2015-2016学年吉林省长春市农安县七年级上期末数学试卷

合集下载

吉林省长春市七年级上学期期末数学试卷

吉林省长春市七年级上学期期末数学试卷

吉林省长春市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2016·贺州) 从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是()A .B .C .D .2. (2分)(2018·东莞模拟) 某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是()A . 100gB . 150gC . 300gD . 400g3. (2分) (2018七上·汉滨期中) 两数在数轴上位置如图所示,将用“<”连接,其中正确的是()A . <<<B . <<<C . <<<D . <<<4. (2分)已知方程x2k﹣1+k=0是关于x的一元一次方程,则方程的解等于()A . -1B . 1C .D . -5. (2分)(2019·莲湖模拟) 下列运算正确的是()A . a2+a3=a5B . (2a3)2=2a6C . a3•a4=a12D . a5÷a3=a26. (2分)下列四个图形中,是三棱柱的平面展开图的是()A .B .C .D .7. (2分)(2017·河南模拟) 2016年10月17日神舟十一号飞船在酒泉发射中心成功发射,神舟十一号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A . 2.8×102B . 2.8×103C . 2.8×104D . 2.8×1058. (2分)下列命题中,假命题的是()A . 经过两点有且只有一条直线B . 平行四边形的对角线相等C . 两腰相等的梯形叫做等腰梯形D . 圆的切线垂直于经过切点的半径9. (2分)甲乙两人沿同一路线骑车(匀速)从A到B,甲需要30分钟,乙需要40分钟,如果乙比甲早出发6分钟,则甲追上乙以后,乙再经过()分钟到达BA . 25B . 20C . 16D . 1010. (2分) (2017七上·腾冲期末) 下列图形中,∠1和∠2互为余角的是()A .B .C .D .二、填空题 (共8题;共9分)11. (1分)已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=________12. (1分)计算:=________13. (1分)我国第六次人口普查公布全国人口数约为137054万,将这个数精确到亿位,结果为________14. (2分)计算:12°24′=________°;56°33′+23°27′=________°.15. (1分)若一个三角形有两边长为5和2,第三边长为奇数,则此三角形的周长为________.16. (1分)(2012·绵阳) 如图,AB∥CD,AD与BC交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF=________度.17. (1分) (2016七上·莆田期中) 一艘轮船在静水中的速度是50千米/时,水流速度是a千米/时,则该轮船在逆水中航行3小时的路程为________千米.18. (1分)(2017·徐州模拟) 在平面直角坐标系中,点A坐标为(1,0),线段OA绕原点O沿逆时针方向旋转45°,并且每次的长度增加一倍,例如:OA1=2OA,∠A1OA=45°.按照这种规律变换下去,点A2017的纵坐标为________.三、解答题 (共8题;共90分)19. (20分) (2018七上·龙港期中) 计算下列各题:(1)(2)(3)(4)20. (5分) (2017七上·路北期中) 若多项式4xn+2﹣5x2﹣n+6是关于x的三次多项式,求代数式n2﹣2n+3的值.21. (15分)如图,已知平面上有四个点A,B,C,D.(1)连接AB;(2)画射线AD;(3)画直线BC与射线AD交于点E.22. (5分) (2020七上·丹东期末) 如图,已知直线和直线外三点,请按下列要求画图:①画射线;②连接;③延长至,使;④在直线上找一点,使得最小.23. (5分) (2017七上·定州期末) 将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?24. (10分) (2018九上·重庆月考) 俗话说“一铺养三代”。

长春市七年级上学期期末数学试题题及答案

长春市七年级上学期期末数学试题题及答案

长春市七年级上学期期末数学试题题及答案一、选择题1.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .12 2.一个角是这个角的余角的2倍,则这个角的度数是( )A .30B .45︒C .60︒D .75︒3.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( ) A .9B .327-C .3-D .(3)--4.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+5.下列说法中正确的有( ) A .连接两点的线段叫做两点间的距离 B .过一点有且只有一条直线与已知直线垂直 C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线6.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() m A .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯7.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .348.若21(2)0x y -++=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-9.方程3x +2=8的解是( ) A .3B .103C .2D .1210.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .11.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠212.下列等式的变形中,正确的有( ) ①由5 x =3,得x =53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得mn=1. A .1个 B .2个C .3个D .4个13.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线 B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离14.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45° 15.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=1二、填空题16.已知单项式245225n m xy x y ++与是同类项,则m n =______.17.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期交易明细 10.16 乘坐公交¥ 4.00- 10.17 转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19零食¥82.00-10.20 餐费¥100.00-18.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.19.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.20.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.21.如图,若12l l //,1x ∠=︒,则2∠=______.22.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.23.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示). 24.数字9 600 000用科学记数法表示为 .25.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.26.当12点20分时,钟表上时针和分针所成的角度是___________. 27.若4a +9与3a +5互为相反数,则a 的值为_____.28.已知7635a ∠=︒',则a ∠的补角为______°______′.29.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.30.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、压轴题31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.32.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ; (2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.33.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12.东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题:(1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为,取得最佳值最小值的数列为(写出一个即可);(3)将2,-9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a的值.34.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.35.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.36.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t 秒,请用含t 的式子表示三角形OAE 的面积S (不要求写出t 的取值范围); (3)在(2)的条件下,连接OB 、OD ,问是否存在某一时刻t ,使三角形OBD 的面积等于三角形OAE 的面积?若存在,请求出t 值;若不存在,请说明理由.37.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.38.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【解析】 【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可. 【详解】解:根据题意可得: 设BC x =,则可列出:()223x x +⨯= 解得:4x =,12BC AB =, 28AB x ∴==. 故答案为:C. 【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.2.C解析:C 【解析】 【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解. 【详解】解:根据题意列方程的:2(90°-α)=α, 解得:α=60°. 故选:C . 【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).3.B解析:B 【解析】 【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案. 【详解】解:,故排除A;=3-,选项B 正确; C. 3-=3,故排除C;D. (3)--=3,故排除D. 故选B. 【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.4.D解析:D 【解析】 【分析】方程两边同乘以6即可求解. 【详解】12132x x +-=, 方程两边同乘以6可得, 2x-6=3(1+2x ). 故选D. 【点睛】本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.5.C解析:C 【解析】 【分析】分别利用直线的性质以及射线的定义和垂线定义分析得出即可. 【详解】A .连接两点的线段的长度叫做两点间的距离,错误;B .在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;C .对顶角相等,正确;D .线段AB 的延长线与射线BA 不是同一条射线,错误. 故选C . 【点睛】本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.6.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000104=1.04×10−4.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.8.A解析:A【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y)2015=(1﹣2)2015=﹣1.故选A9.C解析:C【解析】【分析】移项、合并后,化系数为1,即可解方程.【详解】x=,解:移项、合并得,36x=,化系数为1得:2故选:C.【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.10.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x>2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.11.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.12.B解析:B①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B.13.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.14.B解析:B【解析】【分析】利用直角和角的组成即角的和差关系计算.【详解】解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,∵∠BOD+∠AOC=∠AOB+∠COD,∵∠AOB=155°,∴∠COD等于25°.故选B.【点睛】本题考查角的计算,数形结合掌握角之间的数量关系是本题的解题关键.15.A解析:A解:A ,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A ; B ,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C ,底数为-1,一个负数的偶次方应为正数(-1)2=1;D ,底数为1,1的平方的相反数应为-1;即-12=-1,故选A .二、填空题16.9【解析】【分析】根据同类项的定义进行解题,则,解出m 、n 的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可. 17.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 18.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.19.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5,第3次输出结果为5+3=8,第4次输出结果为12×8=4,第5次输出结果为12×4=2,第6次输出结果为12×2=1,第7次输出结果为1+3=4,第8次输出结果为12×4=2,……∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.20.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.21.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.22.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】 ∵方程3232a x x +=的解为x=6, ∴3a+12=36,解得a=8, ∴原方程可化为24-2x=6x ,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.23.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.24.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是解析:6×106试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.25.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.26.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.27.-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.29.6【解析】如图,∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm.故答案为:6.30.-7【解析】【分析】先根据题意求出a 的值,再依此求出b 的值.解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表解析:-7【解析】【分析】先根据题意求出a 的值,再依此求出b 的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a 和b 是解决问题的关键.三、压轴题31.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健32.(1)4,16;(2)x =﹣28或x =52;(3)线段MN 的运动速度为9单位长度/秒.【解析】【分析】(1)由A 1A 2=A 2A 3=……=A 19A 20结合|a 1﹣a 4|=12可求出A 3A 4的值,再由a 3=20可求出a 2=16;(2)由(1)可得出a 1=12,a 2=16,a 4=24,结合|a 1﹣x|=a 2+a 4可得出关于x 的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A 1A 20=19A 3A 4=76,设线段MN 的运动速度为v 单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v 的一元一次方程,解之即可得出结论.【详解】解:(1)∵A 1A 2=A 2A 3=……=A 19A 20,|a 1﹣a 4|=12,∴3A 3A 4=12,∴A 3A 4=4.又∵a 3=20,∴a 2=a 3﹣4=16.故答案为:4;16.(2)由(1)可得:a 1=12,a 2=16,a 4=24,∴a 2+a 4=40.又∵|a 1﹣x|=a 2+a 4,∴|12﹣x|=40,∴12﹣x =40或12﹣x =﹣40,解得:x =﹣28或x =52.(3)根据题意可得:A1A20=19A3A4=76.设线段MN的运动速度为v单位/秒,依题意,得:9v=76+5,解得:v=9.答:线段MN的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.33.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10.【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52,所以数列−4,−3,2的最佳值为52;对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52,所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52,所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a+=1,则a=0或−4,不合题意;当92a-+=1,则a=11或7;当a=7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意;当972a-++=1,则a=4或10.∴a=11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.34.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-443或4;(3) 当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8,理由见解析【解析】【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;(2)分两种情况讨论可求点P的对应的数;(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a+24|+|b+10|+(c-10)2=0,∴a+24=0,b+10=0,c-10=0,解得:a=-24,b=-10,c=10;(2)-10-(-24)=14,①点P在AB之间,AP=14×221+=283,-24+283=-443,点P的对应的数是-443;②点P 在AB 的延长线上,AP =14×2=28,-24+28=4,点P 的对应的数是4;(3)∵AB =14,BC =20,AC =34,∴t P =20÷1=20(s ),即点P 运动时间0≤t ≤20,点Q 到点C 的时间t 1=34÷2=17(s ),点C 回到终点A 时间t 2=68÷2=34(s ),当P 点在Q 点的右侧,且Q 点还没追上P 点时,2t +8=14+t ,解得t =6;当P 在Q 点左侧时,且Q 点追上P 点后,2t -8=14+t ,解得t =22>17(舍去);当Q 点到达C 点后,当P 点在Q 点左侧时,14+t +8+2t -34=34,t =463<17(舍去); 当Q 点到达C 点后,当P 点在Q 点右侧时,14+t -8+2t -34=34,解得t =623>20(舍去), 当点P 到达终点C 时,点Q 到达点D ,点Q 继续行驶(t -20)s 后与点P 的距离为8,此时2(t -20)+(2×20-34)=8,解得t =21;综上所述:当Q 点开始运动后第6、21秒时,P 、Q 两点之间的距离为8.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.35.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,。

长春市七年级上册数学期末试卷(含答案)

长春市七年级上册数学期末试卷(含答案)

长春市七年级上册数学期末试卷(含答案)一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=- D .()2121826x x ⨯=-3.-2的倒数是( ) A .-2B .12-C .12D .24.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0 B .1-C . 2.5-D .35.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=6.下列分式中,与2x yx y ---的值相等的是()A .2x y y x+-B .2x y x y+-C .2x y x y--D .2x y y x-+7.已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )A .1个B .2个C .3个D .4个 8.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣79.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A.132°B.134°C.136°D.138°10.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是()A.2 B.8 C.6 D.011.如图是由下列哪个立体图形展开得到的?()A.圆柱B.三棱锥C.三棱柱D.四棱柱12.下列各数中,有理数是( )A.2B.πC.3.14 D.3713.一个几何体的表面展开图如图所示,则这个几何体是( )A.四棱锥B.四棱柱C.三棱锥D.三棱柱14.用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2 15.下列计算正确的是()A.-1+2=1 B.-1-1=0 C.(-1)2=-1 D.-12=1二、填空题16.单项式2x m y3与﹣5y n x是同类项,则m﹣n的值是_____.17.已知x=3是方程(1)21343x m x-++=的解,则m的值为_____.18.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为________,第n个正方形的中间数字为______.(用含n的代数式表示)…………19.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.20.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。

长春市七年级上学期期末数学试题

长春市七年级上学期期末数学试题

长春市七年级上学期期末数学试题一、选择题1.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .122.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .3.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( ) A .﹣9℃B .7℃C .﹣7℃D .9℃4.21(2)0x y -+=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-5.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( ) A .a >ab >ab 2 B .ab >ab 2>a C .ab >a >ab 2 D .ab <a <ab 2 6.已知一个多项式是三次二项式,则这个多项式可以是( ) A .221x x -+ B .321x + C .22x x - D .3221x x -+ 7.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( ) A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=08.点()5,3M 在第( )象限. A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102510.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯11.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( ) A .﹣4B .﹣2C .4D .212.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离13.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元 B .200元C .225元D .259.2元14.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .15015.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1二、填空题16.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.17.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.18.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.19.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______. 20.|-3|=_________;21.36.35︒=__________.(用度、分、秒表示)22.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元.23.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.24.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.25.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 26.若a 、b 是互为倒数,则2ab ﹣5=_____. 27.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 28.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.29.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.30.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、压轴题31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.32.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.33.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.34.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.35.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)36.已知:如图数轴上两点A 、B 所对应的数分别为-3、1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.37.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x<-时,原式()()1221x x x=-+--=-+;(2)当1-≤2x<时,原式()()123x x=+--=;(3)当x≥2时,原式()()1221x x x=++-=-综上所述:原式21(1)3(12)21(2)x xxx x-+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x+与|4|x-的零点值分别为;(2)化简式子324x x-++.38.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可. 【详解】解:根据题意可得: 设BC x =,则可列出:()223x x +⨯= 解得:4x =,12BC AB =, 28AB x ∴==. 故答案为:C. 【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.2.A【解析】【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形.【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形,∴从正面看到的平面图形是,故选:A.【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.D解析:D【解析】【分析】这天的温差就是最高气温与最低气温的差,列式计算.【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃),故选:D.【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.4.A解析:A【解析】x (y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代1入所求代数式(x+y)2015=(1﹣2)2015=﹣1.故选A5.B解析:B【解析】先根据同号得正的原则判断出ab的符号,再根据不等式的基本性质判断出ab2及a的符号及大小即可.解:∵a<0,b<0,∴ab>0,又∵-1<b<0,ab>0,∵-1<b <0, ∴0<b 2<1, ∴ab 2>a , ∴a <ab 2<ab . 故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.6.B解析:B 【解析】A. 2x 2x 1-+是二次三项式,故此选项错误;B. 32x 1+是三次二项式,故此选项正确;C. 2x 2x -是二次二项式,故此选项错误;D. 32x 2x 1-+是三次三项式,故此选项错误; 故选B.7.A解析:A 【解析】根据同类项的相同字母的指数相同可直接得出答案. 解:由题意得: m=2,n=1. 故选A .8.A解析:A 【解析】 【分析】根据平面直角坐标系中点的坐标特征判断即可. 【详解】 ∵5>0,3>0,∴点()5,3M 在第一象限. 故选A. 【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.9.D解析:D 【解析】观察数据,找到规律:第n 个数为(﹣2)n +1,根据规律求出第10个数即可. 【详解】解:观察数据,找到规律:第n 个数为(﹣2)n +1, 第10个数是(﹣2)10+1=1024+1=1025 故选:D . 【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.10.D解析:D 【解析】 【分析】将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1. 【详解】150万=1500000=61.510⨯, 故选:D. 【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.11.C解析:C 【解析】 【分析】由题意可知3b-3a-(a-b )3=3(b-a )-(a-b )3,因此可以将a-b=-1整体代入即可. 【详解】3b-3a-(a-b )3=3(b-a )-(a-b )3=-3(a-b )-(a-b )3=3-(-1) =4; 故选C . 【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.12.A解析:A 【解析】 【分析】根据公理“两点确定一条直线”来解答即可. 【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A .【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.13.A解析:A【解析】【分析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.14.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB 平分∠COD ,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C .【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.15.D解析:D【解析】【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案.【详解】解:因为2|2|(1)0a b ++-=,所以a +2=0,b -1=0,所以a =-2,b =1,所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D.【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键. 二、填空题16.14【解析】因为线段AB 被点C,D 分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x, 因为M,N 分别是AC,DB 的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB 被点C,D 分成2:4:7三部分,所以设AC =2x ,CD =4x ,BD =7x ,因为M,N 分别是AC,DB 的中点,所以CM =12AC x =,DN =1722BD x =, 因为mn =17cm,所以x +4x +72x =17,解得x =2,所以BD =14,故答案为:14. 17.﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x 、y 的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x =±3,y =±2,∵x <y ,∴x =﹣3,y =±2,当x =﹣解析:﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x 、y 的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣3,y=2时,x+y=﹣1,当x=﹣3,y=﹣2时,x+y=﹣5,所以,x+y的值是﹣1或﹣5.故答案为:﹣1或﹣5.【点睛】本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x、y的值.18.【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC 的中点求出AD的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴B解析:【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD 的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴BC=8.∴AC=AB+BC=12.∵D是AC的中点,∴AD=12AC=6.∴BD=AD﹣AB=6﹣4=2.故答案为:2.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.19.1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解解析:1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键20.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.21.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点解析:3621'o【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点睛】本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.22.33【解析】【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x 元解析:33【解析】【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.又18=6+12,∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元). 故答案为:33.【点睛】本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 23.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 24.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦ 故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键.25.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键26.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.27.42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.28.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.29.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.30.>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.考查简单的有理数比较大小解析:>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.三、压轴题31.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t , =4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健32.(1)10;(2)212±;(3)288. 5±±, 【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a 的值为10.(2)分两种情况,点A 在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA 的长度,从而得出a 的值.同理可求出当点A 在原点的左侧时,a 的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b =-4,则a 的值为 10(2)解:当A 在原点O 的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m 2=, 所以,OA=212,点A 在原点O 的右侧,a 的值为212. 当A 在原点的左侧时(如图),a=-212综上,a 的值为±212. (3)解:当点A 在原点的右侧,点B 在点C 的左侧时(如图), c=-285.当点A 在原点的右侧,点B 在点C 的右侧时(如图), c=-8.当点A 在原点的左侧,点B 在点C 的右侧时,图略,c=285. 当点A 在原点的左侧,点B 在点C 的左侧时,图略,c=8. 综上,点c 的值为:±8,±285. 【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.33.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠ 160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+-36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON ═12(360°-∠AOB )═12×240°=120°, ∵∠MOI=3∠POI ,∴180°-3t=3(60°-61202t -)或180°-3t=3(61202t --60°), 解得t=30或45,综上所述,满足条件的t 的值为152s 或15s 或30s 或45s . 【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.34.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=- =1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠, ∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+ =()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.35.(1)25- ,35 (2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x秒,表示出P,Q的运动路程,利用路程和等于AB长即可解题;(3)根据点Q达到A点时,点P,Q停止运动求出运动时间即可解题;(4)根据第三问点P运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25-,35(2)设运动时间为x秒13x2x2535+=+解得x4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P所在的位置表示的数为5 .(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,∴点P和点Q一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.36.(1)13-;(2)P出发23秒或43秒;(3)见解析.【解析】【分析】(1)由题意可知运动t秒时P点表示的数为-3+2t,Q点表示的数为1-t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)由点P比点Q迟1秒钟出发,则点Q运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C表示的数为a,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-3+2t=1-t,解得:t=43,∴41 3233 -+⨯=-,∴点P和点Q相遇时的位置所对应的数为13 -;(2)∵点P比点Q迟1秒钟出发,∴点Q运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小, 当点C 与P 重合时,即a=-53时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度, 此时点P 表示的数为-3+2×43=-13,Q 点表示的数为1-(1+43)=-43, 此时满足条件的点C 即为Q 点,所表示的数为43-, 综上所述,点C 所表示的数分别为-53和-43. 【点睛】 本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想.37.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x=-和4x=,(2)由30x-=得3,x=由40x+=得4x=-,①当4x<-时,原式()()32435x x x=---+=--,②当4-≤3x<时,原式()()32411x x x=--++=+,③当x≥3时,原式()()32435x x x=-++=+,综上所述:原式()35(4)11(43)353x xx xx x⎧--<-⎪=+-≤<⎨⎪+≥⎩,【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.38.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=45°;(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,分两种情况:如图3所示,。

吉林省长春市农安三中2015_2016学年七年级数学上学期第三次月考试题(含解析)新人教版

吉林省长春市农安三中2015_2016学年七年级数学上学期第三次月考试题(含解析)新人教版

吉林省长春市农安三中2015-2016学年七年级数学上学期第三次月考试题一、选择题(每题3分,共24分)1.长春市2014年城市道路改建总投资达到209亿元,用科学记数法表示209亿元应为()A.209×108元B.209×109元C.2.09×1010元D.2.09×1011元2.下面四个图形每个都是由六个相同的正方形组成,将其折叠后能围成正方体的是()A.B.C.D.3.下列各式中,代数式的个数是()①②26+a ③b=ba ④⑤2a﹣1 ⑥a ⑦(a2﹣b2)⑧5n+2.A.5 B.6 C.7 D.84.下列各式中,一定成立的是()A.22=(﹣2)2B.23=(﹣2)3C.﹣22=|﹣22| D.(﹣2)3=|(﹣2)3|5.如果单项式﹣x a y2与x3y b是同类项,则a、b的值分别是()A.2,2 B.﹣3,2 C.2,3 D.3,26.下面去括号的过程正确的是()A.m+2(a﹣b)=m+2a﹣b B.3x﹣2(4y﹣1)=3x﹣8y﹣2C.(a﹣b)﹣(c﹣d)=a﹣b﹣c+d D.﹣5(x﹣y﹣z)=﹣5x+5y﹣5z7.把一条弯曲的公路改成直道,可以缩短路程,用几何知识解释其道理正确的是()A.两点确定一条直线B.直线可以向两方无限延伸C.两点之间线段最短D.一条线段可以分成两条相等的线段8.如图所示的是由五个相同的小正方体搭成的几何体,其左视图是()A.B.C.D.二、填空题:(3分,共18分)9.单项式﹣的系数是,次数是.10.把多项式2x2y2+3x3y﹣x+5x4y﹣1按字母x降幂排列是.11.若代数式(2x2+ax﹣y+b)﹣(2bx2﹣3x+5y﹣1)的值与字母x取值无关,则a=b= .12.已知:a2+2a﹣1=0,则2a2+4a﹣3= .13.如图,线段AB被M、N分成3:4:5三部分,其中AM=3cm,则AB= .14.将正方形按如图所示方式排列,按此方式摆下去,第n幅图中共有个正方形(用含n的代数式表示).三、解答题:(每题6分)15.化简下列各题:(1)4x2﹣8x+5﹣3x2+6x﹣4(2)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2)(3)(5x2﹣3y2)﹣[(5x2﹣2xy﹣y2)﹣2(3y2﹣xy)].四、解答题:(每题7分)18.如图:点C为线段AB的中点,D在线段CB上,AB=8cm,BD=6cm,求CD的长度.19.有理数a、b、c在数轴上的位置如图所示:化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.20.小强与小亮在同时计算这样一道题:“当a=﹣3时,求整式7a2﹣[5a﹣(4a﹣1)+4a2]﹣(2a2﹣a+1)的值.”小亮正确求得结果为7,而小强在计算时,错把a=﹣3看成了a=3,但计算的结果却也正确,你能说明为什么吗??21.化简求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中|x﹣3|+(y+)2=0.五、解答题:(22题10分,23题10分,24题12分)22.如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米.(1)分别用代数式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数).23.(1)如图,已知点C在线段AB上,线段AC=12,BC=8,点M,N分别是AC、BC的中点,求线段MN的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其他条件不变,你能猜出MN的长度吗?并说明理由.24.某商店销售C、D两种羽毛球拍,C种羽毛球拍每个30元,D种每个32元,该商店对这两种羽毛球拍开展了促销活动,具体办法如下:C种品牌羽毛球拍按原价的八折销售,D种羽毛球拍若购买数量不超过5个(含5个)时,则按原价销售,若购买的数量超过5个,则超出部分按原价的六折销售,若某班购买C、D两种品牌的羽毛球拍数量分别是c、d个.(1)若c=2,d=3,则该班购买C、D两种品牌的羽毛球拍共需多少元?(2)若c=4,d=9,则该班购买C、D两种品牌的羽毛球拍共需多少元?(3)若d>5,用含c、d的代数式分别表示该班购买C、D两种品牌的羽毛球拍的费用分别是多少元?(4)小明准备联系一部分同学集体购买同一品牌的羽毛球拍,若购买30个羽毛球拍,通过计算说明,购买哪种品牌的羽毛球拍比较合算?2015-2016学年吉林省长春市农安三中七年级(上)第三次月考数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.长春市2014年城市道路改建总投资达到209亿元,用科学记数法表示209亿元应为()A.209×108元B.209×109元C.2.09×1010元D.2.09×1011元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将209亿用科学记数法表示为:2.09×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下面四个图形每个都是由六个相同的正方形组成,将其折叠后能围成正方体的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A,B,D折叠后都有一行两个面无法折起来,而且缺少一个面,所以不能折成正方体.故选:C.【点评】只要有“田”和“凹”字格的展开图都不是正方体的表面展开图.3.下列各式中,代数式的个数是()①②26+a ③b=ba ④⑤2a﹣1 ⑥a ⑦(a2﹣b2)⑧5n+2.A.5 B.6 C.7 D.8【考点】代数式.【分析】本题根据代数式的定义对各项进行分析即可求出答案.【解答】解:①是代数式,②26+a是代数式,③b=ba不是代数式,④是代数式,⑤2a﹣1是代数式,⑥a 是代数式,⑦(a2﹣b2)是代数式,⑧5n+2是代数式,∴共有7个,故选:C.【点评】本题考查代数式的定义,对各选项进行判定即可,注意等式,不等式不为代数式.4.下列各式中,一定成立的是()A.22=(﹣2)2B.23=(﹣2)3C.﹣22=|﹣22| D.(﹣2)3=|(﹣2)3|【考点】有理数的乘方.【分析】根据乘方的运算和绝对值的意义计算.【解答】解:A、22=(﹣2)2=4,正确;B、23=8,(﹣2)3=﹣8,错误;C、﹣22=﹣4,|﹣22|=4,错误;D、(﹣2)3=﹣8,|(﹣2)3|=8,错误.故选A.【点评】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.注意任何数的绝对值为非负数.5.如果单项式﹣x a y2与x3y b是同类项,则a、b的值分别是()A.2,2 B.﹣3,2 C.2,3 D.3,2【考点】同类项.【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:由单项式﹣x a y2与x3y b是同类项,得a=3,b=2,故选:D.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.6.下面去括号的过程正确的是()A.m+2(a﹣b)=m+2a﹣b B.3x﹣2(4y﹣1)=3x﹣8y﹣2C.(a﹣b)﹣(c﹣d)=a﹣b﹣c+d D.﹣5(x﹣y﹣z)=﹣5x+5y﹣5z【考点】去括号与添括号.【分析】利用去括号法则一一检验,即可得到正确的选项.【解答】解:A、m+2(a﹣b)=m+2a﹣2b,故错误;B、3x﹣2(4y﹣1)=3x﹣8y+2,故错误;C、(a﹣b)﹣(c﹣d)=a﹣b﹣c+d,正确;D、﹣5(x﹣y﹣z)=﹣5x+5y+5z,故错误;故选:C.【点评】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.7.把一条弯曲的公路改成直道,可以缩短路程,用几何知识解释其道理正确的是()A.两点确定一条直线B.直线可以向两方无限延伸C.两点之间线段最短D.一条线段可以分成两条相等的线段【考点】线段的性质:两点之间线段最短.【分析】根据数学常识,连接两点的所有线中,线段最短,即两点之间线段最短解答.【解答】解:把弯曲的公路改成直道,其道理是两点之间线段最短.故选:B.【点评】本题主要考查了线段的性质,熟记两点之间线段最短是解题的关键.8.如图所示的是由五个相同的小正方体搭成的几何体,其左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从几何体的左边看所得到的图形即可.【解答】解:此几何体的左视图有2列,从左往右小正方体的个数为2,1,故选:B.【点评】此题主要考查了简单组合体的三视图,关键是掌握画三视图时,所看到的棱,都要用实线表示出来.二、填空题:(3分,共18分)9.单项式﹣的系数是﹣,次数是 6 .【考点】单项式.【分析】单项式就是数与字母的乘积,数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,据此即可求解.【解答】解:单项式﹣的系数是﹣,次数是6,故答案为:﹣,6.【点评】本题主要考查了单项式的系数与次数的定义,在说系数时,注意不要忘记前边的符号是解答此题的关键.10.把多项式2x2y2+3x3y﹣x+5x4y﹣1按字母x降幂排列是5x4y+3x3y+2x2y2﹣1 .【考点】多项式.【分析】根据降幂排列的定义,我们把多项式的各项按照x的指数从大到小的顺序排列起来即可.【解答】解:多项式2x2y2+3x3y﹣x+5x4y﹣1按x的降幂排列为:5x4y+3x3y+2x2y2﹣1.故答案为:5x4y+3x3y+2x2y2﹣1.【点评】此题考查了多项式的降幂排列的定义.首先要理解降幂排列的定义,然后要确定是哪个字母的降幂排列,这样才能比较准确解决问题.11.若代数式(2x2+ax﹣y+b)﹣(2bx2﹣3x+5y﹣1)的值与字母x取值无关,则a= ﹣3 b= 1 .【考点】整式的加减.【分析】先去括号,再合并同类项,令x的系数为0求出a、b的值即可.【解答】解:原式=(2x2+ax﹣y+b)﹣(2bx2﹣3x+5y﹣1)=2x2+ax﹣y+b﹣2bx2+3x﹣5y+1=2(1﹣b)x2+(a+3)x﹣6y+b+1,∵代数式的值与字母x取值无关,∴1﹣b=0,a+3=0,解得b=1,a=﹣3.故答案为:﹣3,1.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.12.已知:a2+2a﹣1=0,则2a2+4a﹣3= ﹣1 .【考点】代数式求值.【分析】首先利用已知得出a2+2a=1,再将原式变形将已知代入求出答案.【解答】解:∵a2+2a﹣1=0,∴a2+2a=1,∴2a2+4a﹣3=2(a2+2a)﹣3=2×1﹣3=﹣1.故答案为:﹣1.【点评】此题主要考查了代数式求值,正确利用已知将原式变形是解题关键.13.如图,线段AB被M、N分成3:4:5三部分,其中AM=3cm,则AB= 12cm .【考点】两点间的距离.【分析】根据已知条件设AM=3x,MN=4x,NB=5x,得到AB=12x,根据AM=3cm,求得x=1cm,即可得到结论.【解答】解:∵线段AB被M、N分成3:4:5三部分,∴设AM=3x,MN=4x,NB=5x,∴AB=12x,∵AM=3cm,∴x=1cm,∴AB=12cm.故答案为:12cm.【点评】本题考查了求两点之间的距离的应用,解此题的关键是得出关于x的方程.14.将正方形按如图所示方式排列,按此方式摆下去,第n幅图中共有n(n+1)个正方形(用含n的代数式表示).【考点】规律型:图形的变化类.【分析】由图形可知:第1幅图中共有1个正方形,第2幅图中共有1+2=3个正方形,第3幅图中共有1+2+3=6个正方形,…由此得出第n幅图中共有1+2+3+…+n=n(n+1)个正方形.【解答】解:∵第1幅图中共有1个正方形,第2幅图中共有1+2=3个正方形,第3幅图中共有1+2+3=6个正方形,…∴第n幅图中共有1+2+3+…+n=n(n+1)个正方形.故答案为:n(n+1).【点评】此题考查图形的变化规律,找出图形排列的规律,得出运算的方法,利用计算方法解决问题.三、解答题:(每题6分)15.化简下列各题:(1)4x2﹣8x+5﹣3x2+6x﹣4(2)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2)(3)(5x2﹣3y2)﹣[(5x2﹣2xy﹣y2)﹣2(3y2﹣xy)].【考点】整式的加减.【分析】(1)找出同类项,再合并同类项即可;(2)先去括号,再找出同类项,合并同类项即可;(3)先去小括号,再去中括号,最后合并同类项即可.【解答】解:(1)4x2﹣8x+5﹣3x2+6x﹣4=(4﹣3)x2+(﹣8+6)x+(5﹣4)=x2﹣2x+1;(2)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2)=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(3)(5x2﹣3y2)﹣[(5x2﹣2xy﹣y2)﹣2(3y2﹣xy)]=5x2﹣3y2﹣[5x2﹣2xy﹣y2﹣6y2+2xy]=5x2﹣3y2﹣5x2+2xy+y2+6y2﹣2xy]=4y2.【点评】本题考查了整式的加减的应用,能正确合并同类项是解此题的关键.四、解答题:(每题7分)18.如图:点C为线段AB的中点,D在线段CB上,AB=8cm,BD=6cm,求CD的长度.【考点】两点间的距离.【分析】根据线段中点的定义知BC=AB,然后结合已知条件来求CD=BC﹣BD.【解答】解:∵点C为线段AB的中点,∴BC=AB=4cm,∴CD=BC﹣BD=8﹣6=2cm.【点评】本题考查了两点间的距离.解答该题时,一定要参照图示进行解题.19.有理数a、b、c在数轴上的位置如图所示:化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.【考点】整式的加减;数轴;绝对值.【专题】计算题;整式.【分析】根据数轴上点的位置确定出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:a<b<0<c,且|a|<|b|<|c|,∴a+b+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,则原式=﹣a﹣b﹣c﹣a+b+c+b﹣a﹣b﹣c=﹣3a﹣c.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.20.小强与小亮在同时计算这样一道题:“当a=﹣3时,求整式7a2﹣[5a﹣(4a﹣1)+4a2]﹣(2a2﹣a+1)的值.”小亮正确求得结果为7,而小强在计算时,错把a=﹣3看成了a=3,但计算的结果却也正确,你能说明为什么吗??【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,由结果即可求出判断.【解答】解:原式=7a2﹣5a+4a﹣1﹣4a2﹣2a2+a﹣1=a2﹣2,结果与a=3和a=﹣3无关,都为9﹣2=7,故小亮正确求得结果为7,而小强在计算时,错把a=﹣3看成了a=3,但计算的结果却也正确.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.化简求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中|x﹣3|+(y+)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy+xy2,∵|x﹣3|+(y+)2=0,∴x=3,y=﹣,则原式=﹣1+=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、解答题:(22题10分,23题10分,24题12分)22.如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米.(1)分别用代数式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数).【考点】列代数式;代数式求值.【分析】(1)草地面积=4×四分之一圆形面积;空地的面积=长方形面积﹣草地面积;(2)把长=300米,宽=200米,圆形的半径=10米代入(1)中式子即可.【解答】解:(1)草地面积为:4×πr2=πr2米2,空地面积为:(ab﹣πr2)米2;(2)当a=300,b=200,r=10时,ab﹣πr2=300×200﹣100π≈59686(米2),∴广场空地的面积约为59686米2.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.要熟练运用长方形面积和圆面积公式.23.(1)如图,已知点C在线段AB上,线段AC=12,BC=8,点M,N分别是AC、BC的中点,求线段MN的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其他条件不变,你能猜出MN的长度吗?并说明理由.【考点】两点间的距离.【分析】(1)根据线段的中点的性质,可得MC、NC的长,再根据线段的和差,可得答案;(2)根据线段的中点的性质,可得MC、NC的长,再根据线段的和差,可得答案.【解答】解:(1)点M、N分别是AC、BC的中点,AC=12,BC=8,MC=AC÷2=12÷2=6,NC=CB÷2=8÷2=4,由线段的和差,得MN=MC+NC=6+4=10.答:线段MN的长是10;(2)MN=a,理由:∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN =CM+CN=(AC+BC)=a.【点评】本题考查了两点间的距离,线段中点的定义,熟记线段中点的定义是解题的关键.24.某商店销售C、D两种羽毛球拍,C种羽毛球拍每个30元,D种每个32元,该商店对这两种羽毛球拍开展了促销活动,具体办法如下:C种品牌羽毛球拍按原价的八折销售,D种羽毛球拍若购买数量不超过5个(含5个)时,则按原价销售,若购买的数量超过5个,则超出部分按原价的六折销售,若某班购买C、D两种品牌的羽毛球拍数量分别是c、d个.(1)若c=2,d=3,则该班购买C、D两种品牌的羽毛球拍共需多少元?(2)若c=4,d=9,则该班购买C、D两种品牌的羽毛球拍共需多少元?(3)若d>5,用含c、d的代数式分别表示该班购买C、D两种品牌的羽毛球拍的费用分别是多少元?(4)小明准备联系一部分同学集体购买同一品牌的羽毛球拍,若购买30个羽毛球拍,通过计算说明,购买哪种品牌的羽毛球拍比较合算?【考点】列代数式;代数式求值.【分析】(1)根据总价=单价×数量以及促销活动的具体办法,若c=2,d=3,则C种品牌羽毛球的单价为30×0.8元,D种品牌羽毛球的单价为32元,利用购买C、D两种品牌的羽毛球拍的费用=C种品牌的羽毛球拍的费用+买D种品牌的羽毛球拍的费用,列式计算即可;(2)根据总价=单价×数量以及促销活动的具体办法,若c=4,d=9,则C种品牌羽毛球的单价为30×0.8元,D种品牌羽毛球前面5个的单价为32元,后面4个的单价为32×0.6元,利用购买C、D两种品牌的羽毛球拍的费用=C种品牌的羽毛球拍的费用+买D种品牌的羽毛球拍的费用,列式计算即可;(3)根据总价=单价×数量以及促销活动的具体办法,分别列式计算即可;(4)将c=30,d=30分别代入(3)中所求代数式,得出购买C种、D种品牌的羽毛球拍的费用,再比较即可.【解答】解:(1)若c=2,d=3,则该班购买C、D两种品牌的羽毛球拍共需:(30×0.8)×2+32×3=144(元);(2)若c=4,d=9,则该班购买C、D两种品牌的羽毛球拍共需:(30×0.8)×4+(32×5+32×0.6×4)=332.8(元);(3)购买C种品牌的羽毛球拍的费用:(30×0.8)×c=24c(元),若d>5,则购买D种品牌的羽毛球拍的费用:32×5+32×0.6×(d﹣5)=19.2d﹣64(元);(4)若购买30个羽毛球拍,则买C种品牌的羽毛球拍的费用:24×30=720(元),买D种品牌的羽毛球拍的费用:19.2×30﹣64=512(元),512<720,购买D种品牌的羽毛球拍比较合算.【点评】本题考查了列代数式,代数式求值,理解促销活动的具体办法是解题的关键.11。

长春市人教版七年级上册数学期末试卷及答案-百度文库

长春市人教版七年级上册数学期末试卷及答案-百度文库

长春市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108B .6.5×107C .6.5×108D .65×1062.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .3.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0 B .1- C . 2.5- D .3 4.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,35.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( ) A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 6.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1127.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④8.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>09.单项式﹣6ab的系数与次数分别为()A.6,1 B.﹣6,1 C.6,2 D.﹣6,210.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a=32b B.a=2b C.a=52b D.a=3b11.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-112.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm,乙的速度为每秒5 cm,已知正方形轨道ABCD的边长为2 cm,则乙在第2 020次追上甲时的位置在()A.AB上B.BC上C.CD上D.AD上二、填空题13.在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为.14.若x=2是关于x的方程5x+a=3(x+3)的解,则a的值是_____.15.若关于x的多项式2261x bx ax x-++-+的值与x的取值无关,则-a b的值是________16.若12xy=⎧⎨=⎩是方程组72ax bybx ay+=⎧⎨+=⎩的解,则+a b=_________.17.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______.18.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.19.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.20.|﹣12|=_____. 21.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 22.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.23.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.24.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.三、解答题25.化简求值:()()2222533x y xyxyx y --+,其中1x =,12y. 26.已知A =3x 2+x+2,B =﹣3x 2+9x+6. (1)求2A ﹣13B ; (2)若2A ﹣13B 与32C -互为相反数,求C 的表达式;(3)在(2)的条件下,若x =2是C =2x+7a 的解,求a 的值.27.某快车的计费规则如表1,小明几次乘坐快车的情况如表2,请仔细观察分析表格解答以下问题:(1)填空:a = ,b = ; (2)列方程求解表1中的x ;(3)小明的爸爸23:10打快车从机场回家,快车行驶的平均速度是100公里/小时,到家后小明爸爸支付车费603元,请问机场到小明家的路程是多少公里?(用方程解决此问题)表1:某快车的计费规则里程费(元/公里)时长费(元/分钟)远途费(元/公里)5:00﹣23:00a9:00﹣18:00x12公里及以下0 23:00﹣次日5:00 3.218:00﹣次日9:000.5超出12公里的部分1.6(说明:总费用=里程费+时长费+远途费)表2:小明几次乘坐快车信息上车时间里程(公里)时长(分钟)远途费(元)总费用(元)7:3055013.510:052018b66.728.计算:(1)1108(2)2⎛⎫--÷-⨯-⎪⎝⎭(2)2211(10.5)19(5)3⎡⎤---⨯⨯--⎣⎦.29.计算:()()320192413-÷--⨯-30.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?四、压轴题31.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。

吉林省长春市七年级(上)期末数学试卷

吉林省长春市七年级(上)期末数学试卷

七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.如果向东走2m记为+2m,则向西走3m可记为( )A. +3mB. +2mC. −3mD. −2m2.-2的相反数是( )A. −2B. 2C. 12D. −123.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需( )A. (a+b)元B. (3a+2b)元C. (2a+3b)元D. 5(a+b)元4.如果单项式-x a+1y3与12ybx2是同类项,那么a、b的值分别为( )A. a=2,b=3B. a=1,b=2C. a=1,b=3D. a=2,b=25.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65000 000用科学记数法表示,正确的是( )A. 0.65×108B. 6.5×107C. 6.5×108D. 65×1066.下面几何体的主视图是( )A. B. C.D.7.如图,点M在线段AB上,则下列条件不能确定M是AB中点的是( )A. BM=12ABB. AM+BM=ABC. AM=BMD. AB=2AM8.若∠A=34°,则∠A的补角为( )A. 56∘B. 146∘C. 156∘D. 166∘9.如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有( )A. 2条B. 3条C. 4条D. 5条10.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A. 20∘B. 30∘C. 40∘D. 50∘二、填空题(本大题共10小题,共40.0分)11.近似数0.618有______个有效数字.12.-4的绝对值是______.13.在-12,0,-1,1这四个数中,最小的数是______.14.计算:a-3a=______.15.13x2y是______次单项式.16.已知∠α=13°,则∠α的余角大小是______.17.我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是______.18.已知2a-3b=7,则8+6b-4a=______.19.将如图所示的正方体的展开图重新折叠成正方体后,和“应”字相对面上的汉字是______.20.如图,直线a∥b,∠1=125°,则∠2的度数为______.三、计算题(本大题共5小题,共30.0分)21.计算:-32+(-212)2-(-2)3+|-22|.22.计算:-23-[(-3)2-22×14-8.5]÷(-12)223.已知M=4x2-3x+2,N=6x2-3x+6,试比较M,N的大小.24.已知:a,b互为相反数,c,d互为倒数,x的绝对值是2,求x2-(a+b+cd)x+(a+b)2011+(-cd)2012的值.25.如图,已知点A、B、C在同一直线上,M、N分别是AC、BC的中点.(1)若AB=20,BC=8,求MN的长;(2)若AB=a,BC=8,求MN的长;(3)若AB=a,BC=b,求MN的长;(4)从(1)(2)(3)的结果中能得到什么结论?四、解答题(本大题共3小题,共20.0分)26.先化简,再求值:3(x2y+2xy)+2(x2y-2xy)-5x2y,其中x=1,y=-1.27.如图,根据图形填空:已知:∠DAF=∠F,∠B=∠D,AB与DC平行吗?解:∠DAF=∠F(______)∴AD∥BF(______),∴∠D=∠DCF(______)∵∠B=∠D(______)∴∠B=∠DCF(______)∴AB∥DC(______)28.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.答案和解析1.【答案】C【解析】解:若向东走2m记作+2m,则向西走3m记作-3m,故选:C.根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2.【答案】B【解析】解:-2的相反数是2.故选:B.根据只有符号不同的两个数叫做互为相反数解答.本题考查了相反数的定义,是基础题,熟记概念是解题的关键.3.【答案】C【解析】解:根据题意得:买2千克苹果和3千克香蕉共需(2a+3b)元,故选:C.根据题意列出代数式即可.此题考查了列代数式,弄清题意是解本题的关键.4.【答案】C【解析】解:根据题意得:,则a=1,b=3.故选:C.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a,b 的值.考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点5.【答案】B【解析】解:65 000000=6.5×107.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.【答案】B【解析】解:从几何体正面看,从左到右的正方形的个数为:2,1,2.故选:B.主视图是从物体正面看所得到的图形.本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误地选其它选项.7.【答案】B【解析】解:A、当BM=AB时,则M为AB的中点,故此选项错误;B、AM+BM=AB时,无法确定M为AB的中点,符合题意;C、当AM=BM时,则M为AB的中点,故此选项错误;D、当AB=2AM时,则M为AB的中点,故此选项错误;故选:B.直接利用两点之间的距离定义结合线段中点的性质分别分析得出答案.此题主要考查了两点之间,正确把握线段中点的性质是解题关键.8.【答案】B【解析】解:∵∠A=34°,∴∠A的补角=180°-34°=146°.故选:B.根据互补的两角之和为180°,可得出答案.本题考查了余角和补角的知识,解答本题的关键是掌握互补的两角之和为180°.9.【答案】D【解析】解:如图所示:线段AB是点B到AC的距离,线段CA是点C到AB的距离,线段AD是点A到BC的距离,线段BD是点B到AD的距离,线段CD是点C到AD的距离,故图中能表示点到直线距离的线段共有5条.故选:D.直接利用点到直线的距离的定义分析得出答案.此题主要考查了点到直线的距离,正确把握定义是解题关键.10.【答案】C【解析】解:∵直尺对边互相平行,∴∠3=∠1=50°,∴∠2=180°-50°-90°=40°.故选:C.根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.11.【答案】3【解析】解:0.618的有效数字为6,1,8,共3个.故答案为:3.根据有效数字的定义,从左起,第一个不为0的数字算起,到右边精确到的那一位为止.本题考查了近似数和有效数字,是基础知识比较简单,有效数字的计算方法以及是需要识记的内容,经常会出错.12.【答案】4【解析】解:|-4|=4.故答案为:4.计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.13.【答案】-1【解析】解:|-1|>|-|,-1<-.-1<-<0<1,故答案为:-1.根据负数比较大小,绝对值大的数反而小,可得答案.本题考查了有理数大小比较,负数比较大小,绝对值大的数反而小.14.【答案】-2a【解析】解:a-3a=-2a.故答案为:-2a.直接利用合并同类项法则分别计算得出答案.此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.15.【答案】3【解析】解:x2y是3次单项式.故答案为3.利用单项式的次数的定义求解.本题考查了单项式:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.16.【答案】77°【解析】解:∵∠α=13°,∴∠α的余角=90°-13°=77°.故答案为:77°.根据互为余角的两个角的和等于90°列式计算即可得解.本题考查了余角的定义,是基础题,熟记概念是解题的关键.17.【答案】同位角相等,两直线平行【解析】解:如图所示:根据题意得出:∠1=∠2;∠1和∠2是同位角;∵∠1=∠2,∴a∥b(同位角相等,两直线平行);故答案为:同位角相等,两直线平行.关键题意得出∠1=∠2;∠1和∠2是同位角;由平行线的判定方法即可得出结论.本题考查了复杂作图以及平行线的判定方法;熟练掌握平行线的判定方法,根据题意得出同位角相等是解决问题的关键.18.【答案】-6【解析】解:∵2a-3b=7,∴8+6b-4a=8-2(2a-3b)=8-2×7=-6,故答案为:-6.先变形,再整体代入求出即可.本题考查了求代数式的值,能够整体代入是解此题的关键.19.【答案】静【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“沉”与“考”相对,“着”与“冷”相对,“应”与“静”相对.故答案为:静.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.20.【答案】55°【解析】解:∵∠1=125°,∴∠3=∠1=125°,∵a∥b,∴∠2=180°-∠3=180°-125°=55°.故答案为:55°.先根据对顶角相等,∠1=125°,求出∠3的度数,再由两直线平行,同旁内角互补得出∠2的度数.本题考查了平行线的性质,对顶角的性质,熟记定理是解题的关键.21.【答案】解:原式=-9+254+8+4=914.【解析】原式先计算乘方运算,再计算加减运算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【答案】解:-23-[(-3)2-22×14-8.5]÷(-12)2=-8-[9-4×14-8.5]×4=-8-[9-1-8.5]×4=-8-(-0.5)×4=-8+2=-6.【解析】根据有理数的乘除法和加减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.23.【答案】解:M-N=4x2-3x+2-(6x2-3x+6)=4x2-3x+2-6x2+3x-6=-2x2-4因为2x2+4>0,所以-(2x2+4)<0,即M-N<0,所以M<N.【解析】将M与N代入M-N中,去括号合并后配方判断出其差的正负,即可判断出大小关系.考查了非负数的性质:偶次方.偶次方具有非负性,属于基础题.24.【答案】解:由已知可得,a+b=0,cd=1,x=±2;当x=2时,x2-(a+b+cd)x+(a+b)2011+(-cd)2012=22-(0+1)×2+02011+(-1)2012=4-2+0+1=3当x=-2时,x2-(a+b+cd)x+(a+b)2011+(-cd)2012=(-2)2-(0+1)×(-2)+02011+(-1)2012=4+2+0+1=7【解析】根据a,b互为相反数,c,d互为倒数,x的绝对值是2,可得:a+b=0,cd=1,x=±2,据此求出x2-(a+b+cd)x+(a+b)2011+(-cd)2012的值是多少即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.25.【答案】解:(1)∵AB=20,BC=8,∴AC=AB+BC=28,∵点A、B、C在同一直线上,M、N分别是AC、BC的中点,∴MC=12AC=14,NC=12BC=4,∴MN=MC-NC=14-4=10;(2)根据(1)得MN=12(AC-BC)=12AB=12a;(3)根据(1)得MN=12(AC-BC)=12AB=12a;(4)从(1)(2)(3)的结果中能得到线段NM始终等于线段AB的一半,与C的点的位置无关.【解析】(1)由于点A、B、C在同一直线上,M、N分别是AC、BC的中点,由此即可得到MB=AB,NB=BC,而MN=MB+NB,由此就可以求出MN的长度;(2)根据(1)的结论可以知道MN=MB+NB,然后把AB=a,BC=8代入即可求出MN的长度;(3)方法和(2)一样,直接把AB=a,BC=b代入MN=MB+NB即可求出结果.(4)根据(1)(2)(3)可以得出NM的长度始终等于线段AC的一半.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.26.【答案】解:原式=3x2y+6xy+2x2y-4xy-5x2y=2xy,当x=1,y=-1时,原式=2×1×(-1)=-2.【解析】先去括号,再合并同类项即可化简整式,最后将代入求值即可.本题主要考查整式的加减-化简求值,熟练掌握整式的加减运算法则是解题的关键.27.【答案】已知;内错角相等,两直线平行;两直线平行,内错角相等;已知;等量代换;同位角相等,两直线平行【解析】此题考查了平行线的性质与判定.解答此题的关键是注意平行线的性质和判定定理的综合运用.此题首先根据已知,应用内错角相等,两直线平行,证得AD∥BF;利用两直线平行,内错角相等,证得∠D=∠DCF,又由已知,利用等量代换,证得∠B=∠DCF,根据同位角相等,两直线平行,证得AB∥DC.【解答】解:∠DAF=∠F (已知),∴AD∥BF(内错角相等,两直线平行),∴∠D=∠DCF(两直线平行,内错角相等),∵∠B=∠D (已知),∴∠B=∠DCF (等量代换),∴AB∥DC(同位角相等,两直线平行).故答案为:已知;内错角相等,两直线平行;两直线平行,内错角相等;已知;等量代换;同位角相等,两直线平行.28.【答案】平分.证明:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,(垂直的定义)∴AD∥EG,(同位角相等,两直线平行)∴∠2=∠3,(两直线平行,内错角相等)∠E=∠1,(两直线平行,同位角相等)又∵∠E=∠3(已知)∴∠1=∠2(等量代换)∴AD平分∠BAC(角平分线的定义).【解析】先利用平面内垂直于同一条直线的两条直线互相平行,得到AD∥EG,再利用平行线的性质和已知条件求出∠1=∠2即可.本题的关键是灵活应用平行线的性质及角平分线的定义,比较简单.。

吉林省长春市七年级上学期期末数学试卷

吉林省长春市七年级上学期期末数学试卷

吉林省长春市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)﹣2012的相反数是()A . 2012B . ﹣2012C .D .2. (2分)下列结论正确的是()A . 3a2b-a2b=2B . 单项式-x2的系数是-1C . 使式子(x+2)0有意义的x的取值范围是x≠0D . 若分式的值等于0,则a=±13. (2分)关于x的方程2x+a-4=0的解是x=-2,则a等于()A . 8B . 0C . 2D . -84. (2分)(2017·河北模拟) 如图,图中的几何体是将圆柱沿竖直方向切掉一半后,再在中心挖去一个圆柱得到的,则该几何体的左视图是()A .B .C .D .5. (2分)(2016·陕西) 若|a|=3,|b|=2,则a+b的值有()A . 1个B . 2个C . 3个D . 4个6. (2分)下列运算正确的是A . a6÷a2=a3B . 3a2b﹣a2b=2C . (﹣2a3)2=4a6D . (a+b)2=a2+b27. (2分)下列代数式书写规范的是()A . 2a÷bB . m×4C . 2xD . ﹣8. (2分)下列说法:①直线AB和直线BA是同一条直线;②平角是一条直线;③两点之间,线段最短;④如果AB=BC,则点B是线段AC的中点.其中正确的有()A . 1个B . 2个C . 3个D . 4个9. (2分) (2019七下·崇明期末) 下列运算一定正确的是()A .B .C .D .10. (2分)(2017·东营模拟) 如图,一艘轮船在B处观测灯塔A位于南偏东50°方向上,相距40海里,轮船从B处沿南偏东20°方向匀速航行至C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是()A . 20海里B . 40海里C . 20 海里D . 40 海里二、填空题 (共6题;共11分)11. (1分) (2016七上·宁德期末) 我国最长的河流长江全长约为6300千米,用科学记数法表示为________千米.12. (1分) (2019七上·吉木乃月考) 有理数a、b、c在数轴上位置如图,则化简|c-a|+|a+b|-|b-c|的值为________13. (1分) (2019八下·杭州期中) 实数a、b、c在数轴上的位置如图所示,化简的结果为________.14. (1分) (2016九上·乐至期末) 已知:,则的值为________.15. (1分)一副三角板按如图所示方式重叠,若图中∠DCE=35°25′,则∠ACB=________ .16. (6分) (2020七上·郑州月考) 请你认真阅读下面内容,并回答下列问题:|4﹣1|表示4与1的差的绝对值,实际上也可以理解为4与1两数在数轴上所对应的两点之间的距离:同样的,|4+1|也可以看作|4﹣(﹣1)|,表示4与﹣1的差的绝对值,也可以理解为4与﹣1两数在数轴上所对应的两点之间的距离.(1) |6﹣(﹣3)|=________.表示________和________两数在数轴上所对应的两点之间的距离;(2) |x+3|表示________和________两数在数轴上所对应的两点之间的距离;(3)利用数轴找出所有符合条件的整数x ,使得|x-3|=4,则x=________.三、解答题 (共9题;共95分)17. (20分) (2020七上·宜兴期中) 计算:(1) 23+(﹣17)+6﹣|﹣22|(2)5÷(﹣)×(3)()×(﹣24)(4)﹣24÷(﹣5)×(﹣)+| ﹣1|.18. (20分) (2018七上·姜堰月考) 化简(1)(2)(3)已知互为相反数,是绝对值最小的有理数,求的值.(4)先化简,再求值:,其中、满足 .19. (5分) (2018七上·韶关期末) 如图,已知线段a,b,用尺规作一条线段AB,AB=2a-b(不写作法,保留作图痕迹).20. (10分) (2018七上·黑龙江期末) 解下列方程(1)=+1;(2)-=3.21. (5分) (2019七下·平川月考) 已知A=-4a3-3+2a2+5a,B=3a3-a-a2,求:A-2B.22. (5分) (2020八上·商城月考) 如图所示,四边形ABCD中,∠B=∠D=90°,CF平分∠BCD.若AE//CF,判定AE是否平分∠BAD,说明理由.23. (10分) (2020八上·海淀期末) 已知,.(1)用x表示y;(2)求代数式的值.24. (10分) (2019七上·鞍山期末) 某商场购进西装30件,衬衫45件,共用了39000元,其中西装的单价是衬衫的5倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吉林省长春市农安县2015~2016学年度七年级上学期期末数学试卷一、选择题:每小题3分,共30分。

1.如果水位下降3米记作﹣3米,那么水位上升4米,记作()A.1米B.7米C.4米D.﹣7米2.已知一个数的绝对值等于2,那么这个数与2的和为()A.4 B.4或﹣4 C.0 D.4或03.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1094.如图所示图形中,不是正方体的展开图的是()A.B.C.D.5.若﹣x2y m﹣1是五次单项式,则m的值为()A.3 B.4 C.5 D.66.把多项式5x2y3﹣2x4y2+7+3x5y按x的降幂排列后,第三项是()A.5x2y3B.﹣2x4y2C.7 D.3x5y7.(a+b﹣c)(a﹣b﹣c)=[a+□][a﹣□],□里所填的各项分别是()A.b﹣c,b+c B.﹣b+c,b﹣c C.b﹣c,b﹣c D.﹣b+c,b+c8.若x、y为有理数,下列各式成立的是()A.(﹣x)3=x3B.(﹣x)4=﹣x4C.x4=﹣x4D.﹣x3=(﹣x)39.若点B在直线AC上,AB=10,BC=5,则A、C两点间的距离是()A.5 B.15 C.5或15 D.不能确定10.点P为直线MN外一点,点A、B、C为直线MN上三点,PA=4厘米,PB=5厘米,PC=2厘米,则P到直线MN的距离为()A.4厘米B.2厘米C.小于2厘米D.不大于2厘米二、填空题:每小题4分,共40分。

11.比较大小:﹣0.021.12.﹣的相反数是.13.2.561精确到0.1的近似数是.14.如果一个几何体的主视图和左视图都是等腰三角形,而且俯视图是一个圆,那么这个几何体是.15.如果两数之和是20,其中一个数用字母x表示,那么这两个数的积为.16.如果3a x+1b2与﹣7a3b2y是同类项,那么x+y=.17.在代数式x2+10xy﹣3y2+5kxy﹣(4﹣a)中,当k=时它不含xy项,当a=时它不含常数项.18.已知互余的两个角的差是30°,则这两个角的度数分别是.19.如果一对对顶角互补,那么这两个角的度数是.20.如图所示,直线l∥m,将含有45°角的三角形板ABC的直角顶点C放在直线m上.若∠1=25°,则∠2的度数为.三、解答题:每小题20分,共20分。

21.(1)871﹣87.21+53﹣12.79+43.(2)4×(﹣3)2+6.(3)﹣0.52+(4).四、解答题:每小题7分,共14分。

22.先化简,再求值:﹣2(x2+1)+5(x﹣5)﹣(4x2﹣2x),其中x=﹣1.23.如图,EF、EC分别是∠AEB、∠BEC的平分线,求∠GEF的度数.五、解答题:每小题8分,共16分。

24.如图,已知CD⊥DA,DA⊥AB,∠1=∠2,问直线DE与AF是否平行?为什么?25.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,(1)问直线EF与AB有怎样的位置关系?加以证明;(2)若∠CEF=70°,求∠ACB的度数.吉林省长春市农安县2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题:每小题3分,共30分。

1.如果水位下降3米记作﹣3米,那么水位上升4米,记作()A.1米B.7米C.4米D.﹣7米【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,下降记为负,可得上升的表示方法.【解答】解:如果水位下降3米记作﹣3米,那么水位上升4米,记作4米,故选:C.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.2.已知一个数的绝对值等于2,那么这个数与2的和为()A.4 B.4或﹣4 C.0 D.4或0【考点】有理数的加法;绝对值.【分析】根据绝对值先求出这个数,再根据有理数的加法,即可解答.【解答】解:∵一个数的绝对值等于2,∴这个数为2或﹣2,∴2+2=4,﹣2+2=0,故选:D.【点评】本题考查了有理数的加法,解决本题的关键是先根据绝对值的定义确定这个数.3.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图所示图形中,不是正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】根据平面图形的折叠及正方体的展开图解题.注意带“田”字的不是正方体的平面展开图.【解答】解:A、B、D、都不是正方体的展开图,故选项错误;C、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图.故选:C.【点评】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.5.若﹣x2y m﹣1是五次单项式,则m的值为()A.3 B.4 C.5 D.6【考点】单项式.【分析】根据次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.【解答】解:因为﹣x2y m﹣1是五次单项式,所以2+m﹣1=5,解得m=4.故选B.【点评】此题主要考查了单项式的指数定义,做题时首先看准单项式里有哪几个字母,再把指数加起来即可.6.把多项式5x2y3﹣2x4y2+7+3x5y按x的降幂排列后,第三项是()A.5x2y3B.﹣2x4y2C.7 D.3x5y【考点】多项式.【分析】按照x的降幂排列即可.【解答】解:把多项式5x2y3﹣2x4y2+7+3x5y按x的降幂排列为:3x5y﹣2x4y2+5x2y3,第三项为:5x2y3.故选:A.【点评】此题考查了多项式,熟练掌握多项式的定义是解本题的关键.7.(a+b﹣c)(a﹣b﹣c)=[a+□][a﹣□],□里所填的各项分别是()A.b﹣c,b+c B.﹣b+c,b﹣c C.b﹣c,b﹣c D.﹣b+c,b+c【考点】去括号与添括号.【分析】根据括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号,即可得出答案.【解答】解:(a+b﹣c)(a﹣b﹣c)=[a+(b﹣c)][a﹣(b+c)].故答案为:b﹣c,b+c.故选:A.【点评】本题考查了添括号,添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.8.若x、y为有理数,下列各式成立的是()A.(﹣x)3=x3B.(﹣x)4=﹣x4C.x4=﹣x4D.﹣x3=(﹣x)3【考点】有理数的乘方.【分析】分别利用有理数的乘方运算法则分析得出答案.【解答】解:A、(﹣x)3=﹣x3,故此选项错误;B、(﹣x)4=x4,故此选项错误;C、x4=﹣x4,此选项错误;D、﹣x3=(﹣x)3,正确.故选:D.【点评】此题主要考查了有理数的乘方运算,正确掌握运算法则是解题关键.9.若点B在直线AC上,AB=10,BC=5,则A、C两点间的距离是()A.5 B.15 C.5或15 D.不能确定【考点】两点间的距离.【分析】分C在线段AB上和C在线段AB的延长线上两种情况,根据线段的和差、几何图形计算即可.【解答】解:当C在线段AB上时,AC=AB﹣BC=10﹣5=5;当C在线段AB的延长线上时,AC=1B+BC=10+5=15.故选:C.【点评】本题考查了两点间的距离,掌握线段的和差计算、灵活运用分类讨论思想是解题的关键.10.点P为直线MN外一点,点A、B、C为直线MN上三点,PA=4厘米,PB=5厘米,PC=2厘米,则P到直线MN的距离为()A.4厘米B.2厘米C.小于2厘米D.不大于2厘米【考点】点到直线的距离.【分析】根据题意画出图形,进而结合点到直线的距离得出符合题意的答案.【解答】解:如图所示:∵PA=4厘米,PB=5厘米,PC=2厘米,∴P到直线MN的距离为:不大于2厘米.故选:D.【点评】此题主要考查了点到直线的距离,正确画出图形是解题关键.二、填空题:每小题4分,共40分。

11.比较大小:﹣0.02<1.【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣0.02<1.故答案为:<.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.﹣的相反数是.【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣的相反数是.故答案为:.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.13.2.561精确到0.1的近似数是 2.6.【考点】近似数和有效数字.【分析】把百分位上的数字6进行四舍五入即可.【解答】解:2.561≈2.6(精确到0.1).故答案为2.6.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.14.如果一个几何体的主视图和左视图都是等腰三角形,而且俯视图是一个圆,那么这个几何体是圆锥.【考点】由三视图判断几何体.【分析】利用简单几何体的三视图即可判断出答案.【解答】解:∵主视图和左视图都是等腰三角形,而且俯视图是一个圆,∴这个几何体是圆锥,故答案为:圆锥.【点评】本题考查了由三视图判断几何体,熟练掌握简单几何体的三视图是解题的关键.15.如果两数之和是20,其中一个数用字母x表示,那么这两个数的积为x.【考点】列代数式.【分析】根据其中一个数为x,两数之和为20,得到另一个数,相乘即可.【解答】解:∵两数之和为20,其中一个数用字母x表示,∴另一个数为20﹣x,∴两个数的积为:x.故答案为:x.【点评】本题考查列代数式,得到积的两个因数是本题的关键.16.如果3a x+1b2与﹣7a3b2y是同类项,那么x+y=3.【考点】同类项.【分析】根据同类项的概念求解.【解答】解:∵3a x+1b2与﹣7a3b2y是同类项,∴x+1=3,2y=2,∴x=2,y=1,∴x+y=3,故答案为:3.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.17.在代数式x2+10xy﹣3y2+5kxy﹣(4﹣a)中,当k=﹣2时它不含xy项,当a=4时它不含常数项.【考点】多项式.【分析】首先把多项式合并同类项,不含哪一项就是这项的系数是0,据此即可求解.【解答】解:x2+10xy﹣3y2+5kxy﹣(4﹣a)=x2+(10+5k)xy﹣3y2﹣(4﹣a),它不含xy项则,10+5k=0,解得:k=﹣2,不含常数项,则﹣(4﹣a)=0,解得:a=4.故答案是:﹣2,4.【点评】在多项式中不含哪项,即哪项的系数为0,两项的系数互为相反数,合并同类项时为0.18.已知互余的两个角的差是30°,则这两个角的度数分别是30°,60°.【考点】余角和补角.【分析】设这两个角中较小的一个角为x°,则较大的一个角为(x+30)°,根据互余两角的和为90°列出方程,求解即可.【解答】解:设这两个角中较小的一个角为x°,则较大的一个角为(x+30)°,根据题意得,x+x+30=90,解得x=30,则30+30=60.答:这两个角分别为30°,60°.故答案为30°,60°.【点评】本题考查了余角的定义,掌握互为余角的两个角的和为90度是解题的关键.19.如果一对对顶角互补,那么这两个角的度数是90°.【考点】余角和补角;对顶角、邻补角.【分析】设其中一个角是x°,根据对顶角相等可知另外一个角也是x°,利用互补的两个角的和为180°列出方程,求解即可.【解答】解:设一对对顶角中其中的一个角是x°,则另外一个角也是x°,根据题意得x+x=180,解得x=90.故答案为90°.【点评】此题考查了补角,掌握互补的两个角的和为180°是解题的关键,也考查了对顶角相等的性质.20.如图所示,直线l∥m,将含有45°角的三角形板ABC的直角顶点C放在直线m上.若∠1=25°,则∠2的度数为20°.【考点】平行线的性质.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,即可求得答案∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数.【解答】解:如图,过点B作BD∥l.∵直线l∥m,∴BD∥l∥m,∴∠4=∠1=25°,∵∠ABC=45°,∴∠3=∠ABC﹣∠4=45°﹣25°=20°,∴∠2=∠3=20°.故答案为:20°.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.三、解答题:每小题20分,共20分。

相关文档
最新文档