高考数学一轮复习第九章数列第63课等差、等比数列的综合问题教案

合集下载

高三 一轮复习 等比数列 教案

高三 一轮复习 等比数列 教案

等比数列及其前n 项和1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n =q .(2)等比中项:如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.1.在等比数列中易忽视每项与公比都不为0.2.在运用等比数列的前n 项和公式时,必须对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误. [试一试]1.在1和9之间插入三个正数,使这五个数成等比数列,则插入的三个数的和为________.2.(2014·徐州摸底)已知各项均为正数的等比数列{a n }的前n 项和为S n ,若a 3=18,S 3=26,则{a n }的公比q =________.1.等比数列的三种判定方法(1)定义:a n +1a n=q (q 是不为零的常数,n ∈N *)⇔{a n }是等比数列.(2)通项公式:a n =cq n -1(c 、q 均是不为零的常数,n ∈N *)⇔{a n }是等比数列.(3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列. 2.等比数列的常见性质(1)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(2)若数列{a n }、{b n }(项数相同)是等比数列,则{λa n }、⎩⎨⎧⎭⎬⎫1a n 、{a 2n }、{a n ·b n}、⎩⎨⎧⎭⎬⎫a n bn (λ≠0)仍然是等比数列;(3)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k ;(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列. 3.求解等比数列的基本量常用的思想方法(1)方程的思想:等比数列的通项公式、前n 项和的公式中联系着五个量:a 1,q ,n ,a n ,S n ,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a 1与q ,在解题中根据已知条件建立关于a 1与q 的方程或者方程组,是解题的关键.(2)分类讨论思想:在应用等比数列前n 项和公式时,必须分类求和,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q ;在判断等比数列单调性时,也必须对a 1与q 分类讨论.[练一练]1.(2010·江苏高考)函数y =x 2(x >0)的图像在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________.2.已知数列{a n }是公比q ≠±1的等比数列,则在{a n +a n +1},{a n +1-a n },⎩⎨⎧⎭⎬⎫a n a n +1,{na n }这四个数列中,是等比数列的有________个. 答案:3考点一等比数列的基本运算1.(2013·盐城三调)在等比数列{a n }中,若a 2=-2,a 6=-32,则a 4=________.2.(2014·扬州模拟)已知等比数列{a n }中,公比q >1,且a 1+a 4=9,a 2a 3=8,则a 2 013+a 2 014a 2 011+a 2 012=________.3.设等比数列{a n}的公比q<1,前n项和为S n,已知a3=2,S4=5S2,求{a n}的通项公式.[类题通法]1.对于等比数列的有关计算问题,可类比等差数列问题进行,在解方程组的过程中要注意“相除”消元的方法,同时要注意整体代入(换元)思想方法的应用.2.在涉及等比数列前n项和公式时要注意对公比q是否等于1进行判断和讨论.考点二等比数列的判定与证明[典例]已知数列{a n}的前n项和为S n,且a n+S n=n.(1)设c n=a n-1,求证:{c n}是等比数列;(2)求数列{a n}的通项公式.在本例条件下,若数列{b n}满足b1=a1,b n=a n-a n-(n≥2), 证明{b n}是等比数列.1证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可. [针对训练]已知数列{a n }满足:a 1=1,a 2=a (a ≠0),a n +2=p ·a 2n +1a n(其中p 为非零常数,n ∈N *).(1)判断数列⎩⎨⎧⎭⎬⎫a n +1a n 是不是等比数列; (2)求a n .考点三等比数列的性质[典例] (1)(2014·苏州期末)在等比数列{a n }中,若a 3a 5a 7=-8,则a 2a 8=________.(2)(2014·盐城二模)若等比数列{a n }满足a m -3=4且a m a m -4=a 24(m ∈N *且 m >4),则a 1a 5的值为________.等比数列常见性质的应用等比数列的性质可以分为三类:①通项公式的变形,②等比中项的变形,③前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口. [针对训练]1.(2014·苏北四市调研)已知在等比数列{a n }中,a 1+a 2=12,a 3+a 4=1,则a 7+a 8+a 9+a 10=________.2.(2014·南京二模)已知等比数列{a n }的公比q >0,a 2=1,a m +2+a m +1=6a m ,则{a n }的前4项和是________.[课堂练通考点]1.(2014·南京学情调研)已知等比数列{a n }的公比q =-12,S n 为其前n 项和,则S 4a 4=________.2.(2014·连云港期末)在正项等比数列{a n }中,a 3a 11=16,则log 2a 2+log 2a 12=________.3.已知等比数列{a n }的各项均为正数,且a 1+2a 2=3,a 24=4a 3a 7,则数列{a n }的通项公式为________.4.已知数列{a n }是等比数列,a 1,a 2,a 3依次位于下表中第一行,第二行,第三行中的某一格内,又11。

2012年高三数学第一轮复习教案(新人教A)等差数列与等比数列的综合问题

2012年高三数学第一轮复习教案(新人教A)等差数列与等比数列的综合问题

3.4 等差数列与等比数列的综合问题巩固·夯实基础一、自主梳理1.等差数列的性质(1)若数列{a n }是公差为d 的等差数列,则a m =a k +(m-k)d,数列{λa n +b}(λ、b 为常数)是公差为λd 的等差数列.(2)下标成等差数列且公差为m 的项a k ,a k+m ,a k+2m ,…组成的数列仍为等差数列,公差为md.(3)若{a n }是等差数列,A=a 1+a 2+…+a n ,B=a n+1+a n+2+…+a 2n ,C=a 2n+1+a 2n+2+…+a 3n ,则A 、B 、C 成等差数列,公差为n 2d.(4)若等差数列{a n }的项数为2n(n ∈N *),则S 偶-S 奇=nd,若等差数列{a n }的项数为2n-1(n ∈N *),则奇偶S S =n n 1 . 2.等比数列的性质(1)若数列{a n }是等比数列,则数列{λ1a n }(λ1为常数)是公比为λ1q 的等比数列.(2)下标成等差数列且公差为m 的项a k ,a k+m ,a k+2m ,…组成的数列仍为等比数列,公比为q m .(3)若{a n }是等比数列,设A=a 1+a 2+a 3+…+a n ,B=a n+1+a n+2+…+a 2n ,C=a 2n+1+a 2n+2+…+a 3n ,则A 、B 、C 成等比数列,公比为q n .设M=a 1·a 2·a 3·…·a n ,N=a n+1a n+2·…·a 2n ,P=a 2n+1a 2n+2·…·a 3n ,则M 、N 、P 仍为等比数列,公比为(q n )n .二、点击双基1.等比数列{a n }的公比为q,则“q>1”是“对于任意自然数n ,都有a n+1>a n ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件 解析:当a 1<0时,条件与结论均不能由一方推出另一方.答案:D2.已知数列{a n }满足a n+2=-a n (n ∈N *),且a 1=1,a 2=2,则该数列前2 002项的和为( )A.0B.-3C.3D.1解析:由题意,我们发现:a 1=1,a 2=2,a 3=-a 1=-1,a 4=-a 2=-2,a 5=-a 3=1,a 6=-a 4=2,…,a 2 001=-a 1 999=1,a 2 002=-a 2 000=2,a 1+a 2 +a 3+a 4=0.∴a 1+a 2+a 3+…+a 2 002=a 2001+a 2 002=a 1+a 2=1+2=3.答案:C3.若关于x 的方程x 2-x+a=0和x 2-x+b=0(a ≠b)的四个根可组成首项为41的等差数列,则a+b 的值是( ) A.83 B.2411 C.2413 D.7231 解析:依题意设四根分别为a 1、a 2、a 3、a 4,公差为d,其中a 1=41,即a 1+a 2+a 3+a 4=1+1=2.又a 1+a 4=a 2+a 3,所以a 1+a 4=a 2+a 3=1.由此求得a 4=43,d=61,于是a 2=125,a 3=127.故a+b=a 1a 4+a 2a 3=41×43+125×127=14462=7231. 答案:D4.(2004上海春季高考)在等差数列{a n }中,当a r =a s (r ≠s)时,数列{a n }必定是常数列,然而在等比数列{a n }中,对某些正整数r 、s(r ≠s),当a r =a s 时,非常数列{a n }的一个例子是_____________. 解析:只需选取首项不为0,公比为-1的等比数列即可.答案:a,-a,a,-a,…(a ≠0)5.(2005全国高考卷Ⅱ)在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_____________.解析:等比数列中,若m+n=p+q=2k,则a m a n =a p a q =a k 2,设插入的三个数为a 1,a 2,a 3,则a 1a 3=38·227=a 22且a 2与38同号. ∴a 1a 2a 3=38·227·22738•=216. 答案:216诱思·实例点拨【例1】 (2005北京春季高考)已知{a n }是等比数列,a 1=2,a 3=18;{b n }是等差数列,b 1=2,b 1+b 2+b 3+b 4=a 1+a 2+a 3>20.(1)求数列{b n }的通项公式;(2)求数列{b n }的前n 项和S n 的公式;(3)设P n =b 1+b 4+b 7+…+b 3n-2,Q n =b 10+b 12+b 14+…+b 2n+8,其中n=1,2,…,试比较P n 与Q n 的大小,并证明你的结论.剖析:将已知转化成基本量,求出首项和公比后,再进行其他运算.解:(1)设{a n }的公比为q,由a 3=a 1q 2得q 2=13a a =9,q=±3. 当q=-3时,a 1+a 2+a 3=2-6+18=14<20,这与a 1+a 2+a 3>20矛盾,故舍去.当q=3时,a 1+a 2+a 3=2+6+18=26>20,故符合题意.设数列{b n }的公差为d,由b 1+b 2+b 3+b 4=26得4b 1+234⨯d=26. 又b 1=2,解得d=3,所以b n =3n-1.(2)S n =2)(1n b b n +=23n 2+21n. (3)b 1,b 4,b 7,…,b 3n-2组成以3d 为公差的等差数列, 所以P n =nb 1+2)1(-n n ·3d=29n 2-25n; b 10,b 12,b 14,…,b 2n+8组成以2d 为公差的等差数列,b 10=29, 所以Q n =nb 10+2)1(-n n ·2d=3n 2+26n.P n -Q n =(29n 2-25n)-(3n 2+26n)=23n(n-19). 所以,对于正整数n,当n ≥20时,P n >Q n ;当n=19时,P n =Q n ;当n ≤18时,P n <Q n .讲评:本题主要考查等差数列、等比数列等基本知识,考查逻辑思维能力、分析问题和解决问题的能力.【例2】 在公差为d(d ≠0)的等差数列{a n }和公比为q 的等比数列{b n }中,已知a 1=b 1=1,a 2=b 2,a 8=b 3.(1)求d 、q 的值;(2)是否存在常数a 、b 使得对于一切自然数n,都有a n =log a b n +b 成立?若存在,求出a 和b;若不存在,请说明理由.解:(1)∵a 1=b 1=1,a 2=b 2,a 8=b 3,∴⎩⎨⎧=+=+.71,12q d q d∴⎩⎨⎧==5,6d q 或⎩⎨⎧==0,1d q (舍去). (2)假设存在a 、b 使得a n =log a b n +b 对一切n ∈N *恒成立,则有1+5(n-1)=log a 6n-1+b,即(5-log a 6)n-(4+b-log a 6)=0.∵上式对任意n ∈N *恒成立,∴⎩⎨⎧=-+=-.06log 4,06log 5a a d 解得a=516,b=1.讲评:在一定条件下,判断某种数学对象是否存在,解答此类问题,一般先假设要求(或证)的结论是存在的,然后利用有关概念、公理、定理、法则推理下去,如果畅通无阻,则存在,如果推理过程中,有问题或前后矛盾,则说明不存在.【例3】 (2005北京海淀模拟)在等比数列{a n }(n ∈N *)中,a 1>1,公比q>0.设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0.(1)求证:数列{b n }是等差数列;(2)求{b n }的前n 项和S n 及{a n }的通项a n ;(3)试比较a n 与S n 的大小.剖析:(1)定义法即可解决.(2)先求首项和公差及公比.(3)分情况讨论.(1)证明:∵b n =log 2a n ,∴b n+1-b n =log 2nn a a 1+=log 2q 为常数. ∴数列{b n }为等差数列且公差d=log 2q.(2)解:∵b 1+b 3+b 5=6,∴b 3=2.∵a 1>1,∴b 1=log 2a 1>0.∵b 1b 3b 5=0,∴b 5=0.∴⎩⎨⎧=+=+.04,2211d b d b 解得⎩⎨⎧-==.1,41d b ∴S n =4n+2)1(-n n ×(-1)=292n n -. ∵⎩⎨⎧=-=,4log ,1log 122a q ∴⎪⎩⎪⎨⎧==.16,211a q ∴a n =25-n (n ∈N *).(3)解:显然a n =25-n >0,当n ≥9时,S n =2)9(n n -≤0. ∴n ≥9时,a n >S n .∵a 1=16,a 2=8,a 3=4,a 4=2,a 5=1,a 6=21,a 7=41,a 8=81,S 1=4,S 2=7,S 3=9,S 4=10,S 5=10,S 6=9,S 7=7,S 8=4, ∴当n=3,4,5,6,7,8时,a n <S n ;当n=1,2或n ≥9时,a n >S n .评述:本题主要考查了数列的基本知识和分类讨论的思想.链接·聚焦在解决等差数列和等比数列的问题时,恰当地运用等差数列和等比数列的性质可以减少运算量,提高解题速度和准确度,但等差数列和等比数列的概念、通项公式和前n 项和的公式仍是我们学习的基础和重点,否则,弄巧成拙.。

(新人教)高三数学第一轮复习教案3.5.3等比数列综合

(新人教)高三数学第一轮复习教案3.5.3等比数列综合

一.课题:数列综合二.教学目标:系统复习等比数列的概念及有关知识,要求学生能熟练的处理有关问题。

三.教学重、难点:等比数列性质和等比数列前n 项和性质的综合应用;四.教学过程:(一)复习: 等比数列的性质与等差数列比较。

(二)新课讲解:例1. 在公差不为0的等差数列{}n a 和等比数列{}n b 中,111a b ==,22a b =,83a b =,(1)求数列{}n a 的公差和数列{}n b 的公比;(2)是否存在,a b 使得对于一切自然数n 都有log n a n a b b =+成立?若存在,求出,a b ;若不存在请说明理由。

解:(1)设{}n a 的公差为d ,{}n b 的公比为q ,由已知:111a b ==,1d q +=,217d q +=, 解得10q d =⎧⎨=⎩(舍去)或65q d =⎧⎨=⎩, (2)若存在,a b ,使得log n a n a b b =+成立,即11(1)5log 6n a n b -+-⋅=+,∴54(1)log 6a n n b -=-+,∴(5log 6)(4log 6)0a a n b --+-=要使上式对于一切自然数n 成立,必须且只需5log 604log 60a a b -=⎧⎨+-=⎩,解得1a b ⎧=⎪⎨=⎪⎩因此,存在1a b ==使得结论成立。

例2.已知数列{}n a 中13a =对于一切自然数n ,以1,n n a a +为系数的一元二次方程21210n n a x a x +-+=都有实数根αβ,满足(1)(1)2αβ--=,(1)求证:数列1{}3n a -是等比数列;(2)求数列{}n a 的通项公式;(3)求{}n a 的前n 项和n S . 解:(1)由题意得:12n n a a αβ++=,1n a αβ⋅=,代入(1)(1)2αβ--=得:1111()323n n a a +-=--,当113n n a a +==时方程无实数根,∴13n a ≠, 由等比数列的定义知:1{}3n a -是以11833a -=为首项,公比为12-的等比数列; (2)由(1)知1181()332n n a --=⨯-, ∴1811()323n n a -=⨯-+, (3)n S 218111[1()()()]32223n n -=+-+-++-+11616()2n =-⨯-. 例3. 已知0a >且1a ≠,数列{}n a 是首项为a ,公比为a 的等比数列,令lg ()n n n b a a n N *=∈, (1)当2a =时,求数列{}n b 的前n 项和n S ;(2)若数列{}n b 中的每一项总小于它后面的项时,求a 的取值范围。

等差和等比数列的综合应用教案

等差和等比数列的综合应用教案

教学过程一、复习预习师:这节课我们要运用等差、等比数列的概念、性质及有关公式,解决一些等差、数比数列的综合问题.(请学生叙述公式的内容并写在黑板上)生甲:等差、等比数列的通项公式分别是an=a1+(n-1)d,an=a1qn-1.生丙:等比数列的前n项和公式要分成q=1和q≠1两种情况来表示,即生丁:如果m,n,p,q都是自然数,当m+n=p+q时,那么在等差数列中有:am+an=ap+aq,在等比数列中有:am·an=ap·aq.师;在上述公式中,涉及到a1,n,d(q),an,Sn五个量,运用方程思想,已知其中三个量,就可以求另外两个量.二、知识讲解考点1:等差数列{an}的性质(1)am=ak+(m -k )d ,d=k m a a km --.(2)若数列{an}是公差为d 的等差数列,则数列{λan+b}(λ、b 为常数)是公差为λd的等差数列;若{bn}也是公差为d 的等差数列,则{λ1an+λ2bn}(λ1、λ2为常数)也是等差数列且公差为λ1d+λ2d.(3)下标成等差数列且公差为m 的项ak ,ak+m ,ak+2m ,…组成的数列仍为等差数列,公差为md.(4)若m 、n 、l 、k ∈N*,且m+n=k+l ,则am+an=ak+al ,反之不成立. (5)设A=a1+a2+a3+…+an ,B=an+1+an+2+an+3+…+a2n ,C=a2n+1+a2n+2+a2n+3+…+a3n ,则A 、B 、C 成等差数列.(6)若数列{an}的项数为2n (n ∈N*),则S 偶-S 奇=nd ,奇偶S S =n n aa 1+,S2n=n (an+an+1)(an 、an+1为中间两项);若数列{an}的项数为2n -1(n ∈N*),则S 奇-S 偶=an ,奇偶S S =n n 1-,S2n -1=(2n-1)an (an 为中间项).考点2:等比数列{an}的性质(1)am=ak·qm-k.(2)若数列{an}是等比数列,则数列{λ1an}(λ1为常数)是公比为q的等比数列;若{bn}也是公比为q2的等比数列,则{λ1an·λ2bn}(λ1、λ2为常数)也是等比数列,公比为q·q2.(3)下标成等差数列且公差为m的项ak,ak+m,ak+2m,…组成的数列仍为等比数列,公比为qm.(4)若m、n、l、k∈N*,且m+n=k+l,则am·an=ak·al,反之不成立.(5)设A=a1+a2+a3+…+an,B=an+1+an+2+an+3+…+a2n,C=a2n+1+a2n+2+a2n+3+…+a3n,则A、B、C成等比数列,设M=a1·a2·…·an,N=an+1·an+2·…·a2n,P=a2n+1·a2n+2·…·a3n,则M、N、P也成等比数列.考点3:用函数的观点理解等差数列、等比数列1.对于等差数列,∵an=a1+(n-1)d=dn+(a1-d),当d≠0时,an是n的一次函数,对应的点(n,an)是位于直线上的若干个点.当d>0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常数函数,对应的数列是常数列;d<0时,函数是减函数,对应的数列是递减函数.若等差数列的前n项和为Sn,则Sn=pn2+qn(p、q∈R).当p=0时,{an}为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.2.对于等比数列:an=a1qn-1.可用指数函数的性质来理解.当a1>0,q>1或a1<0,0<q<1时,等比数列是递增数列;当a1>0,0<q<1或a1<0,q>1时,等比数列{an}是递减数列.当q=1时,是一个常数列.当q<0时,无法判断数列的单调性,它是一个摆动数列.三、例题精析【例题1】.等比数列{an}的公比为q,则“q>1”是“对于任意自然数n,都有an+1>an”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】D【解析】当a1<0时,条件与结论均不能由一方推出另一方.【例题2】已知数列{a n}满足a n+2=-a n(n∈N*),且a1=1,a2=2,则该数列前2002项的和为A.0B.-3C.3D.1【答案】C【解析】由题意,我们发现:a1=1,a2=2,a3=-a1=-1,a4=-a2=-2,a5=-a3=1,a6=-a4=2,…,a2001=-a1999=1,a2002=-a2000=2,a1+a2+a3+a4=0.∴a1+a2+a3+…+a2002=a2001+a2002=a1+a2=1+2=3.四、课堂运用【基础】1.若关于x 的方程x 2-x +a =0和x 2-x +b =0(a ≠b )的四个根可组成首项为41的等差数列,则a +b 的值是 A.83B.2411C.2413D.7231【答案】D【解析】依题意设四根分别为a 1、a 2、a 3、a 4,公差为d ,其中a 1=41,即a 1+a 2+a 3+a 4=1+1=2.又a 1+a 4=a 2+a 3,所以a 1+a 4=a 2+a 3=1.由此求得a 4=43,d =61,于是a 2=125,a 3=127.故a +b =a 1a 4+a 2a 3=41×43+125×127=14462=7231.2.在等差数列{a n}中,当a r=a s(r≠s)时,数列{a n}必定是常数列,然而在等比数列{a n}中,对某些正整数r、s(r≠s),当a r=a s时,非常数列{a n}的一个例子是___________________.【答案】a,-a,a,-a…(a≠0)【解析】只需选取首项不为0,公比为-1的等比数列即可.【巩固】1.等差数列{a n}中,a1=2,公差不为零,且a1,a3,a11恰好是某等比数列的前三项,那么该等比数列公比的值等于___________________.【答案】4【解析】设a1,a3,a11成等比,公比为q,a3=a1·q=2q,a11=a1·q2=2q2.又{a n}是等差数列,∴a11=a1+5(a3-a1),∴q=4.2、已知{a n}是等比数列,a1=2,a3=18;{b n}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.(1)求数列{b n}的通项公式;(2)求数列{b n}的前n项和S n的公式;(3)设P n=b1+b4+b7+…+b3n-2,Q n=b10+b12+b14+…+b2n+8,其中n=1,2,…,试比较P n与Q n的大小,并证明你的结论.【答案】见解析【解析】(1)设{a n }的公比为q ,由a 3=a 1q 2得q 2=13a a =9,q =±3. 当q =-3时,a 1+a 2+a 3=2-6+18=14<20, 这与a 1+a 2+a 3>20矛盾,故舍去.当q =3时,a 1+a 2+a 3=2+6+18=26>20,故符合题意. 设数列{b n }的公差为d ,由b 1+b 2+b 3+b 4=26得4b 1+234⨯d =26. 又b 1=2,解得d =3,所以b n =3n -1. (2)S n =2)(1n b b n +=23n 2+21n .(3)b 1,b 4,b 7,…,b 3n -2组成以3d 为公差的等差数列, 所以P n =nb 1+2)1(-n n ·3d =29n 2-25n ; b 10,b 12,b 14,…,b 2n +8组成以2d 为公差的等差数列,b 10=29,所以Q n =nb 10+2)1(-n n ·2d =3n 2+26n . P n -Q n =(29n 2-25n )-(3n 2+26n )=23n (n -19).所以,对于正整数n ,当n ≥20时,P n >Q n ; 当n =19时,P n =Q n ; 当n ≤18时,P n <Q n .【拔高】1、已知等差数列{a n }的首项a 1=1,公差d >0,且第二项、第五项、第十四项分别是等比数列{b n }的第二项、第三项、第四项.(1)求数列{an}与{bn}的通项公式;(2)设数列{cn}对任意正整数n 均有11b c +22mb c +323b mc +…+nn nb mc 1 =(n+1)an+1成立,其中m 为不等于零的常数,求数列{cn}的前n 项和Sn.【答案】(1)a n =2n -1(n =1,2,3,…),b n =3n -1(n =1,2,3,…).(2)S n =⎪⎩⎪⎨⎧--+-+-+++222)31(])3()3[(431)3)(14(96132m m m m m n m n n n n .31,31≠=m m【解析】(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2,整理得2a 1d =d 2.∵a 1=1,解得d =2(d =0不合题意舍去), ∴a n =2n -1(n =1,2,3,…).由b 2=a 2=3,b 3=a 5=9,易求得b n =3n -1(n =1,2,3,…). (2)当n =1时,c 1=6; 当n ≥2时,nn n b mc 1-=(n +1)a n +1-na n =4n +1,∴c n =(4n +1)m n -1b n =(4n +1)(3m )n -1.∴c n =⎩⎨⎧+-1)3)(14(6n m n .,4,3,2,1⋅⋅⋅==n n 当3m =1,即m =31时, S n =6+9+13+…+(4n +1)=6+2)149)(1(++-n n=6+(n -1)(2n +5)=2n 2+3n +1. 当3m ≠1,即m ≠31时, S n =c 1+c 2+…+c n ,即S n =6+9·(3m )+13·(3m )2+…+(4n -3)(3m )n -2+(4n +1)(3m )n -1.①3mS n =6·3m +9·(3m )2+13·(3m )3+…+(4n -3)(3m )n -1+(4n +1)(3m )n .② ①-②得(1-3m )S n =6+3·3m +4·(3m )2+4·(3m )3+…+4·(3m )n -1-(4n +1)(3m )n =6+9m +4[(3m )2+(3m )3+…+(3m )n -1]-(4n +1)(3m )n=6+9m +m m m n 31])3()3[(42---(4n +1)(3m )n .∴S n =m m n m n 31)3)(14(96-+-++22)31(])3()3[(4m m m n --.∴S n =⎪⎩⎪⎨⎧--+-+-+++222)31(])3()3[(431)3)(14(96132m m m m m n m n n n n .31,31≠=m mcb d a cba c bc a c b a cad a a cd cd d c c d cdd c cd d c >∴>>>>∴>>>>>∴>>>∴>-=-∴>>->∴>>,0d 21)2(,0,01,0)1(,0,0,011,011,01,0,0,0)得)(由(又又课程小结等差数列和等比数列的综合问题,涉及的知识面很宽,题目的变化也很多,但是万变不离其宗,只要抓住基本量a1,d(q),充分运用方程、函数、转化等数学思想方法,合理调用相关知识,这样,任何问题都不能把我们难倒.课后作业【基础】1.在等比数列{a n }中,a 5+a 6=a (a ≠0),a 15+a 16=b ,则a 25+a 26的值是A.abB.22abC.ab 2 D.2ab【答案】C【解析】 由等比数列的性质得三个和成等比数列,由等比中项公式可得选项为C. 【巩固】2.若数列x ,a 1,a 2,y 成等差数列,x ,b 1,b 2,y 成等比数列,则21221)(b b a a ⋅+的取值范围是___________________.【答案】[4,+∞)或(-∞,0]【解析】在等差数列中,a 1+a 2=x +y ;在等比数列中,xy =b 1·b 2.∴21221)(b b a a ⋅+=y x y x ⋅+2)(=y x y xy x ⋅++222=y x +x y +2.当x ·y >0时,y x +x y≥2,故21221)(b b a a ⋅+≥4;当x ·y <0时,y x +x y≤-2,故21221)(b b a a ⋅+≤0.答案:[4,+∞)或(-∞,0]【拔高】3.已知数列{a n }中,a 1=65且对任意非零自然数n 都有a n +1=31a n +(21)n +1.数列{b n }对任意非零自然数n 都有b n =a n +1-21a n .(1)求证:数列{b n }是等比数列; (2)求数列{a n }的通项公式.【答案】见解析【解析】(1)证明:b n =a n +1-21a n =[31a n +(21)n +1]-21a n =(21)n +1-61a n ,b n +1=(21)n +2-61a n +1=(21)n +2-61[31a n +(21)n +1]=21·(21)n +1-181a n -61·(21)n +1=31·(21)n +1-181a n =31·[(21)n +1-61a n ], ∴n n b b 1+=31(n =1,2,3,…). ∴{b n }是公比为31的等比数列. (2)解:∵b 1=(21)2-61a 1=41-61·65=91,∴b n =91·(31)n -1=(31)n +1.由b n =(21)n +1-61a n ,得(31)n +1=(21)n +1-61a n ,解得a n =6[(21)n +1-(31)n +1].5.设{a n }为等比数列,a 1=b 1=1,a 2+a 4=b 3,b 2b 4=a 3,分别求出{a n }及{b n }的前10项的和S 10及T 10.解:设公差为d ,公比为q ,由题意知⎪⎩⎪⎨⎧=+=+,21,4242q d q d∴⎪⎪⎩⎪⎪⎨⎧=-=22,83q d 或⎪⎪⎩⎪⎪⎨⎧-=-=.22,83q d ∴S 10=10+2910⨯(-83)=-855. 当q =22时,T 10=32)22(31+;当q =-22时,T 10=32)22(31-.=a +b ab -2ab2a +b=ab a -b 2a +b>0,∴C >D ,∴A >B >C >D .。

等差与等比数列的应用教案

等差与等比数列的应用教案

等差与等比数列的应用教案一、引言本教案旨在介绍等差与等比数列的应用,并通过具体的案例来说明其重要性和实际运用场景。

通过本课程的学习,学生将能够深入理解等差与等比数列的概念、性质以及在现实生活中的应用。

二、知识概述1. 等差数列等差数列是指具有相同公差的数列,每一项与前一项之差都相等。

其通项公式为an = a1 + (n-1)d,其中a1表示首项,d表示公差,n表示项数。

2. 等比数列等比数列是指具有相同公比的数列,每一项与前一项之比都相等。

其通项公式为an = a1 * r^(n-1),其中a1表示首项,r表示公比,n表示项数。

三、教学内容1. 等差数列的应用1.1 等差数列的求和对于给定的等差数列,通过求和公式Sn = [2a1 + (n-1)d] * n/2,可以快速求得其前n项和。

1.2 等差数列在商业中的应用等差数列的性质使得其在商业领域中有广泛的应用。

例如,利润、销售额、库存等指标往往可以用等差数列来刻画。

学生可以通过实际案例来了解等差数列在商业中的运用。

2. 等比数列的应用2.1 等比数列的求和对于给定的等比数列,通过求和公式Sn = a1 * (1-r^n) / (1-r),可以快速求得其前n项和。

2.2 等比数列在科学中的应用等比数列的特性使得其在科学领域中具有广泛的应用。

例如,细胞分裂、放射性衰变、物种繁殖等现象可以用等比数列来建模。

学生可以通过具体案例,深入理解等比数列在科学中的应用。

四、教学方法1. 探究法通过引导学生观察、总结等差与等比数列的特性,并从实际生活中找出案例,引导其分析、归纳和掌握相应的应用方法。

2. 讨论法根据给定的实际问题,组织学生进行小组讨论,鼓励学生积极发表观点,从不同角度思考等差与等比数列在解决问题中的应用。

3. 实践方法引导学生通过实例分析和计算,将等差与等比数列的理论运用到实际问题中,提高学生的运用能力和解决实际问题的能力。

五、教学步骤1. 引入通过提出一个简单的实际问题,引导学生思考等差与等比数列的应用场景。

高考数学一轮复习 第九章 数列 第63课 等差、等比数列的综合问题课件.pptx

高考数学一轮复习 第九章 数列 第63课 等差、等比数列的综合问题课件.pptx
等差、等比数列的综合问题
基础知识回顾与梳理
1、已知 an是公差为d 的等差数列,下列命题是否正确?
① a2 , a4 ,...a12 是等差数列

② an , an1,...a1 是等差数列

√ ③ ca1, ca2 ,...ca(n c为常数)是等差数列
基础知识回顾与梳理
2、设an是等比数列,判断下列命题是否正确
当 n≥2 时,cb11+cb22+…+bcnn--11=an.
∴cn=32( ·n3= n-11()n,≥2).
解题反思 解决等差(比)数列的问题时,通常考虑两 类方法:
①基本量法,即运用条件转化成 a1关于和d q
的方程;
②运用等差(比)数列的性质 如下标和的性质、子数列的性质、和的性质
(1)因为 Sn Sn1 2n n 2, n N ,所以有 Sn Sn1 2n 对 n 2, n N 成
立.即 an 2n 对 n 2, n N 成立,又 a1 S1 21 ,所以 an 2n 对 n N 成立.所以 an1 an 2 对 n N 成立,所以an是等差数列,
Sn
n(a1 2
an )
n(n 1)
范例导析
例 1 、 数 列 an 的 前 n 项 和 为 Sn , 若 a1 2 且
Sn Sn1 2n n 2, n N
(1)求 Sn ;
(2)是否存在等比数列bn 满足 b1 a1,b2 a3,b3 a9 ?若存在,求
出数列 bn 的通项公式;若不存在,说明理由.
范例导析
变式题 若该数列中a3 12, S12 0, S13 0,则 S1, S2 , S3,...S12中哪一个最大?
要求:结合上题分析,选择恰当 方法,快速解题

高三数学第一轮复习 等差数列与等比数列教案(学生)_

城东蜊市阳光实验学校教案60等差数列与等比数列〔2〕一、课前检测1.〔2021年海淀二模12〕数列{}n a 满足11a =,12nn n a a +=〔n ∈N *〕,那么910a a +的值是.2.首项为-24的等差数列,从第10项起开始为正数,那么公差的取值范围是〔〕 A.d>B.d<3 C.≤d<3D.<d≤3二、知识梳理1.根本量的思想:常设首项、公比为根本量,借助于消元思想及解方程组思想等。

转化为“根本量〞是解决问题的根本方法。

解读:对于a n q a S n n 1,,,,中五个量可“知三求二〞。

在解决等比数列的有关问题时常用除法消元的方法。

要注意对公比q≠1,q =1时进展分类讨论。

2.等比数列的断定:{an}为等比数列⎪⎪⎩⎪⎪⎨⎧≠=++=≠===⇔+++)()(0,00/2211aq b a b aq S cq cq a a a a qa a n nnn n n n n n 解读:3.ab G ab G Gb a ±=⇔=⇔2的等比中项与。

推广:m n m n n a a a +-⨯=2解读:1〕并非任何两数总有等比中项.仅当实数a,b 同号时,实数a,b 才存在等比中项,且同号两实数a,b 的等比中项不仅存在,而且有一对为±,也就是说,两实数要么没有等比中项(非同号时),假设有,必有一对(同号时).2〕{an}为等比数列是an+12=an·an+2的充分但不必要条件.3〕假设证{an}不是等比数列,只需证ak2≠ak-1ak+1〔k 为常数,k∈N,且k≥2〕. 4.解题小技巧: 三个数成等比的设法:,,a qa aq ;四个数成等比的错误设法:33,,,a aqqaq aq 〔2q 是公比〕。

解读:5.等比数列与函数1〕等比数列的通项公式类似于n 的指数函数,即:n na cq =,其中1a c q=2〕等比数列的前n 项和公式是一个平移加振幅的n 的指数函数,即:(1)n n s cq c q =-≠解读:6.待定系数法:等比数列}{n a ,设1,0,,1≠≠-==-q Aq A Aq S Aq a n n n n7.等比数列的定义、通项公式、求和公式、性质等三、典型例题分析 题型1等比数列的根本运算例1〔1〕等比数列{an}中,a1+an =66,a2an -1=128,Sn =126,求项数n 和公比q 的值.〔2〕设等比数列{an}的公比为q(q>0),它的前n 项和为40,前2n 项和为3280,且前n 项中数值最大项为27,求首项、公比及项数n . 解:变式训练1等比数列{an}中,a1·a9=64,a3+a7=20,那么a11=. 解:小结与拓展:1〕方程的思想:等比数列中五个元素a1、an 、n 、q 、Sn 可以“知三求二〞。

2024届高考一轮复习数学教案(新人教B版):数列中的综合问题

§6.6数列中的综合问题考试要求数列的综合运算问题以及数列与函数、不等式等知识的交汇问题,是历年高考的热点内容.一般围绕等差数列、等比数列的知识命题,涉及数列的函数性质、通项公式、前n 项和公式等.题型一等差数列、等比数列的综合运算例1(2023·厦门模拟)已知数列{a n }的前n 项和为S n ,且S n =32n 2+12n ,递增的等比数列{b n }满足b 1+b 4=18,b 2·b 3=32.(1)求数列{a n },{b n }的通项公式;(2)若c n =a n ·b n ,n ∈N +,求数列{c n }的前n 项和T n .解(1)当n ≥2时,a n =S n -S n -1=32n 2+12n -32(n -1)2+12(n -1)=3n -1,又∵当n =1时,a 1=S 1=2符合上式,∴a n =3n -1.∵b 2b 3=b 1b 4,∴b 1,b 4是方程x 2-18x +32=0的两根,又∵b 4>b 1,∴解得b 1=2,b 4=16,∴q 3=b4b 1=8,∴q =2,∴b n =b 1·q n -1=2n .(2)∵a n =3n -1,b n =2n ,则c n =(3n -1)·2n ,∴T n =2·21+5·22+8·23+11·24+…+(3n -1)·2n ,2T n =2·22+5·23+8·24+11·25+…+(3n -1)·2n +1,将两式相减得-T n =2·21+3(22+23+24+…+2n )-(3n -1)·2n +1=4+322(1-2n -1)1-2-(3n -1)·2n +1=(4-3n )·2n +1-8,∴T n =(3n -4)·2n +1+8.思维升华数列的综合问题常将等差、等比数列结合,两者相互联系、相互转化,解答这类问题的方法:寻找通项公式,利用性质进行转化.跟踪训练1(2022·全国甲卷)记S n 为数列{a n }的前n 项和.已知2S nn+n =2a n +1.(1)证明:{a n }是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.(1)证明由2S nn+n =2a n +1,得2S n +n 2=2a n n +n ,①所以2S n +1+(n +1)2=2a n +1(n +1)+(n +1),②②-①,得2a n +1+2n +1=2a n +1(n +1)-2a n n +1,化简得a n +1-a n =1,所以数列{a n }是公差为1的等差数列.(2)解由(1)知数列{a n }的公差为1.由a 4,a 7,a 9成等比数列,得a 27=a 4a 9,即(a 1+6)2=(a 1+3)(a 1+8),解得a 1=-12.所以S n =-12n +n (n -1)2=n 2-25n2-6258,所以当n =12或13时,S n 取得最小值,最小值为-78.题型二数列与其他知识的交汇问题命题点1数列与不等式的交汇例2(1)已知数列{a n }满足a 1+12a 2+13a 3+…+1na n =n 2+n (n ∈N +),设数列{b n }满足:b n =2n +1a n a n +1,数列{b n }的前n 项和为T n ,若T n <nn +1λ(n ∈N +)恒成立,则实数λ的取值范围为()A.14,+∞C.38,+∞答案D解析数列{a n }满足a 1+12a 2+13a 3+…+1na n =n 2+n ,①当n ≥2时,a 1+12a 2+13a 3+…+1n -1a n -1=(n -1)2+(n -1),②①-②得1na n =2n ,故a n =2n 2,当n =1时,a 1=2也满足上式.数列{b n }满足:b n =2n +1a n a n +1=2n +14n 2(n +1)2=141n 2-1(n +1)2,则T n =141+…+1n 2-1(n +1)2=141-1(n +1)2,由于T n <nn +1λ(n ∈N +)恒成立,故141-1(n +1)2<n n +1λ,整理得λ>n +24n +4,因为y =n +24n +4=n ∈N +上单调递减,故当n =1=38,所以λ>38.(2)已知数列{a n }满足a 1=37,3a n ,2a n +1,a n a n +1成等差数列.{a n }的通项公式;②记{a n }的前n 项和为S n ,求证:1271S n <7528.①解由已知得4a n +1=3a n +a n a n +1,因为a 1=37≠0,所以由递推关系可得a n ≠0恒成立,所以4a n =3a n +1+1,所以4a n -4=3a n +1-3,即1a n +1-1又因为1a 1-1=73-1=43,所以数列是首项为43,公比为43的等比数列,所以1a n-1,所以a n =11.②证明由①可得a n =111-1=37×-1,所以S n ≥37+37×+…+37×-1=1271n,a n =11<1,S 1=37<7528,当n ≥2时,S n <37++ (37)1-34=7528-3<7528.综上所述,1271n≤S n <7528成立.命题点2数列与函数的交汇例3(1)(2023·龙岩模拟)已知函数f (x )=13x 3+4x ,记等差数列{a n }的前n 项和为S n ,若f (a 1+2)=100,f (a 2022+2)=-100,则S 2022等于()A .-4044B .-2022C .2022D .4044答案A解析因为f (-x )=-13x 3-4x =-f (x ),所以f (x )是奇函数,因为f (a 1+2)=100,f (a 2022+2)=-100,所以f (a 1+2)=-f (a 2022+2),所以a 1+2+a 2022+2=0,所以a 1+a 2022=-4,所以S 2022=2022(a 1+a 2022)2=-4044.(2)数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为________.答案-12解析因为a 4+λa 10+a 16=15,所以a 1+3d +λ(a 1+9d )+a 1+15d =15,令λ=f (d )=151+9d -2,因为d ∈[1,2],所以令t =1+9d ,t ∈[10,19],因此λ=f (t )=15t -2,当t ∈[10,19]时,函数λ=f (t )是减函数,故当t =10时,实数λ有最大值,最大值为f (10)=-12.思维升华(1)数列与不等式的综合问题及求解策略①判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.②以数列为载体,考查不等式恒成立的问题,此类问题可转化为函数的最值.③考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(2)数列与函数交汇问题的主要类型及求解策略①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题.②已知数列条件,解决函数问题,解决此类问题一般要利用数列的通项公式、前n 项和公式、求和方法等对式子化简变形.跟踪训练2(1)设{a n }是等比数列,函数y =x 2-x -2023的两个零点是a 2,a 3,则a 1a 4等于()A .2023B .1C .-1D .-2023答案D解析由题意a 2,a 3是x 2-x -2023=0的两根.由根与系数的关系得a 2a 3=-2023.又a 1a 4=a 2a 3,所以a 1a 4=-2023.(2)数列{a n }满足a 1=1,a n +1=2a n (n ∈N +),S n 为其前n 项和.数列{b n }为等差数列,且满足b 1=a 1,b 4=S 3.①求数列{a n },{b n }的通项公式;②设c n =1b n ·log 2a 2n +2,数列{c n }的前n 项和为T n ,证明:13≤T n <12.①解由题意知,{a n }是首项为1,公比为2的等比数列,所以a n =a 1·2n -1=2n -1.所以S n =2n-1.设等差数列{b n }的公差为d ,则b 1=a 1=1,b 4=1+3d =7,所以d =2,b n =1+(n -1)×2=2n -1.②证明因为log 2a 2n +2=log 222n +1=2n +1,所以c n =1b n ·log 2a 2n +2=1(2n -1)(2n +1)=所以T n -13+13-15+…+12n -1-因为n ∈N +,所以T n <12,=n 2n +1.当n ≥2时,T n -T n -1=n 2n +1-n -12n -1=1(2n +1)(2n -1)>0,所以数列{T n }是一个递增数列,所以T n ≥T 1=13.综上所述,13≤T n <12.课时精练1.(2022·汕头模拟)已知各项均为正数的等比数列{a n }的前4项和为15,4a 1,2a 3,a 5成等差数列,则a 1等于()A .52-5B .52+5C .52D .5答案A解析设各项均为正数的等比数列{a n }的公比为q ,q >0,由前4项和为15,4a 1,2a 3,a 5成等差数列,可得a 1+a 1q +a 1q 2+a 1q 3=15,4a 3=4a 1+a 5,即4a 1+a 1q 4=4a 1q 2,即q 2-2=0,解得q =2,a 1=52-5.2.(2023·焦作模拟)直播带货是一种直播和电商相结合的销售手段,目前受到了广大消费者的追捧,针对这种现状,某传媒公司决定逐年加大直播带货的资金投入,若该公司今年投入的资金为2000万元,并在此基础上,以后每年的资金投入均比上一年增长12%,则该公司需经过____年其投入资金开始超过7000万元()(参考数据:lg 1.12≈0.049,lg 2≈0.301,lg 7≈0.845)A .14B .13C .12D .11答案C解析设该公司经过n 年投入的资金为a n 万元,则a 1=2000×1.12,由题意可知,数列{a n }是以2000×1.12为首项,以1.12为公比的等比数列,所以a n =2000×1.12n ,由a n =2000×1.12n >7000可得n >log 1.1272=lg 7-lg 2lg 1.12≈11.1,因此,该公司需经过12年其投入资金开始超过7000万元.3.在正项等比数列{a n }中,3为a 6与a 14的等比中项,则a 3+3a 17的最小值为()A .23B .89C .6D .3答案C解析因为{a n }是正项等比数列,且3为a 6与a 14的等比中项,所以a 6a 14=3=a 3a 17,则a 3+3a 17=a 3+3·3a 3≥2a 3·3·3a 3=6,当且仅当a 3=3时,等号成立,所以a 3+3a 17的最小值为6.4.(2023·岳阳模拟)在等比数列{a n }中,a 2=-2a 5,1<a 3<2,则数列{a 3n }的前5项和S 5的取值范围是()-118,--338,-答案A解析设等比数列{a n }的公比为q ,则q 3=a 5a 2=-12,数列{a 3n }是首项为a 3,公比为q 3=-12的等比数列,则S 51+12=1116a 35.(多选)(2023·贵阳模拟)已知函数f (x )=lg x ,则下列四个命题中,是真命题的为()A .f (2),f (10),f (5)成等差数列B .f (2),f (4),f (8)成等差数列C .f (2),f (12),f (72)成等比数列D .f (2),f (4),f (16)成等比数列答案ABD解析对于A ,f (2)+f (5)=lg 2+lg 5=lg 10=1,2f (10)=2lg 10=1,故f (2),f (10),f (5)成等差数列,故是真命题;对于B ,f (2)+f (8)=lg 2+lg 8=lg 16,2f (4)=2lg 4=lg 16,故f (2),f (4),f (8)成等差数列,故是真命题;对于C ,f (2)·f (72)=lg 2×lg =lg 212=f 2(12),故f (2),f (12),f (72)不成等比数列,故是假命题;对于D ,f (2)f (16)=lg 2×lg 16=4lg 22=(2lg 2)2=lg 24=f 2(4),故f (2),f (4),f (16)成等比数列,故是真命题.6.数学家也有许多美丽的错误,如法国数学家费马于1640年提出了F n =22n+1(n =0,1,2,…)是质数的猜想,直到1732年才被善于计算的大数学家欧拉算出F 5=641×6700417,不是质数.现设a n =log 4(F n -1)(n =1,2,…),S n 表示数列{a n }的前n 项和.若32S n =63a n ,则n 等于()A .5B .6C .7D .8答案B解析因为F n =22n+1(n =0,1,2,…),所以a n =log 4(F n -1)=log 4(22n+1-1)=log 422n=2n -1,所以{a n }是等比数列,首项为1,公比为2,所以S n =1(1-2n )1-2=2n -1.所以32(2n -1)=63×2n -1,解得n =6.7.宋元时期我国数学家朱世杰在《四元玉鉴》中所记载的“垛积术”,其中“落—形”就是每层为“三角形数”的三角锥垛,三角锥垛从上到下最上面是1个球,第二层是3个球,第三层是6个球,第四层是10个球,…,则这个三角锥垛的第十五层球的个数为________.答案120解析∵“三角形数”可写为1,1+2,1+2+3,1+2+3+4,1+2+3+4+5,…,∴“三角形数”的通项公式为a n =1+2+3+…+n =n (n +1)2,∴这个三角锥垛的第十五层球的个数为a 15=15×162=120.8.已知数列{a n }的通项公式为a n =ln n ,若存在p ∈R ,使得a n ≤pn 对任意的n ∈N +都成立,则p 的取值范围为________.答案ln 33,+∞解析数列{a n }的通项公式为a n =ln n ,若存在p ∈R ,使得a n ≤pn 对任意的n ∈N +都成立,故p ,设f (x )=ln x x ,则f ′(x )=1x ·x -ln x x 2,令f ′(x )=1-ln x x 2=0,解得x =e ,故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞),所以函数在x =e 处取最大值,由于n ∈N +,所以当n =3时函数最大值为ln 33.所以p 的取值范围是ln 33,+9.记关于x 的不等式x 2-4nx +3n 2≤0(n ∈N +)的整数解的个数为a n ,数列{b n }的前n 项和为T n ,满足4T n =3n +1-a n -2.(1)求数列{b n }的通项公式;(2)设c n =2b n -,若对任意n ∈N +,都有c n <c n +1成立,试求实数λ的取值范围.解(1)由不等式x 2-4nx +3n 2≤0可得,n ≤x ≤3n ,∴a n =2n +1,T n =14×3n +1-12n -34,当n =1时,b 1=T 1=1,当n ≥2时,b n =T n -T n -1=12×3n -12,∵b 1=1适合上式,∴b n =12×3n -12.(2)由(1)可得,c n =3n -1+(-1)n -1,∴c n +1=3n +1-1+(-1)n +1,∵c n <c n +1,∴c n +1-c n =2×3n +52(-1)n >0,∴(-1)n λ>-45×2n ,当n 为奇数时,λ<45×2n ,由于45×2n 随着n 的增大而增大,当n =1时,45×2n 的最小值为85,∴λ<85,当n 为偶数时,λ>-45×2n ,由于-45×2n 随着n 的增大而减小,当n =2时,-45×2n 的最大值为-165,∴λ>-165,综上可知,-165<λ<85.10.设n ∈N +,有三个条件:①a n 是2与S n 的等差中项;②a 1=2,S n +1=a 1(S n +1);③S n =2n +1-2.在这三个条件中任选一个,补充在下列问题的横线上,再作答.若数列{a n }的前n 项和为S n ,且________.(1)求数列{a n }的通项公式;(2)若{a n ·b n }是以2为首项,4为公差的等差数列,求数列{b n }的前n 项和T n .注:如果选择多个条件分别解答,那么按第一个解答计分.解(1)选择条件①:因为a n 是2与S n 的等差中项,所以2a n =2+S n ,所以当n ≥2时,2a n -1=2+S n -1,两式相减得,2a n -2a n -1=a n ,即a n =2a n -1(n ≥2),在2a n =2+S n 中,令n =1,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .选择条件②:由a 1=2,S n +1=a 1(S n +1),知S n +1=2(S n +1),当n =1时,可求得a 2=4,所以当n ≥2时,S n =2(S n -1+1),两式相减得,a n +1=2a n (n ≥2),又a 1=2,a 2=4也满足上式,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .选择条件③:在S n =2n +1-2中,令n =1,则a 1=21+1-2=2,当n ≥2时,有S n -1=2n -2,两式相减得,a n =2n (n ≥2),当n =1时,a 1=2满足上式,所以a n =2n .(2)因为{a n ·b n }是以2为首项,4为公差的等差数列,所以a n ·b n =2+(n -1)·4=4n -2,由(1)知,a n =2n ,所以b n =2n -12n -1,所以T n =1+3+5+…+2n -12n -1,12T n =1+3+…+2n -32n -1+2n -12n ,两式相减得,12T n =1+2+2+…+2-1-2n -12n =1+2×21-12-2n -12n =3-2n +32n,所以T n =6-2n +32n -1.11.(2022·北京)设{a n }是公差不为0的无穷等差数列,则“{a n }为递增数列”是“存在正整数N 0,当n >N 0时,a n >0”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案C 解析设无穷等差数列{a n }的公差为d (d ≠0),则a n =a 1+(n -1)d =dn +a 1-d .若{a n }为递增数列,则d >0,则存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,所以充分性成立;若存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,即d >d -a 1n对任意的n >N 0,n ∈N +均成立,由于n →+∞时,d -a 1n→0,且d ≠0,所以d >0,{a n }为递增数列,必要性成立.故选C.12.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则()A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4答案B 解析因为ln x ≤x -1(x >0),所以a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)≤a 1+a 2+a 3-1,所以a 4=a 1·q 3≤-1.由a 1>1,得q <0.若q ≤-1,则ln(a 1+a 2+a 3)=a 1+a 2+a 3+a 4=a 1(1+q )·(1+q 2)≤0.又a 1+a 2+a 3=a 1(1+q +q 2)≥a 1>1,所以ln(a 1+a 2+a 3)>0,矛盾.因此-1<q <0.所以a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0,所以a 1>a 3,a 2<a 4.13.函数y =f (x ),x ∈[1,+∞),数列{a n }满足a n =f (n ),n ∈N +,①函数f (x )是增函数;②数列{a n }是递增数列.写出一个满足①的函数f (x )的解析式________.写出一个满足②但不满足①的函数f (x )的解析式________.答案f (x )=x 2f (x )(答案不唯一)解析由题意,可知在x ∈[1,+∞)这个区间上是增函数的函数有许多,可写为f (x )=x 2.第二个填空是找一个数列是递增数列,而对应的函数不是增函数,可写为f (x ).则这个函数在1,43上单调递减,在43,+∴f (x )在[1,+∞)上不是增函数,不满足①.而对应的数列为a n 在n ∈N +上越来越大,属于递增数列.14.设函数f (x )-4,x ≤-3,x 2+2,x >-3,数列{a n }满足a n +1=f (a n )(n ∈N +),若{a n }是等差数列.则a 1的取值范围是__________.答案(-∞,-3]∪{-2,1}解析画出函数f (x )的图象如图所示,当a 1≤-3时,a 2=f (a 1)=a 1-4≤-7,a 3=f (a 2)=a 2-4≤-11,…,数列{a n }是首项为a 1,公差为-4的等差数列,符合题意,当a 1>-3时,因为{a n }是等差数列,①若其公差d >0,则∃k 0∈N +,使得0k a >2,这与a n +1=f (a n )=2-a 2n ≤2矛盾,②若其公差d =0,则a 2=-a 21+2=a 1,即a 21+a 1-2=0,解得a 1=-2或a 1=1,则当a 1=-2时,a n =-2为常数列,当a 1=1时,a n =1为常数列,此时{a n }为等差数列,符合题意,③若其公差d <0,则∃k 0∈N +,使得0k a >-3且01k a +≤-3,则等差数列的公差必为-4,因此001k k a a +-=-4,所以2-002k k a a -=-4,解得0k a =-3(舍去)或0k a =2.又当0k a =2时,000123k k k a a a +++===…=-2,这与公差为-4矛盾.综上所述,a 1的取值范围是(-∞,-3]∪{-2,1}.15.若数列{a n }对于任意的正整数n 满足:a n >0且a n a n +1=n +1,则称数列{a n }为“积增数列”.已知“积增数列”{a n }中,a 1=1,数列{a 2n +a 2n +1}的前n 项和为S n ,则对于任意的正整数n ,有()A .S n ≤2n 2+3B .S n ≥n 2+4nC .S n ≤n 2+4nD .S n ≥n 2+3n 答案D 解析∵a n >0,∴a 2n +a 2n +1≥2a n a n +1,∵a n a n +1=n +1,∴{a n a n +1}的前n 项和为2+3+4+…+n +1=n (2+n +1)2=n (n +3)2,∴数列{a 2n +a 2n +1}的前n 项和为S n ≥2×n (n +3)2=n 2+3n .16.设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的正整数n ,a n 与2的等差中项等于S n 与2的等比中项.(1)求数列{a n }的通项公式;(2)令b nn ∈N +),求证:b 1+b 2+b 3+…+b n <1+n .(1)解由已知a n +22=2S n (n ∈N +),整理得S n =18(a n +2)2,所以S n +1=18(a n +1+2)2.所以a n +1=S n +1-S n =18[(a n +1+2)2-(a n +2)2]=18(a 2n +1+4a n +1-a 2n -4a n ),整理得(a n +1+a n )(a n +1-a n -4)=0,由题意知a n +1+a n ≠0,所以a n +1-a n =4,而a 1=2,即数列{a n }是a 1=2,d =4的等差数列,所以a n =a 1+(n -1)d =4n -2.(2)证明令c n =b n -1,则c n +a n a n +1-=12n -1-12n +1.故b 1+b 2+…+b n -n =c 1+c 2+…+cn…1-12n +1<1.故b 1+b 2+…+b n <1+n .。

高考数学名师大讲坛一轮复习教程学案:第63课等差、等比数列的综合 Word版含解析

第63课 等差、等比数列的综合问题1. 等差、等比数列(C 级要求).2. 高考中可能重点关注等差、等比数列{a n }的前n 项和S n 与通项公式a n 之间的相互转化,以及基本量、性质的运用.1. 阅读:必修5第65~68页.2. 解悟:①画出本章知识框图;②写出等差、等比数列的常用性质,体会形式上的联系与区别;③体会课本中整理知识的方法.3. 践习:在教材空白处,完成第67~68页习题第5、6、9、15题.基础诊断1. 已知数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }中连续的三项,则数列{b n }的公比为 2 .解析:设数列{a n }的公差为d(d ≠0).由a 23=a 1a 7,得(a 1+2d)2=a 1(a 1+6d),解得a 1=2d ,故数列{b n }的公比q =a 3a 1=a 1+2d a 1=2a 1a 1=2.2. 已知等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则数列{a n }的前6项和为 -24 .解析:设数列{a n }的公差为d(d ≠0).根据题意得a 23=a 2a 6,即(a 1+2d)2=(a 1+d)(a 1+5d),解得d =0(舍去)或d =-2,所以数列{a n }的前6项和为S 6=6a 1+6×52d =1×6+6×52×(-2)=-24.3. 设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n = -1n.解析:由题意得S 1=a 1=-1;由a n +1=S n S n +1,得S n +1-S n =S n S n +1.因为S n ≠0,所以S n +1-S n S n S n +1=1,即1S n +1-1S n=-1,故数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=-1为首项,-1为公差的等差数列,所以1S n =-1-(n -1)=-n ,所以S n =-1n.4. 已知数列{a n }的前n 项和为S n ,对任意n ∈N *都有S n =23a n -13,若1<S k <9 (k ∈N *),则k 的值为 4 W.解析:由题意S n =23a n -13知当n ≥2时,S n -1=23a n -1-13,两式相减,得a n =23a n -23a n -1,所以a n =-2a n -1.又a 1=-1,所以{a n }是以-1为首项,-2为公比的等比数列,所以a n =-(-2)n -1,所以S k =(-2)k -13.由1<S k <9,得4<(-2)k <28.又k ∈N *,所以k =4.范例导航考向❶ 子数列问题例1 已知在等差数列{a n }中,a 2=5,前10项和S 10=120,若从数列{a n }中依次取出第2项、第4项、第8项、…、第2n 项,按原顺序组成新数列{b n },求数列{b n }的前n 项和T n .解析:设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧a 1+d =5,10a 1+10×92d =120,解得⎩⎪⎨⎪⎧a 1=3,d =2, 所以a n =3+(n -1)×2=2n +1,所以b n =a 2n =2·2n +1=2n +1+1,所以T n =2×(21+22+ (2))+n =n +2×2(1-2n )1-2=2n +2+n -4.在等差数列{a n }中,a 10=30,a 20=50. (1) 求数列{a n }的通项公式;(2) 令b n =2a n -10,证明:数列{b n }为等比数列.解析:(1) 设数列{a n }的公差为d.由a 10=30,a 20=50得⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12,d =2,所以a n =12+(n -1)×2=2n +10.(2) 由(1)得b n =2a n -10=22n +10-10=22n =4n , 所以b n +1b n =4n +14n =4,所以{b n }是首项为4,公比为4的等比数列.【注】 子数列问题需要搞清楚新数列与原数列之间的关系,既可以利用原数列的性质分析子数列,也可以利用子数列分析原数列的性质. 考向❷ 数列与不等式例2 已知数列{c n }的通项公式为c n =4×⎝⎛⎭⎫12n+1,其前n 项和为T n,若不等式12k4+n -T n ≥2n -7对任意的n ∈N *恒成立,求实数k 的取值范围.解析:c n =4×⎝⎛⎭⎫12n+1,所以 T n =4×12⎝⎛⎭⎫1-12n 1-12+n =4+n -42n .由不等式12k4+n -T n≥2n -7恒成立,得3k ≥2n -72n 恒成立.设d n =2n -72n ,则d n +1-d n =2n -52n +1-2n -72n =-2n +92n +1,所以当n ≤4时,d n +1>d n ;当n ≥5时,d n +1<d n.又d 4=116,d 5=332,所以 d 4<d 5,所以3k ≥332,即k ≥132,故实数k 的取值范围是⎣⎡⎭⎫132,+∞.已知a n =2n -1,设T n =∑n i =1(-1)i a i ,若对任意正整数n ,不等式λT n <[a n +1+(-1)n +1a n ]·2n-1恒成立,求实数λ的取值范围.解析:①当n 为偶数时,设n =2k ,k ∈N *,则T 2k =(a 2-a 1)+(a 4-a 3)+…+(a 2k -a 2k -1)=2k ,代入不等式λT n <[a n +1+(-1)n +1a n ]·2n -1, 得λ·2k <4k,从而λ<4k 2k.设f (k )=4k 2k ,则f (k +1)-f (k )=4k +12(k +1)-4k 2k =4k(3k -1)2k (k +1).因为k ∈N *,所以f (k +1)-f (k )>0,所以函数f (k )单调递增,所以f (k )min =2, 所以λ<2;②当n 为奇数时,设n =2k -1,k ∈N *, 则T 2k -1=T 2k -a 2k =2k -(4k -1)=1-2k ,代入不等式λT n <[a n +1+(-1)n +1a n ]·2n -1, 得λ(1-2k )<(2k -1)4k ,从而λ>-4k . 因为k ∈N *,所以-4k 的最大值为-4, 所以λ>-4.综上所述,实数λ的取值范围为(-4,2).【注】 数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法等.如果是解不等式问题,要使用不等式的各种不同解法,如数轴法、因式分解法等.考向❸ 新定义(类“等差”“等比”数列)问题例3 若数列{a n }中存在三项,按一定次序排列构成等比数列,则称{a n }为“等比源数列”.已知数列{a n }满足a n =2n -1+1.判断数列{a n }是否为“等比源数列”,并证明你的结论.解析:数列{a n }不是“等比源数列”. 用反证法证明如下:假设数列{a n }是“等比源数列”,则存在三项a m ,a n ,a k (m <n <k)按一定次序排列构成等比数列,因为a n =2n -1+1,所以a m <a n <a k . 由题意得a 2n =a m a k ,所以(2n -1+1)2=(2m -1+1)(2k -1+1),即22n -m -1+2n -m +1-2k -1-2k -m =1. 又m <n <k ,m ,n ,k ∈N *,所以2n -m -1≥1,n -m +1≥1,k -1≥1,k -m ≥1,所以22n -m -1+2n -m +1-2k -1-2k -m 为偶数,与22n -m -1+2n -m +1-2k -1-2k -m =1矛盾, 所以数列{a n }中不存在任何三项,按一定次序排列构成等比数列. 所以数列{a n }不是“等比源数列”.上例中若数列{a n }为等差数列,且a 1≠0,a n ∈Z(n ∈N *).求证:数列{a n }为“等比源数列”.解析:不妨设等差数列{a n }的公差d ≥0.当d =0时,等差数列{a n }为非零常数数列,则数列{a n }为“等比源数列”; 当d >0时,因为a n ∈Z ,则d ≥1,且d ∈Z , 所以数列{a n }中必有一项a m >0.为了使得数列{a n }为“等比源数列”, 只需要数列{a n }中存在第n 项,第k 项(m <n <k ),使得a 2n =a m a k 成立,即[a m +(n -m )d ]2=a m ·[a m +(k -m )d ],即(n -m )[2a m +(n -m )d ]=a m (k -m )成立,当n =a m +m ,k =2a m +a m d +m 时,上式成立, 所以数列{a n }中存在a m ,a n ,a k 成等比数列. 所以数列{a n }为“等比源数列”.【注】 新定义问题中,需要严格以新定义为核心,借助特殊值理解题意,借助等差、等比数列的研究技巧进行变形求解.自测反馈1. 若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2= 1 .解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q.由题意得-1+3d =-q 3=8,解得d =3,q =-2,所以a 2b 2=-1+3-2=1.2. 设公比不为1的等比数列{a n }的前n 项和为S n ,若-3a 1,-a 2,a 3成等差数列,且a 1=1,则S 4= -20 W.解析:设数列{a n }的公比为q ,且q ≠1.由题意得-2a 2=-3a 1+a 3,即-2q =-3+q 2,解得q =-3或q =1(舍去),所以S 4=1-(-3)41+3=-20.3. 设等比数列{a n }的前n 项和S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,则a 8= 2. 解析:设{a n }的公比为q.由题意得2S 9=S 3+S 6,所以q ≠1,所以⎩⎪⎨⎪⎧2×a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q ,a 1q +a 1q 4=4,解得⎩⎪⎨⎪⎧q 3=-12,a 1q =8,所以a 8=a 1q 7=a 1q ×(q 3)2=8×⎝⎛⎭⎫-122=2.4. 已知{a n }是首项为2,公差不为0的等差数列,若a 1,a 3,a 6成等比数列,则数列{a n }的前n 项和S n = n 2+7n4.解析:设数列{a n }的公差为d.由题意得a 23=a 1a 6,即(a 1+2d)2=a 1(a 1+5d),即(2+2d)2=2(2+5d),解得d =12,所以S n =na 1+n (n -1)2d =2n +n (n -1)2×12=n 2+7n 4.1. 解决等差(比)数列问题时,通常考虑两类方法:①基本量,即运用条件转化成关于a 1和d(q)的方程;②运用等差(比)数列的性质(如下标和的性质、子数列的性质、和的性质).2. 你还有那些体悟,写下来:。

高三数学《等差等比数列》复习教案 必修

芯衣州星海市涌泉学校光泽第一中学高三数学必修五等差、等比数列复习教案光泽一中江居明【教材内容分析】假设一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

假设一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示〔0 q〕。

【学情分析】学生可以掌握根本的结论,但学生由于缺少系统性的练习,不可以准确的找到解题思路,所以需要进展全面的复习。

【教学目的】(1)理解等差、等比数列的定义与断定. (2)掌握等差、等比数列的通项公式. (3)理解等差中项、等比中项与性质.(4)掌握等差、等比数列的前n 项和公式及其运用. 【重点、难点】【课时安排】一课时【教学方法】启发式教学、讲练结合 【教学过程和步骤】 1.等差数列等差数列的定义:假设一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

等差中项: 假设a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。

即:2ba A +=或者者b a A +=2 等差数列的断定方法: 〔1〕定义法:对于数列{}n a ,假设da a nn =-+1(常数),那么数列{}n a 是等差数列。

〔2〕等差中项:对于数列{}n a ,假设212+++=n n n a a a ,那么数列{}n a 是等差数列。

等差数列的通项公式: 假设等差数列{}n a 的首项是1a ,公差是d ,那么等差数列的通项为dn a a n)1(1-+=,d m n a a m n )(-+=等差数列的前n 项和:①2)(1n n a a n S +=②d n n na S n 2)1(1-+= 等差数列的性质: 〔1〕对于等差数列{}n a ,假设q p m n +=+,那么q p mn a a a a +=+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差、等比数列的综合问题
一、教学目标
1. 掌握等差、等比数列的性质;
2. 能用类比的思想来研究等差、等比数列,体会它们的区别和联系;
3. 理解等差数列前n 项和S n 与二次函数的关系;掌握求等差数列前n 项和最值的基本方法。

二、基础知识回顾与梳理
1、已知{}n a 是公差为d 的等差数列,下列命题是否正确?
①2412,,...a a a 是等差数列 ;②11,,...n n a a a -是等差数列;③12,,...n ca ca ca (c 为常数)是等差数列.
【教学建议】本题选自书本第35页习题,主要复习等差数列的概念,让学生学会用定义判断一个数列是否为等差数列.
2、设{}n a 是等比数列,下列命题正确吗?
①{}2n a 是等比数列; ②{}1n n a a +是等比数列;③1n a ⎧⎫⎨⎬⎩⎭
是等比数列; ④{}lg n a 是等比数列;
⑤{}1n n a a ++是等比数列.
【教学建议】本题选自课本第60页习题,提问学生:如何判断一个数列是否为等比数列,学会用定义判断一个数列是否为等比数列,第⑤小题学生容易忽略等比数列各项不能为零.
3、下列说法是否正确?
①1与4的等比中项是2; ②等比数列{}n a 中151,4a a ==,则32a =;
【教学建议】本题考察等比中项的概念,学生可能在概念上犯错,教师在讲解时不需要避免学生出错,让学生暴露问题,老师进一步理清概念.
4、数列211,,,...n x x x -的前n 项和_________n S =.
【教学建议】本题选自书本第56页习题,等比数列求和学生使用时很容易忘记讨论1q =,主要让学生加深印象,对等比数列求和一定要考虑1q =的特殊情形,进一步练习:等比数列{}n a 中,333S a =,则公比______q =,说明一些特殊情况下可以回避用求和公式,避免讨论.
三、诊断练习
1、 教学处理:数列小题解法较多,要重视学生自己思路解法。

课前学生自主完成,黑板板演,老师点评 学生思路方法,比较多种解法,比较优劣,归纳总结.
2、诊断练习点评
题1:在等差数列{}n a 中,若1590S =,则8a =______________.
【分析与点评】提出问题:条件1590S =如何使用,引导学生思考用等差数列求和公式的两种表示形式来翻译条件,归纳思路:(1)完全化归为基本量表示,151151415902S a d ⨯=+
=,化简得8176a a d =+=;(2)寻求n S 和n a 的关系,1151515()902
a a S +==,利用性质81152a a a =+,解得86a =. 题2:公比不为1的等比数列{}n a 的前n 项和为n S ,且1233,,a a a --
成等差数列,若11a =,则4S =________. 答案为:20-
【分析与点评】(1)等差等比数列的计算强调基本量的运算:化归为1,()a d q 的计算;(2)本题“递增”是关键,学生容易得到244,12
31=⇒=⇒==q q a a ,代入公式求解;也可以得到
245,423131=⇒=⇒=+=⋅q q a a a a .
题3:等比数列{}n a 的各项均为正数,且154a a =,则2122232425log log log log log a a a a a ++++= . 第3题答案为:5
题4::等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =
_______ 第4题答案为:1()(n 1)2n n n a a S n +==+
3、要点归纳
(1)强化等差(比)数列的重要性质,对于下标和相等,等差(比)子数列的性质不同,要注意区别;
(2)等差(比)数列的前n 项和的性质也不同,特别注意有关等差数列前n 项和n S 取最值问题,如“诊断练习”第3题;
(3)要重视等差(比)数列的性质在解题中的运用.
四、范例导析
例1、数列{}n a 的前n 项和为n S ,若12a =且()
122,n n S S n n n N *-=+≥∈ (1)求n S ;
(2)是否存在等比数列{}n b 满足112339,,b a b a b a ===?若存在,求出数列{}n b 的通项公式;若不存在,说明理由.
【教学处理】让学生板演,了解学生读题后的第一想法,加以点评总结,同时规范学生的书写
【引导分析与精讲建议】
1、第1问强调等差数列的证明,注意1n =的验证;
2、第2问注重等差等比数列基本量的计算.
解析:(1)因为()
122,n n S S n n n N *-=+≥∈, 所以有12n n S S n --=对2,n n N *≥∈成立.
即2n a n =对2,n n N *≥∈成立,
又1121a S ==⨯,所以2n a n =对n N *∈成立.
所以12n n a a +-=a 对n N *∈成立,
所以{}n a 是等差数列, 所以有21,2n n a a S n n n +=
⋅=+n N *∈. (2)存在.
由(1)知,2n a n =对n N *∈成立,
所以有396,18,a a ==又12a =,
所以有12b =,236,18,b b ==则3212
3b b b b ==, 所以存在以12b =为首项,以3为公比的等比数列{}n b .
练习:(1)已知等差数列}{n a 的前n 项和为n S ,若10010=S ,10100=S ,求110S ;
(2)已知等比数列}{n a 中,7321=++a a a ,8321=a a a ,求n a 。

变式题:等差数列{}n a 的前m 项和30,m S =前2m 项和2100,m S =求前3m 项和3m S
[点评]:这里变式题起到巩固知识的作用,引导学生用多种思路来求解.
例2:已知数列{}n a 的前n 项和为n S .
(Ⅰ)若数列{}n a 是等比数列,满足231
32a a a =+, 23+a 是2a ,4a 的等差中项,求数列{}n a 的通项公式;
(Ⅱ)是否存在等差数列{}n a ,使对任意*n N ∈都有22(1)n n a S n n ⋅=+?若存在,请求出所有满足条件的等差数列;若不存在,请说明理由.
第2题答案为:
解:(Ⅰ)设等比数列{}n a 的首项为1a ,公比为q ,
依题意,有⎩⎨⎧+=+=+).2(2,32342231a a a a a a 即⎩⎨⎧+=+=+)
2(.42)()1(,3)2(2131121q a q q a q a q a 由 )1(得 0232=+-q q ,解得1=q 或2=q .
当1=q
时,不合题意舍; 当2=q 时,代入(2)得21=a ,所以,n n n a 2221=⋅=-
(Ⅱ)假设存在满足条件的数列{}n a ,设此数列的公差为d ,则
211(1)[(1)][]2(1)2
n n a n d a n d n n ++-+=+,得 2
22222111331()()222222
d n a d d n a a d d n n +-+-+=+对*n N ∈恒成立, 则2
2122112,
232,2310,22d a d d a a d d ⎧=⎪⎪⎪-=⎨⎪⎪-+=⎪⎩
解得12,2,d a =⎧⎨=⎩或1
2,2.d a =-⎧⎨=-⎩此时2n a n =,或2n a n =-. 故存在等差数列{}n a ,使对任意*n N ∈都有22(1)n n a S n n ⋅=+.其中2n a n =,
或2n a n =-
例3、已知等差数列}{n a 的首项11=a ,公差0>d ,且第2项、第5项、第14项分别是等比数列}{n b 的第2项、第3项、第4项.
(1)求数列}{n a 与}{n b 的通项公式;
(2)设数列{}n c 对*∈N n 均有12211+=+++n n
n a b c b c b c 成立,求201521c c c +++ . 备用题:已知数列}{n a 的前n 项和n S 与通项n a 满足1122n n S a =
-. (1)求数列}{n a 的通项公式;
(2)设()()()()312log ,n n f x x b f a f a f a ==++⋅⋅⋅+,12111n n
T b b b =
++⋅⋅⋅+,求2015T ; (3)若()n n n c a f a =⋅,求{}n c 的前n 项和n U . 【教学处理】第(1)题,可由学生自行解答;第(2)题教师可引导学生进行观察和思考,教师点评时要侧重学生解题方法,注意运用函数的思想,注意对1=n 时情况的关注,培养学生严密的思维和严谨的学习态度。

【引导分析与精讲建议】
(1)用方程思想求出首项和公差公比是解决问题的基础;
(2)对于等差等比综合问题学生会有困难,要引导学生抓住关键,注意等比数列证明方法;
(3)用函数的思想是解决第(2)题的关键所在,解题中要注意培养学生思维的严谨性,对表达中字母n 的取值范围加以重视,注意对1=n 时情况的关注。

五、解题反思
解决等差(比)数列的问题时,通常考虑两类方法:①基本量法,即运用条件转化成关于1a 和()d q 的方程;②运用等差(比)数列的性质(如下标和的性质、子数列的性质、和的性质).。

相关文档
最新文档