泰勒公式及其应用2
泰勒公式及其在在计算方法中的应用

泰勒公式在计算方法中的应用摘要:泰勒公式是高等数学中的一个重要公式,同时它是求解高等数学问题的一个重要工具,在此结合例子简要讨论了泰勒公式在计算方法中的误差分析、函数值估测及近似计算、数值积分、常微分方程的数值解法中的应用。
通过本文的论述,可知泰勒公式可以使数值问题的求解简便。
关键词:泰勒公式;误差分析;近似计算;数值积分§1 引言泰勒公式是高等数学中的一个重要公式,利用泰勒公式能将一些初等函数展成幂级数,进行函数值的计算;而且函数的Taylor 公式是函数无穷小的一种精细分析,也是在无穷小邻域将超越运算转化为整幂运算的手段,从而可将无理函数或超越函数的极限转化为有理式的极限而求解,有效简化计算.泰勒公式作为求解高等数学问题的一个重要工具,在计算方法中有重要的应用。
§2泰勒(Taylor)公式定理 1 设函数()f x 在点0x 处的某邻域内具有1+n 阶导数,则对该邻域内异于0x 的任意点x ,在0x 与x 之间至少存在一点ξ,使得:()20000000()()()()()()()()()2!n n n f x f x f x f x f x x x x x x x R x '''=+-+-+-+……+n!(1)其中 (1)10()()()(1)!n n n f R x x x n ξ++=-+ (2)公式(1)称为()f x 按0()x x -的幂展开的带有拉格朗日型余项的n 阶泰勒公式,()n R x 的表达式(2)称为拉格朗日型余项.定理2 若函数()f x 在点0x 存在直至n 阶导数,则有()200000000()()()()()()()()(())2!n n n f x f x f x f x f x x x x x x x o x x '''=+-+-+-+-……+n!(3)公式(3)称为()f x 按0()x x -的幂展开的带有佩亚诺型余项的n 阶泰勒公式,形如0(())n o x x -的余项称为佩亚诺型余项.特别地:在泰勒公式(1)中,如果取00x =,则ξ在0与x 之间,因此可令(01),x ξθθ=<<从而泰勒公式就变成比较简单的形式,即所谓带有拉格朗日型余项的麦克劳林(Maclaurm )公式:()()()112(0)(0)()()(0)(0)2!(1)!nn n n f f f x f x f f x x x xn θ++'''=+++++……+n!(01)θ<<(4)在公式(3)中,如果取00x =,则得带有佩亚诺型余项的麦克劳林公式:()2(0)(0)()(0)(0)()2!n nn f f f x f f x x x o x '''=++++……+n!(5)§3 泰勒公式的求法(1)带佩亚诺余项的泰勒公式的求法只要知道()f x 在x =0x 处n 阶可导,就存在x =0x 带佩亚诺余项的n 阶泰勒公式。
《高等数学》课程中泰勒公式的应用

《高等数学》课程中泰勒公式的应用泰勒公式是高等数学中的一个非常重要的定理,在各个领域都有广泛的应用。
它是用多项式来逼近函数的一种方法。
本文将介绍泰勒公式及其在高等数学课程中的应用。
1. 泰勒公式泰勒公式是由英国数学家泰勒于1715年发现的,它是逼近函数的一种方法。
若函数f(x)在点a处n阶可导,则在点a附近,函数f(x)可以写成一个n次多项式与余项(也称为剩余项)之和,即:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^(n)(a)(x-a)^n/n! +Rn(x)其中,Rn(x)为余项(或剩余项),满足:Rn(x) = f^(n+1)(c)(x-a)^(n+1)/(n+1)!其中,c是a和x之间的某个数。
泰勒公式可以用来求函数在某个点的近似值、函数的渐进线、优化函数等。
下面将介绍一些具体的应用。
2.1 函数的近似值通过泰勒公式,我们可以利用一个多项式来逼近函数,在一定范围内可以用这个多项式来近似表示原函数。
例如,在求解微积分中的极值时,我们需要求出函数的极点,但某些函数的极点难以求解,此时我们可以用泰勒公式来近似求解。
假设f(x)为要求的函数,那么根据泰勒公式我们可以得到f(x)的一个n次多项式,将它代入原函数中,可以求得原函数在某个点处的近似值。
2.2 函数的渐进线函数的渐进线是指在x轴两侧曲线逐渐趋近于一条直线的现象。
对于一些函数,如y=1/x,y=lnx,y=x^α等,它们的渐进线分别是y=0,y=x轴,y=0。
2.3 优化函数在数学中,优化是指在一系列可能的解中寻找最优解。
根据泰勒公式,我们可以用一个多项式来近似表示函数,然后利用它对函数进行优化。
例如,在求解函数最大值时,我们可以将函数用泰勒公式近似表示,然后将其一阶导数置为0,求得此时的x值,即为函数的最大值。
3. 结论泰勒公式在高等数学课程中是一个非常重要的概念,它可以用来逼近函数、求函数的渐进线、优化函数等,对于解决数学问题具有重要的作用。
泰勒公式的证明及应用

摘要:泰勒公式是数学分析中的重要组成部分,是一种非常重要的数学工具。
它集中体现了微积分“逼近法”的精髓,在微积分学及相关领域的各个方面都有重要的应用。
本文通过对泰勒公式的证明方法进行介绍,归纳整理其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用,从而进一步加深对泰勒公式的认识。
关键词:泰勒公式,佩亚诺余项,拉格朗日余项,验证,应用绪论随着近代微积分的发展,许多数学家都致力于相关问题的研究,尤其是泰勒,麦克劳林、费马等人作出了具有代表性的工作。
泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的。
泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式()20000000()()()()()()()(),1!2!!n n n f x f x f x T x f x x x x x x x n '''=+-+-++-称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即()200000000()()()()()()()()(()).2!!n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+- 称为泰勒公式.众所周知,泰勒公式是数学分析中非常重要的内容,是研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,且有很高的精确度,在微积分的各个方面都有重要的应用。
它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。
泰勒公式在极限计算上的应用

泰勒公式在极限计算上的应用泰勒公式是数学中一种重要的近似计算工具,它被广泛应用于各种数学分析问题的解决中。
本文将从泰勒公式的原理、应用场景和具体例子等方面进行阐述,以展示泰勒公式在极限计算中的重要性。
一、泰勒公式的原理泰勒公式是以数学家布鲁诺·德·泰勒命名的,它描述了函数在其中一点附近用一系列多项式逼近的方法。
泰勒公式的一般形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...+f^n(a)(x-a)^n/n!+R_n(x)其中,f(x)是要逼近的函数,a是逼近点,f'(x)、f''(x)等是函数f(x)的各阶导数,R_n(x)是余项。
二、泰勒公式的应用场景1.函数近似计算:在实际问题中,很多函数难以直接求解,但通过泰勒公式可以将其近似为多项式函数进行计算。
这在物理学、工程学以及经济学等领域中得到广泛应用。
2.极限计算:泰勒公式可以通过多项式函数逼近,将复杂的极限计算问题简化为多项式函数的极限计算。
这样可以减少计算的复杂性,并且提高计算的精确度。
三、泰勒公式在极限计算中的应用举例1.计算常函数的其中一点的极限:考虑函数f(x)=a,是一个常数函数。
要计算f(x)在x=a处的极限。
根据泰勒公式,可以将f(x)在a处进行多项式逼近:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+R_n(x)由于f(x)=a,所以f'(x)=0,f''(x)=0,...,f^n(x)=0。
将这些值代入泰勒公式,得到:f(x)=a+R_n(x)当x趋近于a时,余项R_n(x)趋近于0,所以f(x)的极限为a。
2.计算正弦函数的极限:考虑函数f(x) = sin(x)。
泰勒公式其应用

泰勒公式其应用一、一阶泰勒公式1.带有Lagrange 型余项的Taylor 公式定理1(泰勒) 若函数f 在(a,b)上存在直到n 阶的连续导函数,在(a,b)内存在n +1阶导函数,则对任意给定的),(,0b a x x ∈,至少存在一点ξ使得:()(1)1000000()()()()()()()()1!!(1)!n n nn f x f x f f x f x x x x x x x n n ξ++'=+-++-+-+ξ在0,x x 之间。
2.带有皮亚诺余项的泰勒公式定理2若函数f 在(a,b)上存在直到n 阶的连续导函数,则对任意给定的),(,0b a x x ∈()000000()()()()()()0(())1!!n n n f x f x f x f x x x x x x x n '=+-++-+- (1)称为泰勒公式的余项.3、 函数的Maclaurin 公式210()2!!nxn x x e x x n =+++++352112sin (1)0()3!5!(21)!m m m x x x x x x m --=-+++-+-24221cos 1(1)0()2!4!(2)!m m m x x x x x m +=-+++-+ 231ln(1)(1)0()23nn n x x x x x x n -+=-+++-+ 2(1)(1)(1)(1)10()2!!n n x x x x n ααααααα---++=+++++2110()1n n x x x x x=+++++- 二、应用1.把函数)(x f 展开成n 阶Maclaurin 公式例1: 把函数22sin )(x x x f =展开成含16x 项的具Peano 型余项的Maclaurin 公式 .【解】 ) (!7!5!3sin 7753x x x x x x +-+-=,) (!7!5!3sin 141410622x x x x x x +-+-=. ) (!7!5!3sin 1616128422x x x x x x x +-+-=例2: 把函数x x f 2cos )(=展开成含6x 项的具Peano 型余项的Maclaurin 公式 .【解】 ) (!6!4!21cos 6642x x x x x +-+-=, ), (!62!34212cos 66642x x x x x +-+-= ∴ ) (!62!321)2cos 1(21cos 665422x x x x x x +-+-=+=. 2.求)(x f 的n 阶导数例3: )1ln()(2x x x f +=,求)3)(0()(≥n fn .【解】))(022()1ln()(22222--+-++-=+=n n x n x x x x x x x f 又)(0!)0(!1)0()0()()(n nn x x n f x f f x f +++'+= )(02243n n x n x x x +-++-=所以,21!)0()(-=n n f n ,2!)0()(-=n n f n3.利用Taylor 公式求极限 例4 求极限(1) )]1ln([cos lim2202x x x e x x x -+--→ (2)011lim (cot )x x x x →-. 【分析】用泰勒公式求极限把函数展开到x 多少次方呢?对于分子和分母有一个能确定次数的,把另一个展开到相同次数即可,例如:3sin limxx x x -→333))(61(limx x o x x x x +--=→=6161lim 330=→xx x但是对于分子和分母都不能确定次数的,要以具体情况而定。
泰勒展开的公式

泰勒展开的公式摘要:1.泰勒公式的定义2.泰勒公式的用途3.泰勒公式的证明方法4.泰勒公式的实际应用正文:1.泰勒公式的定义泰勒公式,又称泰勒级数,是由英国数学家布鲁克·泰勒在18 世纪初提出的一种数学公式。
泰勒公式可以将一个可微函数在某一点附近的值表示为该点的函数值、导数值和高阶导数值的有限和。
具体来说,设函数f(x) 在点a 附近可微,则泰勒公式可以表示为:f(x) ≈ f(a) + f"(a)(x-a) + f""(a)(x-a)^2 / 2! + f"""(a)(x-a)^3 / 3! +...+ f^n(a)(x-a)^n / n! + Rn(x)其中,f"(a)、f""(a)、f"""(a) 等分别表示函数f(x) 在点a 处的一阶导数、二阶导数、三阶导数等,n! 表示n 的阶乘,Rn(x) 表示泰勒公式的余项。
2.泰勒公式的用途泰勒公式在数学和实际应用中有着广泛的用途,主要包括以下几点:(1)求函数的近似值:通过泰勒公式,可以将复杂的函数在某一点附近近似为多项式,从而简化问题。
(2)证明其他数学定理:泰勒公式可以作为证明其他数学定理的工具,例如证明函数的凹凸性、极限等。
(3)数值计算:在数值计算中,泰勒公式可以用于求解微分方程、插值和逼近等问题。
3.泰勒公式的证明方法泰勒公式的证明方法有多种,其中较为常见的是利用洛必达法则进行证明。
具体证明过程较为繁琐,这里不再赘述。
4.泰勒公式的实际应用泰勒公式在实际应用中有很多例子,下面举一个简单的例子来说明。
例如,我们要求函数f(x) = sin(x) 在点x=π/2 附近的值。
首先,我们知道sin(x) 在x=π/2 处的值为1,其次,我们可以求出sin(x) 在x=π/2 处的一阶导数为cos(π/2)=0,二阶导数为-sin(π/2)=-1,以此类推。
初数数学公式解析泰勒公式
初数数学公式解析泰勒公式泰勒公式是数学中常用的公式之一,它可以将一个函数在某一点附近展开成一个无穷级数,从而更加方便地进行计算和近似。
在初等数学中,我们经常会遇到需要使用泰勒公式的情况,下面我们就来详细解析泰勒公式及其应用。
一、泰勒公式的形式泰勒公式是根据函数在某点附近的函数值和其各阶导数的值来进行展开的。
对于一个光滑的函数f(x),在某一点a处,我们可以将其泰勒展开为以下形式:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...其中,f'(a)表示f(x)在x=a处的一阶导数,f''(a)表示f(x)在x=a处的二阶导数,以此类推。
二、泰勒公式的应用1. 近似计算通过泰勒公式展开,我们可以将一个复杂的函数转化为一个无穷级数,从而实现对该函数的近似计算。
在实际应用中,我们通常只取前几项,即保留到某个阶数的导数,从而得到一个近似值。
这种方法在数值计算和工程问题中具有重要的意义。
2. 函数图像的分析通过泰勒公式展开,我们可以更好地理解函数在某一点附近的性质。
例如,通过计算函数的导数可以确定函数在某点的增减性、凹凸性以及极值点的位置等。
3. 解析函数的求导对于一些复杂的函数,直接对其进行求导可能比较困难。
但通过使用泰勒公式展开后,我们可以较为方便地求出函数的导数。
这对于解析函数的微积分问题有很大的帮助。
三、泰勒公式的局限性需要注意的是,泰勒公式只能在某一点的附近作近似,其近似程度与展开阶数相关。
当阶数较低时,近似效果可能并不理想。
另外,对于非光滑函数或者在某一点处不光滑的函数,泰勒公式无法应用。
四、例题分析我们通过一个例题来进一步说明泰勒公式的应用。
例题:计算函数f(x) = sin(x)在x=0处的泰勒展开式,保留到二阶导数。
解:首先,我们计算出函数f(x) = sin(x)的一、二阶导数:f'(x) = cos(x)f''(x) = -sin(x)然后,根据泰勒公式的形式,展开式为:f(x) ≈ f(0) + f'(0)(x-0) + f''(0)(x-0)^2/2!化简后得到:f(x) ≈ 0 + 1(x) + (-sin(0))(x^2)/2即:f(x) ≈ x - (1/2)x^2这样,我们就得到了f(x) = sin(x)在x=0处的二阶泰勒展开式。
泰勒展开与泰勒公式的原理及应用
泰勒展开与泰勒公式的原理及应用在数学领域中,泰勒展开和泰勒公式是非常重要的概念。
它们不仅仅是数学的基本理论,还有广泛的应用,涉及到数学、物理、工程等各个领域。
本文将对泰勒展开和泰勒公式的原理和应用进行详细的讲解。
一、泰勒展开的原理泰勒展开是将一个函数在某点进行展开,使得该函数在该点处的函数值等于其展开式中前几项的和。
具体来说,泰勒展开的原理是利用函数的导数来逼近函数的值。
泰勒展开公式如下:$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+…$其中,$f(x)$表示要展开的函数,$a$表示展开点,$f'(a)$表示$f(x)$在$a$点的一阶导数,$f''(a)$表示二阶导数,$f'''(a)$表示三阶导数,$…$表示高阶导数。
展开式总共有无限项,即展开式中包含了函数的所有导数。
如果只取展开式中的前$n$项,则可以得到如下式子:$f(x)=\sum\limits_{k=0}^{n}\frac{f^{(k)}(a)}{k!}(x-a)^k$这就是泰勒展开的$n$阶近似公式。
二、泰勒公式的原理泰勒公式是将一个函数在某个区间内进行展开,使得该函数在这个区间内的函数值可以用展开式中的前几项来近似表示。
具体来说,泰勒公式的原理是通过多项式逼近原函数。
泰勒公式与泰勒展开的区别在于,泰勒公式是在一个区间内进行展开,而泰勒展开一般是在某一点进行展开。
泰勒公式可以表示为:$f(x)=\sum\limits_{k=0}^{n}\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k+R_n(x)$其中,$f(x)$表示要展开的函数,$n$表示要展开的级数,$x_0$表示展开的中心点,$R_n(x)$表示余项,表示展开式与原函数之间的误差。
泰勒公式的应用与技巧
泰勒公式的应用与技巧
泰勒公式又称为差分量化展开式,它具有极强的多项式和多元函数近似扩展能力,能够精确地表示一个函数曲线的关系,在工程领域应用广泛。
以下是泰勒公式的应用与技巧:
1. 应用
(1) 在离散系统分析中,泰勒公式可以提供系统动态响应曲线以及各自对输入信号的响应,从而降低系统设计的复杂性。
(2) 在数值分析中,泰勒公式可以用来估算函数值及其发散性,进而可以估算函数的零点及其根的估计精度。
(3) 在经济学领域,泰勒公式用来分析一系列宏观经济指标的变化对经济效果的影响,以此决定政策制定的深度和维度。
(4) 在电子工程领域,泰勒公式可以用来表征电路作用功能,求解电路实现特定功能的最优解,从而提高电路设计的效率。
2. 技巧
(1) 避免系数繁多带来的计算量大,可以将展开项作简化处理,以消除多余系数,且减少复杂度。
(2) 对于数据情况复杂的情况,可以采用交叉验证的方法,令数据集分割成多组,轮流用作训练集和测试集进行模型训练和验证,从而可以更准确地识别数据趋势。
(3) 充分利用光滑点和区间插值减少计算量,使用雅可比条件数字求
导法应对多变量多元函数及其导数求解。
(4) 针对大量样本,可以采用分类、线性回归、判别分析等机器学习模型,来更精确地分析泰勒公式的表达结果。
泰勒公式及其应用论文2)
毕业论文题目泰勒公式及其应用学生姓名学号所在院(系) 数学系专业班级数学与应用数学专业2006级4班指导教师完成地点2010年 5月 30日泰勒公式及其应用[摘 要] 文章简要介绍了泰勒公式及其几个常见函数的展开式,针对泰勒公式的应用讨论了九个问题,即应用泰勒公式求极限,证明不等式,判断级数的敛散性,证明根的唯一存在性,判断函数的极值,求初等函数的幂级数展开式,进行近似计算,求高阶导数在某些点的数值,求行列式的值.[关键词] 泰勒公式;极限;不等式;敛散性;根的唯一存在性;极值;展开式;近似计算;行列式.1 引言泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明.2 预备知识定义2.1]1[ 若函数f 在0x 存在n 阶导数,则有'''200000()()()()()()1!2!f x f x f x f x x x x x =+-+-+()000()()(())!n n n f x x x o x x n +-+- (1)这里))((0n x x o -为佩亚诺型余项,称(1)f 在点0x 的泰勒公式.当0x =0时,(1)式变成)(!)0(!2)0(!1)0()0()()(2'''n nn x o x n f x f x f f x f +++++= ,称此式为(带有佩亚诺余项的)麦克劳林公式.定义2.2]2[ 若函数 f 在0x 某邻域内为存在直至 1+n 阶的连续导数,则''()'20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x R x n =+-+-++-+ , (2)这里()n R x 为拉格朗日余项(1)10()()()(1)!n n n f R x x x n ξ++=++,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒公式.当0x =0时,(2)式变成''()'2(0)(0)()(0)(0)...()2!!n nn f f f x f f x x x R x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:12)!1(!!21+++++++=n xn xx n e n x x x e θ .)()!12()1(!5!3sin 221253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)!nnn x x x x x o x n =-+-++-+.)(1)1(32)1ln(1132++++-+-+-=+n n n x o n x x x x x . )(1112n n x o x x x x+++++=- +-++=+2!2)1(1)1(x m m mx x m . 定理 2.1]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于)(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得00)(μ=x f .3 泰勒公式的应用3.1 利用泰勒公式求极限为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限,就能简捷地求出.例3.1 求极限2240cos limx x x e x -→-.分析:此为0型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和22xe -分别用泰勒展开式代替,则可简化此比式.解 由244cos 1()2!4!x x x o x =-++,222242()21()22x x x e o x --=-++得 2444422111cos ()()()4!22!12x x ex o x x O x --=-+=-+⋅, 于是244244001()cos 112limlim 12x x x x O x x e x x -→→-+-==-. 3.2 利用泰勒公式证明不等式当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.例3.2 当0x ≥时,证明31sin 6x x x ≥-. 证明 取31()sin 6f x x x x =-+,00x =,则 '''''''''(0)0,(0)0,(0)0,()1cos ,(0)0.f f f f x x f ====-≥带入泰勒公式,其中n =3,得31cos ()0003!x f x x θ-=+++,其中10<<θ. 故当0x ≥时,31sin 6x x x ≥-. 3.3 利用泰勒公式判断级数的敛散性当级数的通项表达式是由不同类型函数式构成的繁难形式时,往往利用泰勒公式将级数通项简化成统一形式,以便利用判敛准则.例3.3讨论级数1n ∞=∑的敛散性.分析:直接根据通项去判断该级数是正向级数还是非正向级数比较困难,因而也就无法恰当选择判敛方法,注意到11lnln(1)n n n +=+,若将其泰勒展开为1n 的幂的形式,相呼应,会使判敛容易进行.解 因为2341111111lnln(1)234n n n nn n nn+=+=-+-+<, 所以<所以0n u =故该级数是正向级数. 又因为3212n =>==-, 所以332211)22n u n n =<-=.因为31212n n∞=∑收敛,所以由正向级数比较判别法知原级数收敛.3.4 利用泰勒公式证明根的唯一存在性例3.4 设f(x)在[,)a +∞上二阶可导,且'()0,()0f a f a ><,对''(,),0x a f ∈+∞≤, 证明: ()0f x =在(,)a +∞内存在唯一实根.分析:这里f(x)是抽象函数,直接讨论()0f x =的根有困难,由题设f(x)在[,)a +∞上二阶可导且'()0,()0f a f a ><,可考虑将f(x)在a 点展开一阶泰勒公式,然后设法应用戒指定理证明.证明 因为''()0f x ≤,所以'()f x 单调减少,又'()0f a <,因此x>a 时,''()()0f x f a <<,故f(x)在(,)a +∞上严格单调减少.在a 点展开一阶泰勒公式有''2()()()()()()()2f f x f a f a x a x a a x ξξ=+-+-<<由题设''()0,()0f a f ξ<≤,于是有lim x →∞=-∞,从而必存在b a >,使得()0f b <,又因为()0f a >,在[,]a b 上应用连续函数的介值定理,存在0(,)x a b ∈,使0()0f x =,由f(x)的严格单调性知0x 唯一,因此方程()0f x =在(,)a +∞内存在唯一实根.3.5 利用泰勒公式判断函数的极值例3.5]4[ (极值的第二充分条件)设f 在0x 的某邻域);(0δx U 内一阶可导,在0x x =处二阶可导,且0)(0'=x f ,0)(0''≠x f .(i)若0)(0''<x f ,则f 在0x 取得极大值.(ii) 若0)(0''>x f ,则f 在0x 取得极小值.证明 由条件,可得f 在0x 处的二阶泰勒公式))(()(!2)()(!1)()()(20200''00'0x x o x x x f x x x f x f x f -+-+-+=.由于0)(0'=x f ,因此200''0))](1(2)([)()(x x o x f x f x f -+=-.(*)又因0)(0''≠x f ,故存在正数δδ≤',当);('0δx U x ∈时,)(210''x f 与)1()(210''o x f +同号.所以,当0)(0''<x f 时,(*)式取负值,从而对任意);('0δx U x ∈有0)()(0<-x f x f ,即f 在0x 取得极大值.同样对0)(0''>x f ,可得f 在0x 取得极小值.3.6 利用泰勒公式求初等函数的幂级数展开式利用基本初等函数的幂级数展开式,通过加减乘等运算进而可以求得一些较复杂的初等函数的幂级数展开式.例3.6 求211x x ++的幂级数展开式.解 利用泰勒公式231111xx x x -==++-369346791034679100(1)(1)1)2(1)[sin ]3n n x x x x x x x x x x x x x x x x n x π∞=-++++=-+-+-+-+=-+-++=3.7 利用泰勒公式进行近似计算利用泰勒公式可以得到函数的近似计算式和一些数值的近似计算,利用)(x f 麦克劳林展开得到函数的近似计算式为'''2(0)(0)()(0)(0)2!!n n f f f x f f x x x n ≈++++,其误差是余项()n R x .例3.7 计算Ln1.2的值,使误差不超过0.0001解 先写出f(x)=Ln(1+x)带拉格朗日型余项的麦克劳林展开式:231(1)(1)()23nn n x x x Ln x x R x n-+=-+++-+, 其中11(1)()(1)(1)n n n n x R x n ξ++-=++(ξ在0与x 之间). 令2.0=x ,要使111(0.2)|()|(0.2)0.0001(00.2)(1)(1)n n n n R x n ξξ+++=<≤<<++ 则取5=n 即可. 因此5ln1.20.20.020.002670.000400.000060.1823||0.0001R ≈-+-+=<其误差当要求的算式不能得出它的准确值时,即只能求出其近似值,这时泰勒公式是解决这种问题的最好方法.例3.8 求21x e dx -⎰的近似值,精确到510-.解 因为21x e dx -⎰中的被积函数是不可积的(即不能用初级函数表达),现用泰勒公式的方法求21x e dx -⎰的近似值.在xe 的展开式中以2x -代替 x 得24221(1)2!!nx nx x ex n -=-+++-+逐项积分,得242111112000001(1)2!111111(1)32!52n 111111111310422161329936075600n x nn x x e dx dx x dx dx dx n n -=-+-+-+=-+-+-++=-+-+-+-+⎰⎰⎰⎰⎰!!上式右端为一个收敛的交错级数,由其余项()n R x 的估计式知2711||0.0000157560011111110.7468363104221613299360x R e dx -≤<≈-+-+-+≈⎰所以3.8 利用泰勒公式求高阶导数在某些点的数值如果f(x)泰勒公式已知,其通项中的加项n x x )(0-的系数正是)(!10)(x f n n ,从而可反过来求高阶导数数值,而不必再依次求导.例3.9 求函数x e x x f 2)(=在x=1处的高阶导数)2()100()1(f .解 设x=u+1,则e e u e u u g xf u u ⋅+=+==+2)1(2)1()1()()(,)0()1()()(n ng f =,u e 在u=0的泰勒公式为)(!100!99!9811001009998u o u u u u e u++++++= ,从而))(!100!99!981)(12()(10010099982u o u u u u u u e u g +++++++= ,而g(u)中的泰勒展开式中含100u的项应为100100!100)0(u g ,从g(u)的展开式知100u 的项为100)!1001!992!981(u e ++,因此 10101)0(),!1001!992!981(!100)0(100100⋅=++=e g e g , e g f 10101)0()1(100100==.3.9 利用泰勒公式求行列式的值若一个行列式可看做x 的函数(一般是x 的n 次多项式),记作f(x),按泰勒公式在某处0x 展开,用这一方法可求得一些行列式的值. 例 3.10 求n 阶行列式D=xz z z y x z zyy x zy y y x (1) 解 记D x f n =)(,按泰勒公式在z 处展开:n n n n n n z x n z x f z x z f z x z f z f x f )(!)()(!2)()(!1)()()()(2'''--+-+-+= , (2)易知1)(000000000000--=-----=k k y z z y z y y z y y z y y z y y z D 阶(3)由(3)得,时都成立n k y z z z f k k ,,2,1,)()(1 =-=-. 根据行列式求导的规则,有).)((1)(),(2)(,),()1()(),()(1'11'22'11'x x f x f x f x f x f n x f x nf x f n n n n ===-==---因为于是)(x f n 在z x =处的各阶导数为21'')()(|)()(--=-===n n z x n n y z nz z nf z f z f , 3'1'''')()1()(|)()(--=--===n n z x n n y z z n n z nf z f z f ,… … … …z n n z f n n f z f z x n n n n 2)1()(2)1(|)(111 -=-===--12)1()()(⋅-= n n z f n n把以上各导数代入(2)式中,有nn n n n n z x n n n z x z n n n z x y z z n n z x y z z n y z z x f )(!12)1()()!1()21()()(!2)1()()(!1)()(12321-⋅-+---++-⋅--+--+-=----若y z =,有])1([)()(1y n x y x x f n n -+-=-,可编辑修改精品文档 若y z ≠,有yz z x y y x z x f nn n ----=)()()(. 4 总结本文主要介绍了泰勒公式以及它的九个应用,使我们对泰勒公式有了更深一层的理解,怎样应用泰勒公式解题有了更深一层的认识.,只要在解题训练中注意分析,研究题设条件及其形式特点,并把握上述处理规则,就能比较好地掌握利用泰勒公式解题的技巧.参考文献[1]陈传章 金福林:《数学分析》(下)北京:高等教育出版社,1986.[2]张自兰 崔福荫:《高等数学证题方法》陕西:陕西科学出版社,1985.[3]王向东:《数学分析的概念和方法》上海:上海科学技术出版社,1989.[4]同济大学数学教研室主编.高等数学【M 】.北京:人民教育出版社,1999.[5]刘玉琏 傅沛仁:数学分析讲义【M 】.北京:人民教育出版社,2000.[6]华东师范大学数学系,数学分析(第二版)【M 】高等教育出版社,1911.[7]张立民Visual Foxpro5.x 中文版应用技术手册【M 】大连:大连理工大学出版社,1997[8]中文版Visual Foxpro3.0编程指南【M 】西安:西安交通大学出版社,1997[9]Visual Basic 程序设计【M 】中央广播电视大学出版社,2001Some Equivalent Definitions and Applications of Convex Function[Abstract]This paper briefly introduces the Taylor formula and the expansion of several commonfunctions, for the Taylor formula discussed nine issues that limit application of Taylor'sformula of seeking to prove that inequality, determine convergence and divergence of series,that the root The only existence, determine the function of the extreme value, find the primaryfunction of the power series expansion, to approximate calculation, find the higher derivativevalue at some point, find the value of determinant.[Key words]Taylor formula; limit; inequality; Convergence; root of the only existence; extreme;expansion; approximate calculation; determinant.. .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰勒公式及其应用
基础教育部 (数学)安丽微
摘要? 本文首先简要介绍了泰勒公式及其几个常见函数的展开式,然后阐述了泰勒公式在求行列式的值,
求近似计算,证明不等式,求函数极限等方面的应用.
关键词? 泰勒公式;麦克劳林公式;拉格朗日
Taylor Formula and it`s Application
An Li-wei
Abstract? This text concisely gives Taylor formula and it`s the expansion of commonly seen function, then introduces the application in evaluating the value of determinant, evaluating the approximate value, proving inequality, seeking the limit of function and so on.
Key word? Taylor formula; Maclaurin formula; Lagrange1 泰勒公式及其常见展开式
若函数在存在阶导数,则,有
?(1)
其中,是比的高阶无穷小.(1)式称为函数在(展开)的泰勒公式. 当时时, (函数在存在阶导数),(1)式变成
称为麦克劳林公式.
如果函数在点的某邻域内具有阶导数,则对此邻域内的点,有
(在与之间)
称为具有拉格朗日型余项的泰勒公式.
常见函数的展开式
(2)
(3)
(4)
(5)
2 泰勒公式的应用
2.1 利用泰勒公式判别级数敛散性
定理1设有两个正级数
与?且
(1)若,则级数与有相同的敛散性.
(2)若,且级数收敛,则级数也收敛.
(3)若,且级数发散,则级数也发散.
现在的问题是如何寻找,同时求出极值,且希望,利用泰勒公式可以解决.例1 讨
论级数的敛散性.
解? 由泰勒展开式(3)得
=
=
选取比较级数=
因为=
而级数=收敛,所以由级数敛散性判别定理1知
级数收敛.
定理2 设,函数在可积,且,有极限
?? ()
1.若,,则无穷积分收敛.
2.若,,则无穷积分发散.
例2讨论无穷积分的敛散性.
解? 由泰勒展开式(2)得
=
=1+
=
取=,因为=,而,
所以由无穷积分敛散性判别定理2得知
收敛.
2.2 利用泰勒公式求行列式的值
若一个行列式可看做的函数(一般是的次多项式),记作,按泰勒公式在某处展开,用这一方法可求得一些行列式的值.
例3求阶行列式
解? 记,按泰勒公式在处展开:
(7易知
(8)
由(8)得,,时都成立.
根据行列式求导的规则,有
,? ?,…,
,?? (因为).
于是在处的各阶导数为
,
,
…? …? …? …
把以上各导数代入(7)式中,有
.
若有;
若有.
???
2.3 利用泰勒公式求近似值
??? 当要求的算式不能得出它的准确值时,即只能求出近似值,这时泰勒公式是解决这种问题的好方法. 例4计算准确到0.0001.
解?? 利用的麦克劳林展开式得
这是交错级数,它的余和小于余和的第一项的绝对值,现由于
,故取前七项即可.经计算可得?.
?? ?
2.4 利用泰勒公式证明不等式
当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函
数并用泰勒公式代替,往往使证明方便简捷.
例5 当时,证明.
证明取,,则
?,?,? ?,? ,.
代入泰勒公式,其中,得.
故当时得,
把以上各导数代入(7)式中,有
.
若有;
若有.
???
2.3 利用泰勒公式求近似值
??? 当要求的算式不能得出它的准确值时,即只能求出近似值,这时泰勒公式是解决这种问题的好方法. 例4计算准确到0.0001.
解?? 利用的麦克劳林展开式得
这是交错级数,它的余和小于余和的第一项的绝对值,现由于
,故取前七项即可.经计算可得?.
?? ?
2.4 利用泰勒公式证明不等式
当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函
数并用泰勒公式代替,往往使证明方便简捷.
例5 当时,证明.
证明取,,则
?,?,? ?,? ,. 代入泰勒公式,其中,得.
故当时得,
2.6 利用泰勒公式求初等函数的幂级数展开式
例10 求的幂级数展开式
解?? =
=
?
衷心感谢彭维玲老师的指导!
参考文献:
[1] 林距华. 浅谈泰勒公式的应用(J)廊坊:廊坊师专学报,1997,3.
[2] 齐成辉. 泰勒公式的应用(J).陕西:陕西师范大学学报,2003,31.
[3] 黄宗文,简灵峰.泰勒公式在讨论级数敛散性中的应用(J).广西:玉林师范学院学报, 2001,22(3).
[4] 刘玉琏,傅沛仁.数学分析讲义(M北京:高等教育出版社, 1992.
[5] 张禾瑞,郝邴新.高等代数(M).北京:高等教育出版社, 1990.。