普通高等学校招生全国统一考试数学1981年 文科数学

合集下载

1981全国高考文科数学试题

1981全国高考文科数学试题
x=10×(1.02)20, 两边取对数,得lgx=1+20lg1.02=1.17200,
∴x=14.859(亿) 2.设人口每年比上年平均递增率最高是y%,按题意得
10×(1+y%)20≤12, (1+y%)20≤1.2.
根据对数函数的单调上升性,对上列不等式两边取对数得 20lg(1+y%)≤lg1.2.
(注:用复数法解亦可
) 七.(本题满分17分) 设1980年底我国人口以10亿计算
(1)如果我国人口每年比上年平均递增2%,那么到2000年底将达到多 少? (2)要使2000年底我国人口不超过12亿,那么每年比上年平均递增率 最高是多少?
下列对数值可供选用: lg1.0087=0.00377 lg1.0092=0.00396 lg1.0096=0.00417 lg1.0200=0.00860 lg1.2000=0.07918 lg1.3098=0.11720 lg1.4568=0.16340 lg1.4859=0.17200 lg1.5157=0.18060 解:1.所求人口数x(亿)是等比数列 10,10×1.02,10×(1.02)2,……的第21项,即
答:
B
a
D
cLeabharlann EACb证:引AD垂直BC于D;引BE垂直CA的延长线 于E
设△ABC的面积为S,则 将上式除以得:
六.(本题满10分) 已知正方形ABCD的相对顶点A(0,-1)和C(2,5),求顶点B和D的坐 标
解:设AC中点为M(x,y),则有 又设AC斜率为k,则k=3
因此得BD的斜率为
故有直线BD的方程: 又以M点为圆心,|MA|为半径的圆的方程为 解方程(1)、(2)得B、D的坐标为(4,1)及(-2,3)

1981年普通高等学校招生全国统一考试文科数学试题及答案

1981年普通高等学校招生全国统一考试文科数学试题及答案

1981年普通高等学校招生全国统一考试数学(文科)一.(本题满分6分)设A 表示有理数的集合,B 表示无理数的集合,即设A={有理数},B={无理数},试写出:1.A ∪B, 2.A ∩B. 解:1.A ∪B={实数},2.A ∩B=Φ二.(本题满分8分) 化简:3242222227]2)([][])(3[a b a ba b a b a b a -÷-⨯+-解:原式=2)(38b a b -三.(本题满分6分)在A 、B 、C 、D 四位候选人中,(1)如果选举正、副班长各一人,共有几种选法?写出所有可能的选举结果:(2)如果选举班委三人,共有几种选法?写出所有可能的选举结果解:1.选举种数P 42=12(种)所有可能的选举结果:AB 、AC 、AD 、BC 、BD 、CD 、 BA 、CA 、DA 、CB 、DB 、DC2.选举种数C 43=4(种)所有可能的选举结果: ABC 、ABD 、ACD 、BCD四.(本题满分10分)求函数f(x)=sinx+cosx 在区间(-π,π)上的最大值解:.2)(,)(),(,2,2)(),4sin(2)(值在这个区间上取得最大故的一个周期的定义区间是恰好区间为周期以为振幅以所以x f x f x f x x f ππππ-+= 五.(本题满分10分)写出正弦定理,并对钝角三角形的情况加以证明答:.sin sin sin cCb B a A == 证:引AD 垂直BC 于D;引BE 垂直CA 的延长线于E 设△ABC 的面积为S ,则;sin 21)180sin(2121A bc A bc BE AC S =-︒=⋅=B ac AD BC S sin 2121=⋅=又 C ab AD BC S sin 2121=⋅= C ab B ac A bc S sin 21sin 21sin 21===∴将上式除以,21abc 得:.sin sin sin cCb B a A == 六.(本题满10分)已知正方形ABCD 的相对顶点A (0,-1)和C (2,5),求顶点B 和D 的坐标解:设AC 中点为M (x,y ),则有)2,1(),(.2251,1220M y x M y x =∴=+-==+=又设AC 斜率为k ,则k=3因此得BD 的斜率为31=-k 故有直线BD 的方程:(1))1(312--=-x y 又以M 点为圆心,|MA|为半径的圆的方程为(2) 10)2()1(22=-+-y xB a解方程(1)、(2)得B、D的坐标为(4,1)及(-2,3)(注:用复数法解亦可)七.(本题满分17分)设1980年底我国人口以10亿计算(1)如果我国人口每年比上年平均递增2%,那么到2000年底将达到多少?(2)要使2000年底我国人口不超过12亿,那么每年比上年平均递增率最高是多少?解:1.所求人口数x(亿)是等比数列10,10×1.02,10×(1.02)2,……的第21项,即x=10×(1.02)20,两边取对数,得lgx=1+20lg1.02=1.17200,∴x=14.859(亿)2.设人口每年比上年平均递增率最高是y%,按题意得10×(1+y%)20≤12,(1+y%)20≤1.2.根据对数函数的单调上升性,对上列不等式两边取对数得20lg(1+y%)≤lg1.2.即 lg(1+y%)≤0.00396. ∴1+y%≤1.0092,y%≤0.0092. 答:略八.(本题满分15分)ABCD-A 1B 1C 1D 1为一正四棱柱,过A 、C 、B 1三点作一截面,求证: 截面ACB 1⊥对角面DBB 1D 1证:设AC 、BD 交于O 点作截面ACB 1、对角面BB 1D 1D 以及它们的交线OB 1的图形由于AC 1是正四棱柱,所以ABCD 是正方形,故AC ⊥BD;又BB 1⊥底面ABCD ,故BB 1⊥AC ∴AC ⊥对角面BB 1D 1D已知AC 在截面ACB 1内,故有 截面ACB 1⊥对角面BB 1D 1D九.(本题满分18分)1.设抛物线y 2=4x 截直线y=2x+k 所得的弦长为53,求k 的值2.以本题(1)得到的弦为底边,以x 轴上的点P 为顶点做成三角形当这三角形的面积为9时,求P 的坐标解:设直线与抛物线的交点为P 1(x 1,y 1),P 2(x 2,y 2).解方程组: x k x kx y x y 4)2(2422=+⎩⎨⎧+==得 D 1 C 1A C222121222121212221222121244(1)01,.4()()4(1)412.4,2,()4()4(12).(12)4(12)45,: 4.x k x k k x x k x x x x x x x x k k k P P y x k y y x x k k k k +-+=+=-=∴-=+-=--⋅=-=+-=-=-=-+-==-即故有又因在直线上故即解得2.设x 轴上一点P 的坐标为(a ,0)又点P 到直线P 1P 2的距离为h ,则有=h 依题意得△PP 1P 2的面积关系:.1,5|,42|6,5|42|53219-==∴-=-⋅⋅=a a a a 即。

1981年普通高等学校招生全国统一考试文科数学试题及答案

1981年普通高等学校招生全国统一考试文科数学试题及答案

1981年普通高等学校招生全国统一考试数学(文科)一.(本题满分6分)设A 表示有理数的集合,B 表示无理数的集合,即设A={有理数},B={无理数},试写出:1.A ∪B, 2.A ∩B. 解:1.A ∪B={实数},2.A ∩B=Φ二.(本题满分8分) 化简:3242222227]2)([][])(3[a b a ba b a b a b a解:原式=2)(38b a b三.(本题满分6分)在A 、B 、C 、D 四位候选人中,(1)如果选举正、副班长各一人,共有几种选法?写出所有可能的选举结果:(2)如果选举班委三人,共有几种选法?写出所有可能的选举结果解:1.选举种数P 42=12(种)所有可能的选举结果:AB 、AC 、AD 、BC 、BD 、CD 、 BA 、CA 、DA 、CB 、DB 、DC2.选举种数C 43=4(种)所有可能的选举结果: ABC 、ABD 、ACD 、BCD四.(本题满分10分)求函数f(x)=sinx+cosx 在区间(-π,π)上的最大值解:.2)(,)(),(,2,2)(),4sin(2)(值在这个区间上取得最大故的一个周期的定义区间是恰好区间为周期以为振幅以所以x f x f x f x x f五.(本题满分10分)写出正弦定理,并对钝角三角形的情况加以证明答:.sin sin sin cCb B a A 证:引AD 垂直BC 于D;引BE 垂直CA 的延长线于E 设△ABC 的面积为S ,则;sin 21)180sin(2121A bc A bc BE AC SB ac AD BC S sin 2121又 C ab AD BC S sin 2121 C ab B ac A bc S sin 21sin 21sin 21将上式除以,21abc 得:.sin sin sin c Cb B a A六.(本题满10分)已知正方形ABCD 的相对顶点A (0,-1)和C (2,5),求顶点B 和D 的坐标解:设AC 中点为M (x,y ),则有)2,1(),(.2251,1220M y x M y x又设AC 斜率为k ,则k=3因此得BD 的斜率为31k 故有直线BD 的方程:(1))1(312 x y 又以M 点为圆心,|MA|为半径的圆的方程为B a(2) 10)2()1(22 y x解方程(1)、(2)得B 、D 的坐标为(4,1)及(-2,3)(注:用复数法解亦可)七.(本题满分17分)设1980年底我国人口以10亿计算(1)如果我国人口每年比上年平均递增2%,那么到2000年底将达到多少?(2)要使2000年底我国人口不超过12亿,那么每年比上年平均递增率最高是多少?解:1.所求人口数x (亿)是等比数列10,10×1.02,10×(1.02)2,……的第21项,即x=10×(1.02)20,两边取对数,得lgx=1+20lg1.02=1.17200,∴x=14.859(亿)2.设人口每年比上年平均递增率最高是y%,按题意得10×(1+y%)20≤12, (1+y%)20≤1.2.根据对数函数的单调上升性,对上列不等式两边取对数得20lg(1+y%)≤lg1.2. 即 lg(1+y%)≤0.00396. ∴1+y%≤1.0092,y%≤0.0092. 答:略八.(本题满分15分)ABCD-A 1B 1C 1D 1为一正四棱柱,过A 、C 、B 1三点作一截面,求证: 截面ACB 1⊥对角面DBB 1D 1证:设AC 、BD 交于O 点作截面ACB 1、对角面BB 1D 1D 以及它们的交线OB 1的图形由于AC 1是正四棱柱,所以ABCD 是正方形,故AC ⊥BD;又BB 1⊥底面ABCD ,故BB 1⊥AC ∴AC ⊥对角面BB 1D 1D已知AC 在截面ACB 1内,故有 截面ACB 1⊥对角面BB 1D 1D九.(本题满分18分)1.设抛物线y 2=4x 截直线y=2x+k 所得的弦长为53,求k 的值2.以本题(1)得到的弦为底边,以x 轴上的点P 为顶点做成三角形当这三角形的面积为9时,求P 的坐标D 1 C 1A C解:设直线与抛物线的交点为P 1(x 1,y 1),P 2(x 2,y 2).解方程组: x k x kx y xy 4)2(2422得222121222121212221222121244(1)01,.4()()4(1)412.4,2,()4()4(12).(12)4(12)45,: 4.x k x k k x x k x x x x x x x x k k k P P y x k y y x x k k k k 即故有又因在直线上故即解得2.设x 轴上一点P 的坐标为(a ,0)又点P 到直线P 1P 2的距离为h ,则有h 依题意得△PP 1P 2的面积关系:.1,5|,42|6,5|42|53219 a a a a 即。

1981年试题全国高考数学试题及参考答案

1981年试题全国高考数学试题及参考答案

1981年试题(理工农医类)一、设A表示有理数的集合,B表示无理数的集合,即设A={有理数},B={无理数},试写出:(1)A∪B,(2)A∩B.[Key]一、解:(1)A∪B={实数}.(或A∪B=R,或A∪B=实数集合.)(2)A∩B=.(或A∩B={ },或A∩B=空集.)二、在A、B、C、D四位候选人中,(1)如果选举正、副班长各一人,共有几种选法?写出所有可能的选举结果;(2)如果选举班委三人,共有几种选法?写出所有可能的选举结果.[Key] 二、解:所有可能的选举结果:(把正班长、副班长按次序来写)AB,AC,AD,BC,BD,CD,BA,CA,DA,CB,DB,DC.所有可能的选举结果:ABC,ABD,ACD,BCD.三、下表所列各小题中,指出A是B的充分条件,还是必要条件,还是充要条件,或者都不是.[Key] 三、解: (1)必要条件(2)充分条件(3)充分条件(4)充要条件四、写出余弦定理(只写一个公式即可),并加以证明.[Key] 四、公式:设△ABC的三个内角A,B,C的对边分别为a,b,c,则有余弦定理a2=b2+c2-2bccosA.证法一:平面几何证法.如果∠A是锐角,从C作AB的垂线交AB于D,于是由勾股定理得a2=CD2+DB2=(bsinA)2+(c-bcosA)2=b2+c2-2bccosA.如果∠A是钝角,从C作AB的垂线交BA的延长线于D,于是由勾股定理得a2=CD2+BD2=[bsin(180°-A)]2+[c+bcos(180°-A)]2=b2+c2-2bccosA.如果∠A是直角,cosA=0,∴a2=b2+c2=b2+c2-2bccosA.证法二:解析几何证法以A为原点,射线AB为x轴正向,建立直角坐标系,则得A(0,0),B(c,0),C(bcosA,bsinA).由两点间的距离公式得a2=│BC│2 =(c-bcosA)2+(-bsinA)2=b2+c2-2bccosA.五、解不等式(x为未知数):[Key] 五、解:原行列式可逐步简化如下:故原不等式为x2(x-a-b-c)>0.原不等式的解是x≠0,x>a+b+c.六、用数学归纳法证明等式对一切自然数n都成立.[Key]所以当n=1时等式成立.(ii)假设当n=k时等式成立,即所以当n=k+1时等式也成立.根据(i)和(ii),就证明了对于一切自然数n等式都成立.七、设1980年底我国人口以10亿计算.(1)如果我国人口每年比上年平均递增2%,那么到2000年底将达到多少?(2)要使2000年底我国人口不超过12亿,那么每年比上年平均递增率最高是多少?下列对数值可供选用:lg1.0087=0.00377 lg1.0092=0.00396 lg1.0096=0.00417lg1.0200=0.00860 lg1.2000=0.07918 lg1.3098=0.11720lg1.4568=0.16340 lg1.4859=0.17200 lg1.5157=0.18060[Key] 七、解:(1)所求人口数x(亿)是等比数列10, 10×1.02, 10×(1.02)2,……的第21项,即x=10×(1.02)20,两边取对数,得lgx=1+20lg1.02=1.17200,∴x=14.859(亿).答:到2000年底我国人口将达到14.859亿.(2)设人口每年比上年平均递增率最高是y%,按题意得10×(1+y%)20≤12,即(1+y%)20≤1.2.根据对数函数的单调上升性,对上列不等式两边取对数得20lg(1+y%)≤lg1.2.即lg(1+y%)≤0.00396.∴1+y%≤1.0092,y%≤0.0092.答:每年比上年人口平均递增率最高是0.92%.八、在120°的二面角P-a-Q的两个面P和Q内,分别有点A和点B.已知点A和点B到棱a的距离分别为2和4,且线段AB=10.(1)求直线AB和棱a所成的角;(2)求直线AB和平面Q所成的角.[Key] 八、解:(1)在平面P内作直线AD⊥a于点D;在平面Q内,作直线BE⊥a于点E,从点D 作a的垂线与从点B作a的平行线相交于点C.∴∠ABC等于AB和a所成的角.∠ADC为二面角P-a-Q的平面角,∴∠ADC=120°.又AD=2,BCDE为矩形,∴ CD=BE=4.连结AC,由余弦定理得又因AD⊥a,CD⊥a,所以a垂直于△ACD所在的平面.再由BC∥a得知BC垂直于△ACD所在的平面,∴BC⊥AC.答:直线AB和棱a所成的角等于(2)在△ACD所在的平面内,作AF⊥CD交CD的延长线于F点.因为△ACD所在的平面⊥平面Q,∴AF⊥平面Q.在△ADF中,∠ADF=60°,AD=2,连结BF,于是∠ABF是AB和平面Q所成的角,而△ABF为直角三角形,所以答:直线AB和平面Q所成的角为(1)过点A(2,1)的直线l与所给双曲线交于两点P1及P2,求线段P1P2的中点P的轨迹方程.(2)过点B(1,1)能否作直线m,使m与所给双曲线交于两点Q1及Q2,且点B是线段Q1Q2的中点?这样的直线m如果存在,求出它的方程;如果不存在,说明理由.[Key] 九、解法一:(1)设直线l的方程为y=k(x-2)+1, (i)将(i)式代入双曲线方程,得(2-k2)x2+(4k2-2k)x-4k2+4k-3=0, (ii)到此,若指出所求轨迹的参数方程是这就是所要求的轨迹方程.(2)设所求直线方程为y=k(x-1)+1,代入双曲线方程,整理得(2-k2)x2+(2k2-2k)x-k2+2k-3=0, (iii)由第二式解出k=2,但k=2不满足第一式,所以(Ⅰ)无解. 答:满足题中条件的直线m不存在.解法二:(1)设l的参数方程为其中t是参数,θ为AP的倾斜角.代入所给双曲线方程,整理得: (2cos2θ-sin2θ)t2+2(4cosθ-sinθ)t+5=0.(v)(2)也可用设m的参数方程的方法讨论此问,得出满足条件的直线m不存在的结论.十、附加题:计入总分.已知以AB为直径的半圆有一个内接正方形CDEF,其边长为1(如图).设AC=a,BC=b,作数列u1=a-b,u2=a2-ab+b2,u3=a3-a2b+ab2-b3,……,u k=a k-a k-1b+a k-2b2-……+(-1)k b k;求证:u n=u n-1+u n-2(n≥3).[Key] 十、证法一:通项公式可写为u k=a k-a k-1b+a k-2b2-…+(-1)k b k因a-b=AC-BC=AC-AF=FC=1,ab=AC·BC=CD2=1.于是有证法二:由平面几何知识算出通项公式可写为要证u n=u n-1+u n-2成立,只要证明a n+1-(-1)n+1b n+1=a n-(-1)n b n+a n-1-(-1)n-1b n-1,即a n-1·a2-(-1)n-1b n-1·b2=a n-1·a+(-1)n-1b n-1·b+a n-1-(-1)n-1b n-1, 或或上式确是等式,故证得u n=u n-1+u n-2.。

1981年全国高考数学试题及答案解析

1981年全国高考数学试题及答案解析

1981年全国高考数学试题及答案解析(理工农医类)一、设A表示有理数的集合,B表示无理数的集合,即设A={有理数},B={无理数},试写出:(1)A ∪B,(2)A∩B.[Key]一、解:(1)A∪B={实数}.(或A∪B=R,或A∪B=实数集合.)(2)A∩B=.(或A∩B={ },或A∩B=空集.)二、在A、B、C、D四位候选人中,(1)如果选举正、副班长各一人,共有几种选法?写出所有可能的选举结果;(2)如果选举班委三人,共有几种选法?写出所有可能的选举结果.[Key] 二、解:所有可能的选举结果:(把正班长、副班长按次序来写)AB,AC,AD,BC,BD,CD,BA,CA,DA,CB,DB,DC.所有可能的选举结果:ABC,ABD,ACD,BCD.三、下表所列各小题中,指出A是B的充分条件,还是必要条件,还是充要条件,或者都不是.[Key] 三、解: (1)必要条件(2)充分条件(3)充分条件(4)充要条件四、写出余弦定理(只写一个公式即可),并加以证明.[Key] 四、公式:设△ABC的三个内角A,B,C的对边分别为a,b,c,则有余弦定理a2=b2+c2-2bccosA.证法一:平面几何证法.如果∠A是锐角,从C作AB的垂线交AB于D,于是由勾股定理得a2=CD2+DB2=(bsinA)2+(c-bcosA)2=b2+c2-2bccosA.如果∠A是钝角,从C作AB的垂线交BA的延长线于D,于是由勾股定理得a2=CD2+BD2=[bsin(180°-A)]2+[c+bcos(180°-A)]2=b2+c2-2bccosA.如果∠A是直角,cosA=0,∴a2=b2+c2=b2+c2-2bccosA.证法二:解析几何证法以A为原点,射线AB为x轴正向,建立直角坐标系,则得A(0,0),B(c,0),C(bcosA,bsinA).由两点间的距离公式得a2=│BC│2 =(c-bcosA)2+(-bsinA)2=b2+c2-2bccosA.五、解不等式(x为未知数):[Key] 五、解:原行列式可逐步简化如下:故原不等式为x2(x-a-b-c)>0.原不等式的解是x≠0,x>a+b+c.六、用数学归纳法证明等式对一切自然数n都成立.[Key]所以当n=1时等式成立.(ii)假设当n=k时等式成立,即所以当n=k+1时等式也成立.根据(i)和(ii),就证明了对于一切自然数n等式都成立.七、设1980年底我国人口以10亿计算.(1)如果我国人口每年比上年平均递增2%,那么到2000年底将达到多少?(2)要使2000年底我国人口不超过12亿,那么每年比上年平均递增率最高是多少?下列对数值可供选用:lg1.0087=0.00377 lg1.0092=0.00396 lg1.0096=0.00417lg1.0200=0.00860 lg1.2000=0.07918 lg1.3098=0.11720lg1.4568=0.16340 lg1.4859=0.17200 lg1.5157=0.18060[Key] 七、解:(1)所求人口数x(亿)是等比数列10, 10×1.02, 10×(1.02)2,……的第21项,即x=10×(1.02)20,两边取对数,得lgx=1+20lg1.02=1.17200,∴x=14.859(亿).答:到2000年底我国人口将达到14.859亿.(2)设人口每年比上年平均递增率最高是y%,按题意得10×(1+y%)20≤12,即(1+y%)20≤1.2.根据对数函数的单调上升性,对上列不等式两边取对数得20lg(1+y%)≤lg1.2.即lg(1+y%)≤0.00396.∴1+y%≤1.0092,y%≤0.0092.答:每年比上年人口平均递增率最高是0.92%.八、在120°的二面角P-a-Q的两个面P和Q内,分别有点A和点B.已知点A和点B到棱a的距离分别为2和4,且线段AB=10.(1)求直线AB和棱a所成的角;(2)求直线AB和平面Q所成的角.[Key] 八、解:(1)在平面P内作直线AD⊥a于点D;在平面Q内,作直线BE⊥a于点E,从点D 作a的垂线与从点B作a的平行线相交于点C.∴∠ABC等于AB和a所成的角.∠ADC为二面角P-a-Q的平面角,∴∠ADC=120°.又AD=2,BCDE为矩形,∴ CD=BE=4.连结AC,由余弦定理得又因AD⊥a,CD⊥a,所以a垂直于△ACD所在的平面.再由BC∥a得知BC垂直于△ACD所在的平面,∴BC⊥AC.答:直线AB和棱a所成的角等于(2)在△ACD所在的平面内,作AF⊥CD交CD的延长线于F点.因为△ACD所在的平面⊥平面Q,∴AF⊥平面Q.在△ADF中,∠ADF=60°,AD=2,连结BF,于是∠ABF是AB和平面Q所成的角,而△ABF为直角三角形,所以答:直线AB和平面Q所成的角为(1)过点A(2,1)的直线l与所给双曲线交于两点P1及P2,求线段P1P2的中点P的轨迹方程.(2)过点B(1,1)能否作直线m,使m与所给双曲线交于两点Q1及Q2,且点B是线段Q1Q2的中点?这样的直线m如果存在,求出它的方程;如果不存在,说明理由.[Key] 九、解法一:(1)设直线l的方程为y=k(x-2)+1, (i)将(i)式代入双曲线方程,得(2-k2)x2+(4k2-2k)x-4k2+4k-3=0, (ii)到此,若指出所求轨迹的参数方程是这就是所要求的轨迹方程.(2)设所求直线方程为y=k(x-1)+1,代入双曲线方程,整理得(2-k2)x2+(2k2-2k)x-k2+2k-3=0, (iii)由第二式解出k=2,但k=2不满足第一式,所以(Ⅰ)无解.答:满足题中条件的直线m不存在.解法二:(1)设l的参数方程为其中t是参数,θ为AP的倾斜角.代入所给双曲线方程,整理得: (2cos2θ-sin2θ)t2+2(4cosθ-sinθ)t+5=0.(v)(2)也可用设m的参数方程的方法讨论此问,得出满足条件的直线m不存在的结论.十、附加题:计入总分.已知以AB为直径的半圆有一个内接正方形CDEF,其边长为1(如图).设AC=a,BC=b,作数列u1=a-b,u2=a2-ab+b2,u3=a3-a2b+ab2-b3,……,u k=a k-a k-1b+a k-2b2-……+(-1)k b k;求证:u n=u n-1+u n-2(n≥3).[Key] 十、证法一:通项公式可写为u k=a k-a k-1b+a k-2b2-…+(-1)k b k因a-b=AC-BC=AC-AF=FC=1,ab=AC·BC=CD2=1.于是有证法二:由平面几何知识算出通项公式可写为要证u n=u n-1+u n-2成立,只要证明a n+1-(-1)n+1b n+1=a n-(-1)n b n+a n-1-(-1)n-1b n-1,即a n-1·a2-(-1)n-1b n-1·b2=a n-1·a+(-1)n-1b n-1·b+a n-1-(-1)n-1b n-1, 或或上式确是等式,故证得u n=u n-1+u n-2.。

1981高考数学全国卷及答案理

1981高考数学全国卷及答案理

1981年普通高等学校招生全国统一考试数学(理科)一.(本题满分6分)设A表示有理数的集合,B表示无理数的集合,即设A={有理数},B={无理数},试写出:1.A∪B, 2.A∩B.解:1.A∪B={实数},2.A∩B=Φ二.(本题满分6分)在A、B、C、D四位候选人中,(1)如果选举正、副班长各一人,共有几种选法?写出所有可能的选举结果:(2)如果选举班委三人,共有几种选法?写出所有可能的选举结果解:1.选举种数P42=12(种)所有可能的选举结果:AB、AC、AD、BC、BD、CD、BA、CA、DA、CB、DB、DC2.选举种数C43=4(种)所有可能的选举结果:ABC、ABD、ACD、BCD三.(本题满分8分)下表所列各小题中,指出A是B的充分条件,还是必要条件,还是充要条件,或者都不是解:见上表四.(本题满分8分)写出余弦定理(只写一个公式即可),并加以证明证二:解析法:以A 为原点,射线AB 为x 轴正向,建立直角坐标系,则得A(0,0),B(c,0),C(bcosA,bsinA). 由两点距离公式得:a 2=|BC|2=(c-bcosA)2+(-bsinA)2 =b 2+c 2-2bccosA.五.(本题满分10分) 解不等式(x 为未知数):.0>-----cx bac b x a c b a x解:右式=x 2(x-a-b-c)>0 原不等式解是x ≠0,x>a+b+c六.(本题满分10分) 用数学归纳法证明等式Ynnnx x x x x x 2sin2sin 2cos2cos2cos2cos32=⋅⋅⋅对一切自然数n 都成立证:略七.(本题满分15分)设1980年底我国人口以10亿计算(1)如果我国人口每年比上年平均递增2%,那么到2000年底将达到多少?(2)要使2000年底我国人口不超过12亿,那么每年比上年平均递增率最高是多少?解:1.所求人口数x (亿)是等比数列10,10×1.02,10×(1.02)2,……的第21项,即x=10×(1.02)20,两边取对数,得lgx=1+20lg1.02=1.17200,∴x=14.859(亿)2.设人口每年比上年平均递增率最高是y%,按题意得10×(1+y%)20≤12, (1+y%)20≤1.2.根据对数函数的单调上升性,对上列不等式两边取对数得20lg(1+y%)≤lg1.2. 即 lg(1+y%)≤0.00396. ∴1+y%≤1.0092,y%≤0.0092. 答:略八.(本题满分17分)在1200的二面角P-a-Q 的两个面P 和Q 内,分别有点A 和点B A 和点B 到棱a 的距离分别为2和4,且线段AB=10, 1.求直线AB 和棱a 所成的角; 2.求直线AB 和平面Q 所成的角解:1.在平面P 内作直线AD ⊥a 于点D;在平面Q 内,作直线BE ⊥a 于点E ,从点D 作a 的垂线与从点B 作a 的平行线相交于点C ∴∠ABC 等于AB 和a 所成的角∠ADC 为两面角P-a-Q 的平面角,∴∠ADC=1200又AD=2,BCDE 为矩形,∴CD=BE=4连接AC ,由余弦定理得.72=AC又因AD ⊥a,CD ⊥a,所以a 垂直于△ACD 所在的平面BC ∥a 得知BC 垂直于△ACD 所在的平面,∴BC ⊥AC在直角△ABC 中,,57sin==∠ABAC ABCF D C57arcsin=∠∴ABC2.在△ACD 所在的平面内,作AF ⊥CD 交CD 的延长线于点F 因为△ACD 所在的平面⊥平面Q ,∴AF ⊥平面Q在△ADF 中,∠ADF=600,AD=2,∴AF=360sin2=︒连结BF ,于是∠ABF 是AB 和平面Q 所成的角,而△ABF 为直角三角形,所以.103arcsin.103sin=∠==∠ABF ABAF ABF九.(本题满分17分)给定双曲线.1222=-yx1.过点A (2,1)的直线L 与所给的双曲线交于两点P 1及P 2,求线段P 1P 2的中点P 的轨迹方程2.过点B (1,1)能否作直线m ,使m 与所给双曲线交于两点Q 1及Q 2,且点B 是线段Q 1Q 2的中点?这样的直线m 如果存在,求出它的方程;如果不存在,说明理由解:设直线L 的方程为y=k(x-2)+1, (1) 将(1)式代入双曲线方程,得:(2)0344)24()2(2222=-+--+-k kx k kx k又设P 1(x 1,y 1),P 2(x 2,y 2),),,(y x P 则x 1,x 2必须是(2)的两个实根,所以有).02(22422221≠---=+kkk k x x按题意,.22),(212221--=∴+=kk k x x x x因为),(y x 在直线(1)上,所以.2)12(21)222(1)2(222--=+---=+-=kk kk k k x k y再由y x ,的表达式相除后消去k 而得所求轨迹的普通方程为,17)21(47)1(822=---y x 这就是所求的轨迹方程2.设所求直线方程为y=k(x-1)+1,代入双曲线方程,整理得(3)032)22()2(2222=-+--+-k kx k kx k设21222111,),,(),,(x x y x Q y x Q 则必须是(3)的两个实根,即.2222221--=+k k k x x 如果B 是Q 1Q 2的中点,就有121=+x x ,即221=+x x ,所以有.222222=--kk k 综合起来,k应满足⎪⎩⎪⎨⎧=--≥-+----.2222,0)32)(2(4)22()(222222k k k k k k k k I由第二式解出k=2,但k=2不满足第一式,所以(I)无解故满足题设中条件的直线不存在十.(附加题,本题满分20分,计入总分)已知以AB 为直径的半圆有一个内接正方形CDEF ,其边长为1(如图)设AC=a ,BC=b ,作数列u 1=a-b ,u 2=a 2-ab+b 2, u 3=a 3-a 2b+ab 2-b 3,…………,u k =a k -a k-1b+a k-2b 2-……+(-1)k b k ; 求证:u n =u n-1+u n-2(n ≥3) 证:通项公式可写成u k =a k -a k-1b+a k-2b 2-……+(-1)k b k=ba bak k k +--+++111)1(因a-b=AC-BC=AC-AF=FC=1, ab=AC ·BC=CD 2=11112111n11n 111112(1)(1)aba (1),(1)(1)()a(1)(1)(1)n n n n n n n n nnnnnnnn nnnn n n n n n abu a b aba bb aba b a ba bu a b a b a ba b ab ba b au u ---------+++++----=+--=+--=+----==-++-----=+--+=故得于是有11.n n bu a b+=+A。

1977-1987年全国高考文科数学试题

1977年普通高等学校招生考试文科(北京市)数学试题满分100分,120分钟1.(本小题满分10分)计算:.)971(33211-+-2.(本小题满分10分) 化简:2626-+.3.(本小题满分10分) 解方程.1241112--=+-x x x 4.(本小题满分10分)不查表求sin1050的值. 5.(本小题满分10分)一个正三棱柱形的零件,它的高是10cm ,底面边长是2cm ,求它的体积. 6. (本小题满分10分) 一条直线过点(1,3)-,并且与直线250x y +-=平行,求这条直线的方程.7.(本小题满分10分)证明:等腰三角形两腰上的高相等. 8.(本小题满分10分)为了测湖岸边,A B 两点的距离,选择一点C ,测得50CA =米,30CB =米,120ACB ∠=︒,求AB .9.(本小题满分10分)在2和30中间插入两个正数,这两个正数插入后使前三个数成等比数列,后三个数成等差数列,求插入的两个正数. 10.(本小题满分10分) 已知二次函数243y x x =-+.(1)求出它的图象的顶点坐标和对称轴方程;(2)画出它的图象; (3)求出它的图象与直线3y x =-的交点坐标.cb aACD1978年普通高等学校招生全国统一考试数学(理科考生五,六两题选做一题.文科考生五,六两题选做一题,不要求做第七题.)一、(下列各题每题4分,五个题共20分)1.分解因式:222444x xy y z-+-.2.已知正方形的边长为a,求侧面积等于这个正方形的面积,高等于这个正方形边长的直圆柱体的体积.3.求函数)2lg(xy+=的定义域.4.不查表求cos800cos350+cos100cos550的值.5.化简:12234214(0.1)()a b---⎛⎫⎪⎝⎭二、(本题满分14分)已知方程224kx y+=,其中k为实数.对于不同范围的k值,分别指出方程所代表图形的类型,并画出显示其数量特征的草图.三、(本题满分14分)(如图)AB是半圆的直径,C是半圆上一点,直线MN切半圆于C点,AM⊥MN于M点,BN⊥MN于N点,CD⊥AB于D点,求证:1)CD=CM=CN. 2)CD2=AM·BN.四、(本题满分12分)已知18log9(2),185ba a=≠=.求36log45.五、(本题满分20分)已知△ABC的三内角的大小成等差数列,tan tan2A C=,求角,,A B C的大小,又已知顶点C的对边c上的高等于,,a b c的长(提示:必要时可验证324)31(2+=+).六、(本题满分20分)已知,αβ为锐角,且223sin2sin1αβ+=,3sin22sin20αβ-=.求证22παβ+=.七、(本题满分20分,文科考生不要求作此题)已知函数22(21)1y x m x m=+++-(m R∈).1)m是什么数值时,y的极值是0?2)求证:不论m是什么数值,函数图象(即抛物线)的顶点都在同一条直线1l上.画出1,0,1m=-时抛物线的草图,来检验这个结论.3)平行于1l的直线中,哪些与抛物线相交,哪些不相交?求证:任一条平行于1l而与抛物线相交的直线,被各抛物线截出的线段都相等.1E DC B A F aαN MEDCBA B /P /P lC B AO y x一九七八年副题1.(1)分解因式:222223x xy y x y -++--.(2)求25sin 30tan 0cot cos 46ππ︒-︒+-的值.(3)求函数lg(255)1x y x -=+的定义域.(4)已知直圆锥体的底面半径等于1cm ,母线的长等于2cm ,求它的体积. (5)计算(1111222112511023050095--⎛⎫⎛⎫⎛⎫-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.2.已知两数12,x x 满足下列条件: 1)它们的和是等差数列1,3,…,的第20项;2)它们的积是等比数列2,-6,…,的前4项和.求根为211,1x x 的方程.3.已知:△ABC 的外接圆的切线AD 交BC 的延长线于D 点,求证: CDBDAC AB ACD ABC ==∆∆22的面积的面积.4.(如图)CD 是BC 的延长线,AB BC = CA CD a ===,DM 与AB ,AC 分别交于M 点和N 点,且BDM ∠=α.求证:BM CN ==.5.设432()444f x x px qx =-+22(1)(1)(0)p m x m p ++++≠.求证:①如果()f x 的系数满足244(1)0p q m --+=,那么()f x 恰好是一个二次三项式的平方. ②如果()f x 与22()(2)F x x ax b =++表示同一个多项式,那么244(1)0p q m --+=. 6.已知:sin cos 0a x b x +=. ………① sin 2cos 2A x B x C +=.………………② 其中,a b 不同时为0.求证:22222()()0abA b a B a b C +-++=.7.已知l为过点3()22P --,倾斜角为300的直线,圆C 为中心在坐标原点而半径等于1的圆,Q 表示顶点在原点而焦点在)0,82(的抛物线.设A 为l 和C 在第三象限的交点,B 为C 和Q 在第四象限的交点.1)写出直线l ,圆C 和抛物线Q 的方程,并作草图 2)写出线段PA ,圆弧AB 和抛物线上OB 一段的函数表达式. 3)设,P B ''依次为从,P B 到x 轴的垂足求由圆弧AB 和直线段,,,BB B P P P PA ''''所包含的面积.F 1E D CBA βαP CB A 1979年普通高等学校招生全国统一考试数学(文科) 满分100分,120分钟一、(本题满分9分) 求函数2221y x x =-+的极小值. 二、(本题满分9分)化简()()2224241sin cos 1cos sin θθθθ⎡⎤⎡⎤+-+-⎢⎥⎢⎥⎣⎦⎣⎦. 三、(本题满9分)甲,乙二容器内都盛有酒精.甲有1v 公斤,乙有2v 公斤.甲中纯酒精与水(重量)之比为1m :1n ,乙中纯酒精与水之比为2m :2n .问将二者混合后所得液体中纯酒精与水之比是多少?四、(本题满分9分)叙述并且证明勾股定理. 五、(本题满分14分)外国船只,除特许外,不得进入离我海岸线D 里以内的区域.设A 及B 是我们的观测站,A 及B 间的距离为S 里,海岸线是过A ,B 的直线,一外国船在P 点,在A 站测得∠BAP =α,同时在B 站测得∠ABP =β.问α及β满足什么简单的三角函数值不等式,就应当向此未经特许的外国船发出警告,命令退出我海域?六、(本题满分14分)美国的物阶从1939年的100增加到四十年后1979年的500,如果每年物价增长率相同,问每年增长百分之几?(注意:0.1x <,可用:ln(1)x x +≈,取lg2=0.3, ln10=2.3) 七、(本题满分18分)设CEDF 是一个已知圆的内接矩形,过D 作该圆的切线与CE 的延长线相交于点A ,与CF 的延长线相交于点B .求证:33ACBC AE BF =.八、(本题满分18分)过原点O 作圆222440x y x y +--+=的任意割线交圆于12,P P 两点.求12PP 的中点P 的轨迹.D /A /EDBA C数学(文科) 满分100分,120分钟一、(本题满分6分)化简.2331ii-- 二、(本题满分10分)解方程组235,4239,32 1.x y z x y z x y --=⎧⎪++=⎨⎪+=-⎩三、(本题满10分)用解析法证明直径所对的圆周角是直角. 四、(本题满分12分)某地区1979年的轻工业产值占工业总产值的20%,要使1980年的工业总产值比上一年增长10%,且使1980年的轻工业产值占工业总产值的24%,问1980年轻工业产值应比上一年增长百分之几? 五、(本题满分14分) 设3544ππθ<<,化简sin()4θ+六、(本题满分16分)1.若四边形ABCD 的对角线AC 将四边形分成面积相等的两个三角形,证明直线AC 必平分对角线BD .2.写出(1)的逆命题,这个逆命题是否正确?为什么?2.逆命题:若四边形ABCD 的对角线AC 平分对角线BD ,则AC 必将四边形分成两个面积相等的三角形. 这个逆命题是正确的. 七、(本题满分16分)如图,长方形框架ABCD A B C D ''''-.三边,,AB AD AA '的长分别为6,8,3.6,AE与底面的对角线B D '' 垂直于E .1.证明A E B D '''⊥;2.求AE 的长. 1.把参数方程(t 为参数)sec ,2tan x t y t =⎧⎨=⎩化为直角坐标方程,并画出方程的曲线的略图. 2.当2320π<≤ππ<≤t t 及时,各得到曲线的哪一部分?y=2x+k y 2=4x y x P 2P 1O B 1D 1C 1A BC D OA 1数学(文科) 满分100分,120分钟一、(本题满分6分)设A 表示有理数的集合,B 表示无理数的集合,即设A ={有理数},B ={无理数},试写出:1. A ∪B , 2. A ∩B . 二、(本题满分8分) 化简:3242222227]2)([][])(3[a b a ba b a b a b a -÷-⨯+-.三、(本题满分6分)在,,,A B C D 四位候选人中,(1)如果选举正、副班长各一人,共有几种选法?写出所有可能的选举结果:(2)如果选举班委三人,共有几种选法?写出所有可能的选举结果. 四、(本题满分10分)求函数()s i n c f x x x =+在区间(,)ππ-上的最大值,五、(本题满分10分)写出正弦定理,并对钝角三角形的情况加以证明, 六、(本题满10分)已知正方形ABCD 的相对顶点(0,1),(2,5)A C -,求顶点,B D 的坐标, 七、(本题满分17分)设1980年底我国人口以10亿计算.(1)如果我国人口每年比上年平均递增2%,那么到2000年底将达到多少? (2)要使2000年底我国人口不超过12亿,1111ABCD A BC D -为一正四棱柱,过1,,A C B 三点作一截面,求证: 截面1ACB ⊥对角面11DBB D .九、(本题满分18分)1.设抛物线24y x =截直线2y x k =+所得的弦长为53,求k 的值.2.以本题(1)得到的弦为底边,以x 轴上的点P 为顶点做成三角形当这三角形的面积为9时,求P 的坐标.1982年普通高等学校招生全国统一考试数学(文科)满分100分,120分钟一、(本题满分8分)填表:求20(1)i-+展开式中第15项的数值.三、(本题满分7分)四、(本题满分10分)已知,1,2122=+=-yxyx求22yx-的值.五、(本题满分10分)以墙为一边,用篱笆围成长方形的场地,并用平行于一边的篱笆隔开(如图).已知篱笆的总长为定值L,这块场地的长和宽各为多少时场地的面积最大?最大面积是多少?六、(本题满分12分)已知正方体1111ABCD A BC D-的棱长为a.1.用平面11A BC截去一角后,求剩余部分的体积;2.求1A B和1B C所成的角.七、(本题满分12分)已知定点,A B且2AB a=,如果动点P到点A的距离和到点B的距离之比为2∶1,求点P的轨迹方程,并说明它表示什么曲线.八、(本题满分16分)求︒-︒-︒+︒3512431179ctgtgctgtg的值.九、(本题满分18分)如图,已知△AOB中,,OA b OB a==,(,AOB a bθθ∠=≥是锐角)作1AB OB⊥,11B A∥BA;再作12A B OB⊥,22B A∥BA;1ABB,△112A B B,…的面积为S1,S2,….求无穷数列S1,S2,…的和.h45°20m 60°30°PO BA三、(本题满分10分)1求函数)36(log 522x x y -+=的定义域.2.一个小组共有10名同学,其中4名是女同学,6名是男同学要从小组内选出3名代表,其中至少有1名女同学,求一共有多少种选法. 四、(本题满分12分) 已知复数c o s s i n z i αα=+,求证:3312c o s 3z zα+=.五、(本题满分14分) 在圆心为O ,半径为常数R 的半圆板内画内接矩形(如图).当矩形的长和宽各取多少时,矩形的面积最大?求出这个最大面积. 六、(本题满分14分) 如图,地平面上有一旗杆OP ,为了测得它的高度h ,在地面上选一基线AB ,AB =20米,在A 点处测得P 点的仰角∠OAP =300,在B 点处测得P 点的仰角∠OBP =450,又测得∠AOB =600,求旗杆的高度h (结果可以保留根号). 七、(本题满分16分) 如图,已知一块直角三角形板ABC 的BC边在平面α内,∠ABC =600,∠A C B =300,BC =24cm ,A 点在平面α内的射影为N ,AN =9cm A 为顶点的三棱锥A NBC -的体积(结果可以保留根号).l 2l 1M O yx 八、(本题满分17分)一个等比数列有三项.如果把第二项加上4,那么所得的三项就成为等差数列;如果再把这等差数列的第三项加上32,那么所得的三项又成等比数列,求原来的等比数列. 九、(本题满分17分)如图,已知两条直线1l :2320x y -+=, 2l :3230x y -+=.有一动圆(圆心和半径都在变动)与1l ,2l 都相交,并且1l ,2l 被截在圆内的两条线段的长度分别是定值26,24求圆心M 的轨迹方程,并说出轨迹的名称.AE D C B 1984年普通高等学校招生全国统一考试文科数学试题(这份试题共八道大题,满分120分) 一、(本题满分15分)本题共有5小题,每小题都给出代号为A ,B ,C ,D 的四个把正确结论的代号写在题后的圆括号内每一个小题:选对的得3分;不选,选错或者选出的代号超过一个的(不论是否都写在圆括号内),一律得负1分1.数集{}(21),X n n Z π=+∈与数集{}(41),Y n k Z π=±∈之间的关系是A.X ⊂YB.X ⊃YC.X =YD.X ≠Y2.函数()y f x =与它的反函数1()y f x -=的图象 A.关于y 轴对称B.关于原点对称C.关于直线0x y +=对称D.关于直线0x y -=对称3.复数i 2321-的三角形式是A.)3sin()3cos(π-+π-iB.3sin 3cos π+πiC.3sin 3cos π-πiD.65sin 3cos π+πi4.直线与平面平行的充要条件是这条直线与平面内的A.一条直线不相交B.两条直线不相交C.任意一条直线都不相交D.无数条直线不相交5.方程27910x x -+=的两根可分别作为A.一椭圆和一双曲线的离心率B.两抛物线的离心率C.一椭圆和一抛物线的离心率D.两椭圆的离心率二、(本题满分24分)本题共6小题,每一个小题满分4分只要求直接写出结果)1.已知函数0)32(log 5.0>-x ,求x 的取值范围.2.已知圆柱的侧面展开图是边长为2与4的矩形,求圆柱的体积.3.已知实数m ,x 满足22(21)x i x --0m i +-=,求m 及x 的值.4.求)2)(1()()2()1(lim222--++++++∞→n n n n n n n n 的值. 5.求6)12(xx -的展开式中x 的一次幂的系数.6.要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少种不同的排法(只要求写出式子,不必计算). 三、(本题满分12分)本题只要求画出图形1.画出方程24y x =-的曲线. 2.画出函数2)1(1+=x y 的图象. 四、(本题满分12分)已知等差数列,,a b c 中的三个数都是正数,且公差不为零.数列cb a 1,1,1不可能成等差数列. 五、(本题满分14分) 把α-β-α-422cos sin 2sin 411化成三角函数的积的形式(要求结果最简). 六、(本题满分14分) 如图,经过正三棱柱底面一边AB ,作与底面成300角的平面,已知截面三角形ABD的面积为32cm 2,求截得的三棱锥D ABC -的体积.七、(本题满分14分)某工厂1983年生产某种产品2万件,计划从1984年开始,每年的产量比上一年增长20%.问从哪一年开始,这家工厂生产这种产品的年产量超过12万件(已知lg2=0.3010,lg3=0.4771) . 八、(本题满分15分) 已知两个椭圆的方程分别是221:9450C x y +-=, 222:96270C x y x +--=.1.求这两个椭圆的中心、焦点的坐标. 2.求经过这两个椭圆的交点且与直线2110x y -+=相切的圆的方程.1985年普通高等学校招生全国统一考试 文科数学试题满分120分,120分钟一、(本题满分15分)本题共有5小题,每小题都给出代号为A ,B ,C ,D 的四个结论,其中只有一个结论是正确的,把正确结论的代号写在题后的圆括号内,选对的得3分、不选,选错或者选出的代号超过一个的(不论是否都写在圆括号内),一律得0分1.如果正方体ABCD A B C D ''''-的棱长为a ,那么四面体A ABD '-的体积是 A .3 2a B .33a C .34a D .36a 2.tan 1x =是54x π=的 A.必要条件 B.充分条件C.充分必要条件D.既不充分又不必要的条件3.设集合{}{}0,1,2,4,5,7,1,3,6,8,9X Y ==,{}3,7,8Z =,那么集合()X Y Z 是 A .{{}0,1,2,6,8 B .{}3,7,8C .{}1,3,7,8D .{}1,3,6,7,8 4.在下面给出的函数中,哪一个函数既是区间)2,0(π上的增函数又是以π为周期的偶函数?A.).(2R x x y ∈= B.)(|sin |R x x y ∈= C.)(2cos R x x y ∈= D.)(2sin R x e y x∈=5.用1,2,3,4,5这五个数字,可以组成比20000大,并且百位数不是数字3的没有重复数字的五位数,共有A .96个B .78个C .72个D .64个 二、(本题满分20分)本题共5小题,每一个小题满分4分只要求直接写出结果)1.求函数的定义域142--=x x y .2.求圆锥曲线2236210x y x y -++-=的离心率.3.求函数242y x x =-+-在区间[]0,3上的最大值和最小值. 4.设6656510(31)x a x a x a x a -=++++,求6510a a a a ++++的值. 5.设i 是虚数单位,求()61i +的值. 三、(本题满分14分)设211S =, 2222121S =++,22222312321S =++++,………… 222221221n S n =++++++.用数学归纳法证明:公式3)12(2+=n n S n 对所有的正整数n 都成立. 四、(本题满分13分) 证明三角恒等式42432sin sin 25cos 4x x x ++2cos3cos 2(1cos )x x x -=+. 五、(本题满分16分)1.解方程40.25log (3)log (3)x x -++40.25log (1)log (21)x x =-++.2.解不等式.152+>+x x六、(本题满分15分)设三棱锥V ABC -的三个侧面与底面所成的二面角都是β,它的高是h .求这个所棱锥底面的内切圆半径. 七、(本题满分15分) 已知一个圆C :22412390x y x y ++-+=和一条直线l : 3450x y -+=.求圆C 关于直线l 的对称的圆的方程. 八、(本题满分12分) 设首项为1,公比为(0)q q >的等比数列的前n 项之和为n S 1,1,2,nn n S T n S +==,求lim n n T →∞.1986年普通高等学校招生全国统一考试文科数学试题 满分120分,120分钟一、(本题满分30分)1.在下列各数中,已表示成三角形式的复数是 A.)4sin 4(cos2π-πi B.)4sin 4(cos 2π+πi C.)4cos 4(sin 2π-πi D.)4cos 4(sin 2π-π-i2.函数15+=x y 的反函数是A.)1(log 5+=x yB.15log +=x yC.)1(log 5-=x yD.5log )1(-=x y 3.已知全集{1,2,3,4,5,6,7,8}I =,A ={3,4,5},{1,3,6}B =,那么集合{2,7,8}是A.A ∪BB.A ∩BC.A ∪BD.A ∩B 4.函数x x y 2cos 2sin 2=是A.周期为2π的奇函数B.周期为2π的偶函数C.周期为4π的奇函数D.周期为4π的偶函数5.已知0c <,在下列不等式中成立的一个是 A.c c 2> B.c c )21(> C.c c )21(2< D.c c )21(2>6.给出20个数:87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.它们的和是A.1789B.1799C.1879D.18997.已知某正方体对角线长为a 那么,这个正方体的全面积是A.222aB.22aC.232aD.223a 8.如果方程220x y Dx Ey F ++++=22(40)D E F +->所表示的曲线关于直线y x =对称,那么必有 A.D E = B.D F =C.E F =D.D E F ==9.设甲是乙的充分条件,乙是丙的充要条件,丙是丁的必要条件,那么丁是甲的 A.充分条件B.必要条件C.充要条件D.既不充分也不必要的条件10. 在下列各图中,2y ax bx =+与 (0)y ax b ab =+≠的图象只可能是A. B. C. D.二、(本题满分24分. 1.求方程4)5.0(5252=-+x x 的解.2.已知1,2312+ω+ω--=ω求i的值.3.在xoy 平面上,四边形ABCD 的四个顶点坐标依次为(0,0),(1,0),(2,1),(0,3).求这个四边形绕x 轴旋转一周所得到的几何体的体积.4.求.4572lim 22+++∞→n n n n 5.求523)12(x x -展开式中的常数项.6. 求椭圆14922=+y x 有公共焦点,且离心率为25的双曲线方程. 三、(本题满分10分)如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆周上不同于,A B 的任一点,求证:平面PAC 垂直于平面PBC .四、(本题满分10分)求满足方程|3|z +=的辐角主值最小的复数Z . 五、(本题满分12分) 已知抛物线21y x =+,定点(3,1)A ,B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为那种曲线. 六、(本题满分10分)甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1项,丙、丁两个公司各承包2项,问共有多少种承包方式. 七、(本题满分12分)已知sin sin 3sin 5A A A a ++=, cos cos3cos5A A A b ++=. 求证:(1)当0b ≠时,tan 3aA b=; (2)222(12cos2)A a b +=+. 八、(本题满分12分) 已知数列{}n a ,其中,913,3421==a a 且当3n ≥时,).(31211----=-n n n n a a a a (1)求数列{}n a 的通项公式; (2)求.lim n n a ∞→(-2.0)(2,0)(0,3)yx O 1987年普通高等学校招生全国统一考试 文科数学试题 满分120分,120分钟一、(本题满分24分)本题共有8个小题,每小题都给出代号为A ,B ,C ,D 的四个结论,其中只有一个结论是正确的,把你认为正确结论的代号写在题后的圆括号内选对的得3分. 1.设S ,T 是两个非空集合,且S T , T S ,令X S T =,那么S X = A.X B.T C.φ D.S 2.设椭圆方程为22221x y a b+=(0)a b >>,令222b a c -=,那么它的准线方程为A.c a y 2±=B.cb y 2±=C.c a x 2±=D.cb x 2±= 3.设3484log 4log 8log log 16m ⋅⋅=,那么m 等于A.29B.9C.18D.27 4.复数︒-︒40cos i 40sin 的辐角为 A.400 B.1400 C.2200 D.31005. 二次函数()y f x =的图象如图所示,那么此函数为 A.24y x =- B.24y x =- C.23(4)4y x =- D.23(2)4y x =-6.在区间)0,(-∞上为增函数的是A.)(log 21x y --= B.x xy -=1C.2)1(+-=x y D.21x y += 7.已知平面上一点P 在原坐标系中的坐标为(0,)(0)m m ≠,而在平移后所得到的新坐标系中的坐标为(,0)m ,那么新坐标系的原点O '在原坐标系中的坐标为A.(,)m m -B.(,)m m -C.(,)m mD.(,)m m -- 8.要得到函数)32sin(π-=x y 的图象,只需将函数x y 2sin =的图象 A.向左平行移动3π B.向右平行移动3πC.向左平行移动6πD.向右平行移动6π二、(本题满分28分.)本题共7小题,每一个小题满分4分.只要求写出结果. 1.求函数x 2sin y 2=的周期. 2.已知方程11y 2x 22=λ+-λ+表示双曲线,求λ的范围. 3.若(1)n x +的展开式中,3x 的系数等于x 的系数的7倍,求n . 4.求极限22221232lim n n n n n n →∞⎛⎫++++ ⎪⎝⎭.5.由数字1,2,3,4,5组成没有重复数字且数字1与2不相邻的五位数.求这种五位数的个数.6.求函数)x 3x 21(lo g y 22-+=的定义域. 7.圆锥底面积为3π,母线与底面所的成角为600,求它的体积. 三、(本题满分10分.)发电厂发出的电是三相交流电,它的三根导线上的电流强度分别是时间t 的函数:sin ,sin(120)A B I I t I I t ωω==+︒,sin(240)C I I t ω=+︒. 求A B C I I I ++的值.四、(本题满分12分)在复平面内,已知等边三角形的两个顶点所表示的复数分别为i 2321,2+,求第三个顶点所表示的复数. 五、(本题满分12分) 如图,三棱锥P ABC -中,已知PA BC ⊥,PA BC l ==,,PA BC 的公垂线ED h =.⊆⊆AB C E DP 求证三棱锥P ABC -的体积216V l h =.六、(本题满分12分) 设对所有实数x ,不等式2222224(1)2(1)log 2log log 014a a a x x a a a++++>+恒成立,求a 的取值范围.七、(本题满分12分)设数列12,,,,n a a a 的前n 项的和n S 与n a 的关系是1n n S ka =+, 其中k 是与n 无关的常数,且1k ≠).1. 试写出用n ,k 表示的n a 的表达式;2. 若,1S lim n n =∞→求k 的取值范围.八、(本题满分10分)正方形ABCD 在直角坐标平面内,已知其一条边AB 在直线4y x =+上,,C D 在抛物线2x y =上,求正方形ABCD 的面积.。

高考数学普通高等学校招生全国统一考试81.doc

高考数学普通高等学校招生全国统一考试81第I 卷(选择题 共50分)一、选择题1、设集合{4|41|9,}A x x R =-≥∈,{|0,}3xB x x R x =≥∈+,则A B = A 、(32]-- B 、5(32][0,)2--C 、5(0,3][,)2-+∞ D 、5(0,3)[,)2-+∞2、若复数312a ii++(i 是虚数单位)是纯虚数,则实数a 的值为A 、-2B 、4C 、-6D 、6 3、给出下列三个命题 ① 若1a b ≥>-,则11a ba b≥++② 若正整数m 和n 满足m n ≤2n ≤③ 设()11,P x y 是圆221:9O x y +=上的任意一点,圆2O 以(),Q a b 为圆心,且半径为1。

当()()22111a x b y -+-=时,圆1O 与2O 圆相切其中假命题的个数为A 、0B 、1C 、2D 、3 4、设α、β、γ为平面,为m 、n 、l 直线,则m β⊥的一个充分条件是 A 、,,l m l αβαβ⊥=⊥ B 、,,m αγαγβγ=⊥⊥C 、,,m αγβγα⊥⊥⊥D 、,,n n m αβα⊥⊥⊥5、设双曲线以椭圆221259x y +=长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐进线的斜率为A 、2±B 、43±C 、12±D 、34± 6、从集合{1,2,3,…,11}中的任意取两个元素作为椭圆22221x y m n+=方程中的m 和n ,则能组成落在矩形区域(){},|||11,||9B x y x y =<<内的椭圆的个数是 A 、43 B 、72 C 、86 D 、907、某人射击一次击中的概率是0.6,经过3次射击,此人至少有两次击中目标的概率为 A 、81125 B 、54125 C 、36125 D 、271258、要得到y x =的图象,只需将函数24y x π⎛⎫+ ⎪⎝⎭的图象上所有的点的A 、横坐标缩短到原来的12倍(纵坐标不变),再向左平行移动π个单位长度 B 、横坐标缩短到原来的12倍(纵坐标不变),再向右平行移动π个单位长度C 、横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动π个单位长度D 、横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动π个单位长度 9、设()1f x -是函数()()()112xx f x a a a -=->的反函数,则使()11f x ->成立的x 的取值范围为A 、21(,)2a a -+∞B 、21(,)2a a --∞C 、21(,)2a a a- D 、(,)a +∞10、若函数()()()3log 0,1a f x x ax a a =->≠在区间1(,0)2-内单调递增,则a 的取值范围是A 、1[,1)4B 、3[,1)4C 、9(,)4+∞D 、9(1,)4第Ⅱ卷(非选择题共100分)二.填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上。

【高考试题】1981年全国高考数学试题★答案

【高考试题】1981年全国高考数学试题★答案 (理工农医类)一、设A表示有理数的集合,B表示无理数的集合,即设A={有理数},B={无理数},试写出:(1)A ∪B,(2)A∩B.[Key]一、解:(1)A∪B={实数}.(或A∪B=R,或A∪B=实数集合.)(2)A∩B=.(或A∩B={ },或A∩B=空集.)二、在A、B、C、D四位候选人中,(1)如果选举正、副班长各一人,共有几种选法?写出所有可能的选举结果;(2)如果选举班委三人,共有几种选法?写出所有可能的选举结果.[Key] 二、解:所有可能的选举结果:(把正班长、副班长按次序来写)AB,AC,AD,BC,BD,CD,BA,CA,DA,CB,DB,DC.所有可能的选举结果:ABC,ABD,ACD,BCD.三、下表所列各小题中,指出A是B的充分条件,还是必要条件,还是充要条件,或者都不是.[Key] 三、解: (1)必要条件(2)充分条件(3)充分条件(4)充要条件四、写出余弦定理(只写一个公式即可),并加以证明.[Key] 四、公式:设△ABC的三个内角A,B,C的对边分别为a,b,c,则有余弦定理a2=b2+c2-2bccosA.证法一:平面几何证法.如果∠A是锐角,从C作AB的垂线交AB于D,于是由勾股定理得a2=CD2+DB2=(bsinA)2+(c-bcosA)2=b2+c2-2bccosA.如果∠A是钝角,从C作AB的垂线交BA的延长线于D,于是由勾股定理得a2=CD2+BD2=[bsin(180°-A)]2+[c+bcos(180°-A)]2=b2+c2-2bccosA.如果∠A是直角,cosA=0,∴a2=b2+c2=b2+c2-2bccosA.证法二:解析几何证法以A为原点,射线AB为x轴正向,建立直角坐标系,则得A(0,0),B(c,0),C(bcosA,bsinA).由两点间的距离公式得a2=│BC│2 =(c-bcosA)2+(-bsinA)2=b2+c2-2bccosA.五、解不等式(x为未知数):[Key] 五、解:原行列式可逐步简化如下:故原不等式为x2(x-a-b-c)>0.原不等式的解是x≠0,x>a+b+c.六、用数学归纳法证明等式对一切自然数n都成立.[Key]所以当n=1时等式成立.(ii)假设当n=k时等式成立,即所以当n=k+1时等式也成立.根据(i)和(ii),就证明了对于一切自然数n等式都成立.七、设1980年底我国人口以10亿计算.(1)如果我国人口每年比上年平均递增2%,那么到2000年底将达到多少?(2)要使2000年底我国人口不超过12亿,那么每年比上年平均递增率最高是多少?下列对数值可供选用:lg1.0087=0.00377 lg1.0092=0.00396 lg1.0096=0.00417lg1.0200=0.00860 lg1.2000=0.07918 lg1.3098=0.11720lg1.4568=0.16340 lg1.4859=0.17200 lg1.5157=0.18060[Key] 七、解:(1)所求人口数x(亿)是等比数列10, 10×1.02, 10×(1.02)2,……的第21项,即x=10×(1.02)20,两边取对数,得lgx=1+20lg1.02=1.17200,∴x=14.859(亿).答:到2000年底我国人口将达到14.859亿.(2)设人口每年比上年平均递增率最高是y%,按题意得10×(1+y%)20≤12,即(1+y%)20≤1.2.根据对数函数的单调上升性,对上列不等式两边取对数得20lg(1+y%)≤lg1.2.即lg(1+y%)≤0.00396.∴1+y%≤1.0092,y%≤0.0092.答:每年比上年人口平均递增率最高是0.92%.八、在120°的二面角P-a-Q的两个面P和Q内,分别有点A和点B.已知点A和点B到棱a的距离分别为2和4,且线段AB=10.(1)求直线AB和棱a所成的角;(2)求直线AB和平面Q所成的角.[Key] 八、解:(1)在平面P内作直线AD⊥a于点D;在平面Q内,作直线BE⊥a于点E,从点D 作a的垂线与从点B作a的平行线相交于点C.∴∠ABC等于AB和a所成的角.∠ADC为二面角P-a-Q的平面角,∴∠ADC=120°.又AD=2,BCDE为矩形,∴ CD=BE=4.连结AC,由余弦定理得又因AD⊥a,CD⊥a,所以a垂直于△ACD所在的平面.再由BC∥a得知BC垂直于△ACD所在的平面,∴BC⊥AC.答:直线AB和棱a所成的角等于(2)在△ACD所在的平面内,作AF⊥CD交CD的延长线于F点.因为△ACD所在的平面⊥平面Q,∴AF⊥平面Q.在△ADF中,∠ADF=60°,AD=2,连结BF,于是∠ABF是AB和平面Q所成的角,而△ABF为直角三角形,所以答:直线AB和平面Q所成的角为(1)过点A(2,1)的直线l与所给双曲线交于两点P1及P2,求线段P1P2的中点P的轨迹方程.(2)过点B(1,1)能否作直线m,使m与所给双曲线交于两点Q1及Q2,且点B是线段Q1Q2的中点?这样的直线m如果存在,求出它的方程;如果不存在,说明理由.[Key] 九、解法一:(1)设直线l的方程为y=k(x-2)+1, (i)将(i)式代入双曲线方程,得(2-k2)x2+(4k2-2k)x-4k2+4k-3=0, (ii)。

数学试卷81年普通高等国统一考试.文科数学试题及答案

1981年普通高等学校招生全国统一考试数学(文科)一.(本题满分6分)设A 表示有理数的集合,B 表示无理数的集合,即设A={有理数},B={无理数},试写出:1.A ∪B, 2.A ∩B. 解:1.A ∪B={实数},2.A ∩B=Φ二.(本题满分8分) 化简:3242222227]2)([][])(3[a b a ba b a b a b a -÷-⨯+-解:原式=2)(38b a b -三.(本题满分6分)在A 、B 、C 、D 四位候选人中,(1)如果选举正、副班长各一人,共有几种选法?写出所有可能的选举结果:(2)如果选举班委三人,共有几种选法?写出所有可能的选举结果解:1.选举种数P 42=12(种)所有可能的选举结果:AB 、AC 、AD 、BC 、BD 、CD 、 BA 、CA 、DA 、CB 、DB 、DC2.选举种数C 43=4(种)所有可能的选举结果: ABC 、ABD 、ACD 、BCD四.(本题满分10分)求函数f(x)=sinx+cosx 在区间(-π,π)上的最大值解:.2)(,)(),(,2,2)(),4sin(2)(值在这个区间上取得最大故的一个周期的定义区间是恰好区间为周期以为振幅以所以x f x f x f x x f ππππ-+= 五.(本题满分10分)写出正弦定理,并对钝角三角形的情况加以证明答:.sin sin sin cCb B a A == 证:引AD 垂直BC 于D;引BE 垂直CA 的延长线于E 设△ABC 的面积为S ,则;sin 21)180sin(2121A bc A bc BE AC S =-︒=⋅=B ac AD BC S sin 2121=⋅=又 C ab AD BC S sin 2121=⋅= C ab B ac A bc S sin 21sin 21sin 21===∴将上式除以,21abc 得:.sin sin sin c Cb B a A ==六.(本题满10分)已知正方形ABCD 的相对顶点A (0,-1)和C (2,5),求顶点B 和D 的坐标解:设AC 中点为M (x,y ),则有)2,1(),(.2251,1220M y x M y x =∴=+-==+=又设AC 斜率为k ,则k=3因此得BD 的斜率为31=-k 故有直线BD 的方程:(1))1(312--=-x y 又以M 点为圆心,|MA|为半径的圆的方程为(2) 10)2()1(22=-+-y xB a解方程(1)、(2)得B、D的坐标为(4,1)及(-2,3)(注:用复数法解亦可)七.(本题满分17分)设1980年底我国人口以10亿计算(1)如果我国人口每年比上年平均递增2%,那么到2000年底将达到多少?(2)要使2000年底我国人口不超过12亿,那么每年比上年平均递增率最高是多少?解:1.所求人口数x(亿)是等比数列10,10×1.02,10×(1.02)2,……的第21项,即x=10×(1.02)20,两边取对数,得lgx=1+20lg1.02=1.17200,∴x=14.859(亿)2.设人口每年比上年平均递增率最高是y%,按题意得10×(1+y%)20≤12,(1+y%)20≤1.2.根据对数函数的单调上升性,对上列不等式两边取对数得20lg(1+y%)≤lg1.2.即 lg(1+y%)≤0.00396. ∴1+y%≤1.0092,y%≤0.0092. 答:略八.(本题满分15分)ABCD-A 1B 1C 1D 1为一正四棱柱,过A 、C 、B 1三点作一截面,求证: 截面ACB 1⊥对角面DBB 1D 1证:设AC 、BD 交于O 点作截面ACB 1、对角面BB 1D 1D 以及它们的交线OB 1的图形由于AC 1是正四棱柱,所以ABCD 是正方形,故AC ⊥BD;又BB 1⊥底面ABCD ,故BB 1⊥AC ∴AC ⊥对角面BB 1D 1D已知AC 在截面ACB 1内,故有 截面ACB 1⊥对角面BB 1D 1D九.(本题满分18分)1.设抛物线y 2=4x 截直线y=2x+k 所得的弦长为53,求k 的值2.以本题(1)得到的弦为底边,以x 轴上的点P 为顶点做成三角形当这三角形的面积为9时,求P 的坐标解:设直线与抛物线的交点为P 1(x 1,y 1),P 2(x 2,y 2).解方程组: x k x kx y x y 4)2(2422=+⎩⎨⎧+==得 D 1 C 1A C222121222121212221222121244(1)01,.4()()4(1)412.4,2,()4()4(12).(12)4(12)45,: 4.x k x k k x x k x x x x x x x x k k k P P y x k y y x x k k k k +-+=+=-=∴-=+-=--⋅=-=+-=-=-=-+-==-即故有又因在直线上故即解得2.设x 轴上一点P 的坐标为(a ,0)又点P 到直线P 1P 2的距离为h ,则有=h 依题意得△PP 1P 2的面积关系:古今中外有学问的人,有成就的人,总是十分注意积累的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1981年全国普通高等学校招生统一考试(文史类)
数学
一、设A表示有理数的集合,B表示无理数的集合,即设A={有理数},B={无理数},试写
出:(1)A∪B,(2)A∩B.
二、化简:
三、在A、B、C、D四位候选人中,(1)如果选举正、副班长各一人,共有几种选法?写出所有
可能的选举结果;(2)如果选举班委三人,共有几种选法?写出所有可能的选举结果.
四、求函数f(x)=sinx+cosx在区间[-π,π]上的最大值.
五、写出正弦定理,并对钝角三角形的情况加以证明.
六、已知正方形ABCD的相对顶点A(0,-1)和C(2,5),求顶点B和D的坐标.
七、设1980年底我国人口以10亿计算.
(1)如果我国人口每年比上年平均递增2%,那么到2000年底将达到多少?
(2)要使2000年底我国人口不超过12亿,那么每年比上年平均递增率最高是多少?
下列对数值提供选用:
lg1.0087=0.00377 lg1.0092=0.00396 lg1.0096=0.00417
lg1.0200=0.00860 lg1.2000=0.07918 lg1.3098=0.11720
lg1.4568=0.16340 lg1.4859=0.17200 lg1.5157=0.18060
八、ABCD-A1B1C1D1为一正四棱柱,过A、C、B1三点作一截面,求证:截面ACB1⊥对角面
DBB1D1.
(2)以本题(1)得到的弦为底边,以x轴上的点P为顶点做成三角形.当这三角形的面积为9时,求P的坐标.
1981年全国普通高等学校招生统一考试(文史卷)
数学参考答案
一、解:
(1)A∪B={实数}.(或A∪B=R,或A∪B=实数集合.)
(2)A∩B= .(或A∩B={},或A∩B=空集.)
二、解:
三、解:
所有可能的选举结果:(把正班长、副班长按次序来写)
AB,AC,AD,BC,BD,CD,
BA,CA,DA,CB,DB,DC.
所有可能的选举结果:
ABC,ABD,ACD,BCD.
四、解:
五、正弦定理:
在一个任意三角形中,各边和它所对角的正弦的比相等.
证明:
引AD垂直BC于D;引BE垂直CA的延长线于E.
设△ABC的面积为S,则有
六、解法一:
∴M(x,y)=M(1,2).
又以M点为圆心,│MA│为半径的圆的方程为
B点及D点就是(i)与(ii)的交点,解由(i)、(ii)组成的方程组,得
故得B及D的坐标分别为(4,1)及(-2,3).
解法二:
将坐标平面改作复平面.得向量的复数表示
即B点的坐标为B(4,1).
即D点的坐标为D(-2,3).
七、解:
(1)所求人口数x(亿)是等比数列
10,10×1.02,10×(1.02)2,……
的第21项,
∴x=10×(1.02)20.
取对数
lgx=1+20lg1.02=1.17200,
∴x=14.859(亿).
答:到2000年底我国人口将达到14.859亿.
(2)设人口每年比上年平均递增率最高是y%,则有
10×(1+y%)20≤12,
即(1+y%)20≤1.2.
根据对数函数的单调上升性质,应得
lg(1+y%)20≤lg1.2,
lg(1+y%)≤0.00396.
∴1+y%≤1.0092,
y%≤0.0092.
答:每年比上年平均递增率最高是0.92%.
八、证法一:
设AC、BD交于O点.
作截面ACB1、对角面BB1D1D以及它们交线OB1的图形.
由于AC1是正四棱柱,所以ABCD是正方形,故
AC⊥BD;
又BB1⊥底面ABCD,故
BB1⊥AC.
∴AC⊥对角面BB1D1D.
已知AC在截面ACB1内,故有
截面ACB1⊥对角面BB1D1D.
证法二:
已知ABCD是正方形,它的对角线互相垂直,故
AC⊥BD;
又等腰三角形ACB1的中线OB1与底边AC互相垂直,故
AC⊥OB1.
∴AC⊥对角面BB1D1D.
已知AC在截面ACB1内,故有截面ACB1⊥对角面BB1D1D.
九、解:
(1)设直线与抛物线的交点为P1(x1,y1),P2(x2,y2).解方程组:
得(2x+k)2=4x,
即4x2+4(k-1)x+k2=0.
因x1、x2为此方程的两根,故
所以
(x1-x2)2=(x1+x2)2-4x1x2
又因P1、P2在直线y=2x+k上,故
y1=2x1+k,y2=2x2+k,
y1-y2=2(x1-x2),
(y1-y2)2=4(x1-x2)2=4(1-2k).
即(1-2k)+4(1-2k)=45,
由此解得(经过检验): k=-4.
答:k的值为-4.
(2)设x轴上一点P的坐标为(a,0),又点P到直线P1P2的距离为h,则有
依题意得△PP1P2的面积关系:
即9=│2a-4│.
∴a=5,a=-1.
答:P点的坐标为(5,0),或(-1,0).。

相关文档
最新文档