性、传输特性等。
基于拉普拉斯变换的电路分析方法,可以设计出满足特定要求的电路,应用于通信、计算机等领域。
除了在信号与系统、控制理论、电路分析中的应用,拉普拉斯变换还在其他领域中发挥着重要作用。
例如,在图像处理中,拉普拉斯变换可以用于图像的增强、去噪等操作;在概率论和统计学中,拉普拉斯变换可以用于求解随机变量的概率密度函数;在经济学中,拉普拉斯变换可以用于求解经济模型的稳定性等。
积分的拉普拉斯变换公式是一种重要的数学工具,广泛应用于信号与系统、控制理论、电路分析等领域。
拉普拉斯变换

二.拉普拉斯变换的性质
1、常数的拉普拉斯变换
L[ A] =
A S
2、常数与原函数积的拉普拉斯变换
L[ Af (t )] = AL[ f (t )] = AF ( s )
3、函数和的拉普拉斯变换
L[ f1 (t ) + f 2 (t )] = L[ f1 (t )] + L[ f 2 (t )] = F1 ( s ) + F2 ( s )
X=
k0 (1 − e − kt ) k
− 例1: :
dX = k0 − kX dt
第一步: 第一步:做变换
k0 SX −0 = −kX S
第二步:解代数方程 第二步:
k0 X= S (S + k )
第三步: 第三步:查表求解
k0 X = ⋅ (1 − e − kt ) k
: 例2: −
dX = kX dt
初始剂量
X0
第一步: 第一步:做变换
S X − X 0 = −k X
第二步:解代数方程 第二步:
X0 X= S +k
第三步: 第三步:查表求解
X = X 0 ⋅ e − kt
4、原函数导数的拉普拉斯变换
L[ df (t ) ] = sL[ f (t )] − f (0) dt
三、拉普拉斯变换与常微分方程的解
常数线性微分方程的解分三步: 常数线性微分方程的解分三步:
dX = k0 − kX dt
dX L[ ] = L[k0 ] − L[kX ] dt
SL[ X ] − X
一.,则拉普拉斯变 ∞ 换式定义为 − st
F (s) = ∫ f (t )e dt
0
式中s=σ+jω为复变量,称为复频率。 F(s)称 为f(t)的象函数, f(t)称为F(s)的原函数;拉普拉斯 变换简称为拉式变换。通常用符号表示为
拉普拉斯变换公式总结..

拉普拉斯变换公式总结拉普拉斯变换、连续时间系统的S 域分析基本要求通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。
能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。
能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。
理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。
会判定系统的稳定性。
知识要点1. 拉普拉斯变换的定义及定义域 ( 1) 定义单边拉普拉斯变换:正变换[f(t)] F(s) 0 f(t)e st dt 逆变换[F(s)] f(t) 21j j F (s)e st ds 双边拉普拉斯变换:正变换 F B(s) f (t)e st dt 逆变换f(t) 21j j F B(s)e ds ( 2) 定义域若时, l tim f (t)e0则 f (t)e在 0的全部范围内收敛,积分 0f (t)estdt 存在,即 f (t)的拉普拉斯变换 存在。
就是 f (t)的单边拉普拉斯变换的收敛 域。
0与函数 f (t )的性质有关。
2. 拉普拉斯变换的性质( 1) 线性性若 [ f 1(t)] F 1(S) , [ f 2(t)] F 2(S) , 1, 2为 常 数 时 , 则 [ 1 f 1(t) 2 f 2(t)] 1F 1(s) 2F 2(s)( 2) 原函数微分 若 [ f (t)] F (s)则 [df(t)] sF(s) f (0 )dt式中 f (r)(0 )是 r 阶导数 dr f r(t)在 0 时刻的取值。
dt( 3) 原函数积分 若 [ f (t)] F (s) , 则 [ tf(t)dt]F(s) f( 1)(0 )式 中 ssf ( 1) (0 )f (t)dt( 4) 延时性若 [ f (t)] F (s),则 [ f (t t 0)u(t t 0)] est 0F (s)(5) s 域平移若 [ f (t)] F (s),则 [ f (t)e at] F(s a)( 6) 尺度变换d n f (t)] dt n ]s nF(s) n1 nr1sr0(r)(0 )若 [ f (t)] F (s),则 [f(at)] 1F(s)(a 0)aa(7) 初值定理 lim f (t) f (0 ) lim sF(s)t o s( 8) 终值定理 lim f(t) lim sF(s) ts( 9) 卷积定理若 [ f 1(t)] F 1(s), [ f 2(t)] F 2(s) ,则有 [ f 1(t) f 2(t)] F 1(s)F 2(s)1 1 j[ f 1(t)f 2(t)] 2 j [F 1(s) F 2(s)]=2 j jF 1(p)F 2(s p)dp3. 拉普拉斯逆变换( 1) 部分分式展开法 首先应用 海维赛展开定理将 F (s) 展开成部分分 式,然后将各部分分式逐项进行逆变换, 最后叠 加起来即得到原函数 f (t)。
常用的拉普拉斯变换公式表

常用的拉普拉斯变换公式表常用的拉普拉斯变换公式表在数学和理论物理领域中,拉普拉斯变换是一种重要的数学工具。
它将一个函数从时间或空间域转换到复频域,这对于解决许多实际问题是很有用的。
在使用拉普拉斯变换时,人们通常需要使用一些常用的公式来简化计算。
在这篇文章中,我将列出一些常用的拉普拉斯变换公式,方便读者在实际应用中使用。
一、定义和性质拉普拉斯变换是一种线性变换,它将一个函数f(t) 映射到复平面上的函数 F(s) 。
具体而言,拉普拉斯变换可以表示为:F(s) = L[f(t)] = ∫[0,+∞) e^(-st) f(t) dt其中s是复变量,常常被看作是频域变量。
对于给定的函数f(t),我们可以求出它在复平面上的拉普拉斯变换F(s)。
与傅里叶变换类似,拉普拉斯变换也有一系列的性质和定理。
下面是一些重要的性质和定理:1. 线性性质:对于任意常数a、b和函数f(t)、g(t),有L[af(t) + bg(t)] = aL[f(t)] + bL[g(t)]2. 移位定理:对于f(t)的拉普拉斯变换F(s),有L[e^(-at) f(t)] = F(s+a)3. 初值定理:如果f(t)在t=0处有一个有限的极限,那么L[f(t)] =lim_(s->∞) sF(s)4. 终值定理:如果f(t)是一个有限长度的函数,那么L[f(t)] = lim_(s->0) sF(s)二、常用的拉普拉斯变换公式在实际应用中,常常需要用到一些标准的拉普拉斯变换公式。
下面是一些常用公式:1. 常数函数:L[1] = 1/s2. 单位阶跃函数:L[u(t)] = 1/s3. 二次函数:L[t] = 1/s^24. 指数函数:L[e^(at)] = 1/(s-a)5. 余弦函数:L[cos(at)] = s/(s^2+a^2)6. 正弦函数:L[sin(at)] = a/(s^2+a^2)7. 阻尼振荡函数:L[e^(-at) sin(bt)] = b/(s+a)^2+b^28. 阻尼振荡函数:L[e^(-at) cos(bt)] = (s+a)/(s+a)^2+b^2以上是一些常用的拉普拉斯变换公式,它们的应用非常广泛,可以用于研究电路、控制系统和信号处理等领域。
Laplace拉氏变换公式表

Laplace拉氏变换公式表1. 常数变换:对于常数C,其拉普拉斯变换为C/s,其中s是复数频率。
2. 幂函数变换:对于幂函数t^n,其中n为实数,其拉普拉斯变换为n!/s^(n+1)。
3. 指数函数变换:对于指数函数e^(at),其中a为实数,其拉普拉斯变换为1/(sa)。
4. 正弦函数变换:对于正弦函数sin(at),其中a为实数,其拉普拉斯变换为a/(s^2+a^2)。
5. 余弦函数变换:对于余弦函数cos(at),其中a为实数,其拉普拉斯变换为s/(s^2+a^2)。
6. 双曲正弦函数变换:对于双曲正弦函数sinh(at),其中a为实数,其拉普拉斯变换为a/(s^2a^2)。
7. 双曲余弦函数变换:对于双曲余弦函数cosh(at),其中a为实数,其拉普拉斯变换为s/(s^2a^2)。
8. 指数衰减正弦函数变换:对于指数衰减正弦函数e^(at)sin(bt),其中a和b为实数,其拉普拉斯变换为b/(s+a)^2+b^2。
9. 指数衰减余弦函数变换:对于指数衰减余弦函数e^(at)cos(bt),其中a和b为实数,其拉普拉斯变换为s+a)/(s+a)^2+b^2。
10. 指数增长正弦函数变换:对于指数增长正弦函数e^(at)sin(bt),其中a和b为实数,其拉普拉斯变换为b/(sa)^2+b^2。
Laplace拉氏变换公式表11. 幂函数与指数函数的乘积变换:对于函数t^n e^(at),其中n为实数,a为实数,其拉普拉斯变换为n!/(sa)^(n+1)。
12. 幂函数与正弦函数的乘积变换:对于函数t^n sin(at),其中n为实数,a为实数,其拉普拉斯变换可以通过分部积分法得到。
13. 幂函数与余弦函数的乘积变换:对于函数t^n cos(at),其中n为实数,a为实数,其拉普拉斯变换可以通过分部积分法得到。
14. 指数函数与正弦函数的乘积变换:对于函数e^(at) sin(bt),其中a和b为实数,其拉普拉斯变换为b/(sa)^2+b^2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例4-2
求三角脉冲函数 如图4-2(a)所示的象函数
分析
和傅里叶变换类似,求拉氏变换的时,往往要借助基本信号的拉氏变换和拉氏变换的性质,这比按拉氏变换的定义式积分简单,为比较起见,本例用多种方法求解。
解答
方法一:按定义式求解
方法二:利用线性叠加和时移性质求解
方法三:利用微分性质求解
方法四:利用卷积性质求解
(4)最小相移函数
如果系统函数的全部极点和零点均位于s平面的左半平面或 轴,则称这种函数为最小相移函数。具有这种网络函数的系统为最小相移网络。
(5)系统函数 的求解方法
由冲激响应 求得,即 。
对系统的微分方程进行零状态条件下的拉普拉斯变换,然后由 获得。
根据s域电路模型,求得零状态响应的像函数与激励的像函数之比,即为 。
故系统的起始状态
说明
通过本例可以看出,改变系统的起始状态可以使系统的完全响应满足某些特定要求。本质上,系统的零输入响应完全由系统的起始状态决定,对一个稳定系统而言,零输入响应是暂态响应中的一部分,因此,改变系统的起始状态只能改变系统的暂态响应,使暂态响应满足某些特定要求,例如,本例要求暂态响应为零。
(2)零极点分布图
式中, 是系数; , , 为 的零点; , , , 为 的极点。在s平面上,用“ ”表示零点,“ ”表示极点。将 的全部零点和极点画在s平面上得到的图称为系统的零极点分布图。对于实系统函数而言,其零极点要么位于实轴上,要么关于实轴成镜像对称分布。
(3)全通函数
如果一个系统函数的极点位于左半平面,零点位于右半平面,而且零点与极点对于 轴互为镜像,那么这种系统函数称为全通函数,此系统则为全通系统或全通网络。全通网络函数的幅频特性是常数。
拉普拉斯变换、连续时间系统的S域分析
基本要求
通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。
5.系统的稳定性
若系统对任意的有界输入,其零状态响应也是有界的,则此系统为稳定系统。
(1)稳定系统的时域判决条件 (充要条件)
若系统是因果的,则 式可改写为
(2)对于因果系统,其稳定性的s域判决条件
若系统函数 的全部极点落于s左半平面,则该系统稳定;
若系统函数 有极点落于s右半平面,或在虚轴上具有二阶以上的极点,则该系统不稳定;
可看作是图4-2(c)所示的矩形脉冲 自身的卷积
于是,根据卷积性质
而
所以
例4-3
应用微分性质求图4-3(a)中 的象函数下面说明应用微分性质应注意的问题,图4-3(b) 是的导数 的波形。
图4-3(a)
解答
说明
(1)对于单边拉氏变换, 故二者的象函数相同,即
因而
这是应用微分性质应特别注意的问题。
由图4-3(b)知
(2)原函数微分
若 则
式中 是r阶导数 在 时刻的取值。
(3)原函数积分
若 ,则 式中
(4)延时性
若 ,则
(5)s域平移
若 ,则
(6)尺度变换
若 ,则 (a 0)
(7)初值定理
(8)终值定理
(9)卷积定理
若 , ,则有
=
3.拉普拉斯逆变换
(1)部分分式展开法
首先应用 海维赛展开定理将 展开成部分分式,然后将各部分分式逐项进行逆变换,最后叠加起来即得到原函数 。
(2)留数法
留数法是将拉普拉斯逆变换的积分运算转化为求被积函数 在围线中所有极点的留数运算,即
若 为一阶级点,则在极点 处的留数
若 为k阶级点,则
4.系统函数(网络函数)H(s)
(1)定义
系统零状态响应的拉普拉斯变换与激励的拉普拉斯变换之比称为系统函数,即
冲激响应 与系统函数 构成变换对,即 系统的频率响应特性 式中, 是幅频响应特性, 是相频响应特性。
利用s域模型图4-5(b)可直写出图4-5(a)电路的系统函数
冲激响应
(2)求系统的起始状态
为求得系统的零输入响应,应写出系统的微分方程或给出带有初值的s域模型。下面我们用s域模型求解。图4-5(a)电路的s域模型如图4-5(b)。
由图4-5(b)可以写出
上式中第二项只和系统起始状态有关,因此该项是零输入响应的拉氏变换。依题意的要求,该项应和 相等,从而得
例4-4
某线性时不变系统,在非零状条件不变的情况下,三种不同的激励信号作用于系统。
为图中所示的矩形脉冲时,求此时系统的输出
阶跃响应
则Байду номын сангаас
例4-5
电路如图4-5(a)所示
(1)求系统的冲激响应。
(2)求系统的起始状态使系统的零输
入响应等于冲激响应。
(3)求系统的起始状态,
解答
(1)求系统的冲激响应。
系统冲激响应 与系统函数 是一对拉氏变换的关系。对 求逆变换可求得 ,这种方法比在时域求解微分方程简便。
知识要点
1.拉普拉斯变换的定义及定义域
(1)定义
单边拉普拉斯变换:
正变换
逆变换
双边拉普拉斯变换:
正变换
逆变换
(2)定义域
若 时, 则 在 的全部范围内收敛,积分 存在,即 的拉普拉斯变换存在。 就是 的单边拉普拉斯变换的收敛域。 与函数 的性质有关。
2.拉普拉斯变换的性质
(1)线性性
若 , , , 为常数时,则
若系统函数 没有极点落于s右半平面,但在虚轴上有一阶极点,则该系统临界稳定。
内容摘要
例题
·求拉氏变换
·求拉氏变换,拉氏变换的性质
·拉氏变换的微分性质
·系统函数,求解系统的响应
·用拉氏变换法分析电路·
例4-1
求下列函数的拉氏变换
分析
拉氏变换有单边和双边拉氏变换,为了区别起见,本书以 表示 单边拉氏变换,以 表示 双边拉氏变换。若文字中未作说明,则指单边拉氏变换。单边拉氏变换只研究 的时间函数,因此,它和傅里叶变换之间有一些差异,例如在时移定理,微分定理和初值定理等方面。本例只讨论时移定理。请注意本例各函数间的差异和时移定理的正确应用。
方法一:按定义式求解
方法二:利用线性叠加和时移性质求解
由于
于是
方法三:利用微分性质求解
分析
信号的波形仅由直线组成,信号导数的象函数容易求得,或者信号经过几次微分后出现原信号,这时利用微分性质比较简单。
将 微分两次,所得波形如图4-2(b)所示。
显然
根据微分性质
由图4-2(b)可以看出
于是
方法四:利用卷积性质求解