高中数学中的排列与组合问题
高中数学排列组合问题的常见解题方法和策略(完整版)

高中数学排列组合问题的常见解题方法和策略江西省永丰中学陈保进排列组合问题是高中数学的一个难点,它和实际问题联系紧密,题型多样,解题思路灵活多变,学生不容易掌握。
下面介绍一些常见的排列组合问题的解题方法和策略。
1.相邻问题捆绑法:将相邻的几个元素捆绑成一组,当作一个大元素参与排列例1:A ,B ,C ,D ,E 五人站成一排,如果A ,B 必须相邻,则不同的排法种数为_____解析:把A ,B 捆绑,视为一个整体,整体内部排序,有22A 种情况,再将整体和另外三人排序,有44A 种情况,所以答案为22A ×44A =48注意:小集团问题也可以用捆绑法变式1:7人排成一排,甲、乙两人中间恰好有3人,则不同的排法有_____种解析:把甲、乙及中间3人看作一个整体,答案为720333522=⨯⨯A A A 2.不相邻问题插空法:不相邻问题,可先把其他元素全排列,再把需要不相邻的元素插入到其他元素的空位或两端例2:七人并排站成一行,如果甲乙丙两两不相邻,那么不同的排法种数是_____解析:先将其它4人全排列,共44A 种情况,再将甲乙丙插入到其他4人的空位或两端,共35A 种情况,所以答案为44A ×35A =14403.定序问题用除法:若要求某几个元素必须保持一定的顺序,可用除法例3:A ,B ,C ,D ,E 五人站成一列,如果A 必须在B 前面,则不同的排法种数有_____解析:先将5人全排列,共55A 种情况,考虑A ,B 的顺序有22A 种,符合题意的只有一种,所以答案为602255=A A 4.特殊元素优先考虑例4:8名男生排成一排,其中甲不站最左边,乙不站最右边,有种排法解析:①甲在最右边时,其他的可全排,有77A 种不同排法②甲不在最右边时,可从余下6个位置中任选一个,有16A 种,再排乙,有16A 种排法,其余人全排列,共有77A +16A ×16A ×66A =30960种不同排法5.特殊位置优先考虑例5:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有种解析:翻译工作是特殊位置,先选择一人参加翻译工作,14C 种情况,再从其他5人中选择5人参加导游、导购、保洁工作,有35A 种情况,答案为14C ×35A =2406.分组、分配问题:先分组后分配,如果是整体平均分组或部分平均分组,最后计算组数时要除以n n A (n 为均分的组数),避免重复计数例6:将6本不同的书分给甲、乙、丙3名学生,其中一人得1本,一人得2本,一人得3本,则有________种不同的分法解析:第一步把书按数量1,2,3分成三组,不是平均分组,有332516C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故共有3606033=⨯A 种情况A BC DE变式1:将6本不同的书分给甲、乙、丙3名学生,其中有两人各得1本,一人得4本,则有________种不同的分法解析:第一步把书按数量1,1,4分成三组,为部分平均分组,有1522441516=A C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故有901533=⨯A 种情况变式2:将6本不同的书分给甲、乙、丙3名学生,每人得2本,则有_______种不同的分法解析:第一步把书按数量2,2,2分成三组,为整体平均分组,有1533222426=A C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故有901533=⨯A 种情况变式3:某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有_____种解析:①按照人数2,2,1分成3组;②按照人数3,1,1分成3组答案为15033221112353322112325=⨯+⨯A A C C C A A C C C 7.正难则反,考虑反面:例7:从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为解析:493739=-C C 此法适用于至多、至少、有、没有这类问题8.分类法(含多个限制条件的排列组合问题、多元问题)例8:甲、乙、丙、丁四位同学高考之后计划去A ,B ,C 三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A 社区,乙不去B 社区,则不同的安排方法种数为解析:分2种情况,①乙去A 社区,再将丙丁二人安排到B ,C 社区,有22A 种情况,②乙不去A 社区,则乙必须去C 社区,若丙丁都去B 社区,有1种情况,若丙丁中有1人去B 社区,则先在丙丁中选出1人,安排到B 社区,剩下1人安排到A 或C 社区,有2×2=4种情况,所以答案为2+1+4=7变式1:由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有个解析:元素多,取出的情况多种,个位数字可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个数,合计为300个变式2:在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种解析:只需考虑三张奖券的归属情况,①有三人各得一张奖券,情况数为34A ;②一人获两张奖券一人获一张奖券,情况数为362423=A C ,故答案为609.可重复的排列求幂法例9:把6名实习生分配到7个车间实习,每个车间人数不限,共有种不同方法解析:每名实习生有7种分配方法,答案为7×7×7×7×7×7×7=76种不同的分法10.多排问题单排法例10:6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是解析:先排前排,36A 种情况,再排后排,33A 种情况,答案为720663336==⨯A A A如果没有条件限制,把元素排成几排和排成一排情况一样多变式1:8个人排成前后两排,每排4人,其中甲乙要排在前排,丙要排在后排,有种排法解析:先排甲乙和丙,还剩5个位置,让5个人做全排列,答案为5760551424=⨯⨯A A A 11.相同元素的分配问题隔板法(名额分配问题也可用隔板法)例11:将7个相同的小球放入四个不同的盒子,每个盒子都不空,放法有种解析:可以在7个小球的6个空位中插入3块木板,每一种插法对应一种放法,故放法有3620C =种变式1:把20个相同的球全放入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不少于其编号数,则有种放法解析:先向1,2,3号三个盒子中分别放入0,1,2个球后还余下17个球,然后再把这17个球分成3份,每份至少一球,运用隔板法,共有216120C =种放法12.选排问题先取后排例12:10名同学合影,站成了前排3人,后排7人,现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为解析:首先从后排的7人中抽2人,有27C 方法;再将这2人安排在前排,第一人有4种放法,第二人有5种放法,答案为2745420C ⨯⨯=变式1:摄像师要对已坐定一排照像的6位小朋友的座位顺序进行调整,要求其中恰有3人座位不调整,则不同的调整方案的种数为______解析:从6人中任选3人有36C 种情况,将这3人位置全部进行调整,有1112112C C C ⨯⨯=种情况,答案为36240C ⨯=13.部分合条件问题排除法例13:以正方体的顶点为顶点的四面体共有个解析:正方体8个顶点从中每次取四点,理论上可构成48C 个四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以答案为481258C -=变式1:四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有种A、150种B、147种C、144种D、141种解析:从10个点中任取4个的组合数为410210C =,其中4点共面的分三类:①4点在同一侧面或底面的共4组,即46460C ⨯=种②每条棱上的三点和它的对棱的中点共面,这样的共6种③所有棱的6个中点中,4点构成平行四边形共面的有3种答案为210-(60+6+3)=14114.构造模型,等价转化例14:马路上有编号为1,2,3…9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?解析:此问题相当于一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯种方法。
高中数学中的排列与组合解题技巧

高中数学中的排列与组合解题技巧在高中数学中,排列与组合是一个重要的概念和解题方法。
排列与组合涉及到数学中的计数和选择问题,掌握解题技巧对于理解和应用数学知识至关重要。
本文将介绍一些高中数学中排列与组合的解题技巧,帮助学生更好地理解和应用这一知识点。
一、排列的解题技巧排列是指从给定的元素中选取若干个元素按照一定顺序排列的结果。
在解决排列问题时,需要注意以下几个技巧:1. 使用排列的知识计算全排列:全排列是指将所有元素按照不同顺序排列的结果。
当需要计算给定元素全排列的数量时,可以使用排列的知识进行计算。
例如,在班级中选取任意3名同学参加演讲比赛,全排列的数量为P(全,3)。
2. 全排列中的重复元素处理:在计算全排列时,如果存在重复的元素,需要考虑重复元素的情况。
可以先计算全排列的总数,再除以重复元素的排列数量。
例如,在字母“MATH”中,字母“A”重复了2次,在计算全排列时,需要除以2!来消除重复的排列。
3. 限制条件下的排列计算:在一些题目中,可能会有某些元素需要满足一定的限制条件才能参与排列。
在解决这类问题时,需要先确定限制条件下可选的元素数量,再进行排列计算。
例如,从1-10中选取3个数字,要求所选数字之间的差值不小于2,可以先确定可选数字的范围,然后计算排列的数量。
二、组合的解题技巧组合是指从给定的元素中选取若干个元素无序地排列的结果。
在解决组合问题时,需要注意以下几个技巧:1. 使用组合的知识计算组合数量:组合的数量可以使用组合的公式进行计算。
例如,在10个人中选取3个人参加某项活动,可以使用组合的知识计算C(10, 3)。
2. 考虑组合的逆问题:在一些题目中,可能需要求解满足特定条件的组合数量。
此时可以考虑组合的逆问题,即求解不满足条件的组合数量,然后用总组合数量减去不满足条件的组合数量,得到满足条件的组合数量。
例如,在一组数字中,需要选出3个数字,使其和为15,可以先计算出不满足条件的组合数量,再用总组合数量减去不满足条件的组合数量。
高中数学排列组合

1、排列定义
一般地,从n个不同元素中取出m(m≤n) 个元素按照一定顺序排成一列,叫做从n个不同 元素中取出m个元素的一个排列.
排列的定义中包含两个基本内容: 一是“取出元素”;二是“按照一定顺序排列”.“一定 顺序”就是与位置有关,这也是判断一个问题是不是排列问 题的重要标志.
根据排列的定义,两个排列相同,当且仅当这两个排 列的元素完全相同,而且元素的排列顺序也完全相同.
思考 上述问题1,2 的共同特点是什么?你能将它 们推广到一般情形吗?
一般地,从n个不同的元素中取出m(m n)个元素, 按 照 一 定 顺 序 排 成 一 列,叫 做 从n个 不 同 元 素 中 取
出m个元素的一个排列 (arrangement).
思考 你能归纳一下排列的特征吗?
根据排列的定义,两个排列相同,当且仅当两个排 列的元素完全相同,且元素的排列顺序也相同.例 如在问题2中,123与134的元素不完全相同,它们 是 不 同 的 排 列;123与132虽 然 元 素 完 全 相 同, 但 元 素的排列顺序不同,它们也是不同的排列.
(5)20位同学互通一次电话 (6)20位同学互通一封信
(7)以圆上的10个点为端点作弦 (8)以圆上的10个点中的某一点为起点,作 过另一个点的射线
(9)有10个车站,共需要多少种车票? (10)有10个车站,共需要多少种不同的票价?
例2.某年全国足球甲级 A组 联赛有14
个队参加, 每队要与其余各队在主、客场 分别比赛一次, 共进行多少场比赛?
nn
1n
2 n n m
m 1n
2 1
m
2
1
n! nm!
A
n n
A nm nm
.
高二数学排列和组合知识点

高二数学排列和组合知识点排列与组合是高中数学中的重要内容,它们在解决实际问题时具有广泛的应用。
本文将详细介绍排列和组合的基本概念、公式以及解题方法,帮助学生掌握这一知识点。
基本概念排列和组合都是从一组元素中选择一定数量的元素进行分析的数学方法。
排列强调元素的顺序,而组合则不考虑元素的顺序。
排列1. 排列数公式:从n个不同元素中取出m个元素的所有排列的个数,记作A_{n}^{m},计算公式为:\[ A_{n}^{m} = \frac{n!}{(n-m)!} \]其中n!表示n的阶乘,即从1乘到n。
2. 举例说明:假设有5本不同的书,我们要选出2本来阅读。
如果考虑阅读的顺序,那么第一天读哪本书,第二天读哪本书是有区别的。
这里就有A_{5}^{2}种不同的排列方式。
组合1. 组合数公式:从n个不同元素中取出m个元素的所有组合的个数,记作C_{n}^{m},计算公式为:\[ C_{n}^{m} = \frac{n!}{m!(n-m)!} \]同样,这里的n!表示n的阶乘。
2. 举例说明:继续上述的例子,如果我们只关心选出哪2本书来阅读,而不关心阅读的顺序,那么这就是一个组合问题。
计算方法为C_{5}^{2}。
解题方法1. 区分排列与组合:首先要明确问题是要求排列还是组合。
如果问题中涉及到元素的顺序,那么就是排列问题;如果不涉及顺序,则是组合问题。
2. 公式运用:根据问题的具体要求,选择合适的排列或组合公式进行计算。
3. 实际应用:排列和组合的知识可以应用于许多实际问题,如概率计算、统计分析等。
在解题时,要结合实际情况,灵活运用所学知识。
练习题1. 有7个人排队,其中甲必须排在乙的前面,问有多少种排队的排列方式?2. 一个班级有10个男生和5个女生,从中选出3个代表,其中至少有1个女生的组合有多少种?通过以上介绍和练习题,相信学生可以更好地理解和掌握排列与组合的概念、公式及解题方法。
在实际解题过程中,要注意区分排列和组合的不同,并正确运用公式,这样才能有效地解决问题。
高中数学排列组合问题的类型及解答

高中数学排列组合问题的类型及解答一、相邻问题捆绑法例16名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()种A. 720B. 360 C. 240D. 120解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人进行全排列有种排法;甲、乙两人之间有种排法。
由分步计数原理可知,共有=240种不同排法,选C。
评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素。
二、相离问题插空法例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法。
由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种。
评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。
此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法。
三、定序问题缩倍法例3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号。
现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。
解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能算作一次的挂法,故共有不同的信号种数是=10(种)。
评法:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。
这类问题用缩小倍数的方法求解比较方便快捷。
四、标号排位问题分步法例4同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有()A. 6种 B. 9种C. 11种D. 23种解:此题可以看成是将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,且每个方格的标号与所填数不同的填法问题。
高中数学排列与组合算法解题思路

高中数学排列与组合算法解题思路在高中数学中,排列与组合是一个重要的概念,也是解题的常见考点之一。
掌握排列与组合的算法解题思路,对于高中学生来说是非常重要的。
本文将以具体的题目为例,分析和说明排列与组合的考点和解题技巧,帮助读者更好地理解和应用这一知识点。
一、排列问题排列问题是指从给定的元素中选取若干个元素按照一定的顺序排列的问题。
常见的排列问题有全排列、循环排列等。
1. 全排列问题全排列问题是指从给定的元素中选取所有的元素按照一定的顺序排列的问题。
下面以一个具体的例题来说明全排列的解题思路。
例题:有三个不同的字母A、B、C,从中选取两个字母进行排列,列出所有可能的情况。
解题思路:根据排列的定义,我们知道在这个问题中,有3个元素,选取2个进行排列。
根据排列的计算公式,可以得到全排列的个数为3 × 2 = 6。
我们可以使用穷举法列出所有的情况:AB, AC, BA, BC, CA, CB通过这个例题,我们可以看到全排列问题的解题思路是通过穷举法列出所有的情况,根据排列的计算公式计算出全排列的个数。
2. 循环排列问题循环排列问题是指从给定的元素中选取若干个元素按照一定的顺序排列,并且最后一个元素与第一个元素相连的问题。
下面以一个具体的例题来说明循环排列的解题思路。
例题:有三个不同的字母A、B、C,从中选取两个字母进行循环排列,列出所有可能的情况。
解题思路:根据循环排列的定义,我们知道在这个问题中,有3个元素,选取2个进行循环排列。
循环排列的个数等于全排列的个数除以元素个数,即6 ÷ 3 = 2。
我们可以使用穷举法列出所有的情况:AB, BC, CA通过这个例题,我们可以看到循环排列问题的解题思路是先计算出全排列的个数,然后除以元素个数得到循环排列的个数,最后使用穷举法列出所有的情况。
二、组合问题组合问题是指从给定的元素中选取若干个元素进行组合的问题。
常见的组合问题有从n个元素中选取m个元素的组合、有重复元素的组合等。
高中数学排列组合专项练习(后附答案)

排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的排列数,用____表示.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的组合数,用____表示.3.排列数、组合数的公式及性质)(!n m m −+)m n n n C C =二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ( ) (2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( ) (4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )题组二 教材改编2.[P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.3.[P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.题组三易错自纠4.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种.5.为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.6.寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)三、课中讲解题型一排列问题1.某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)2.用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.3.在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有_____种不同的分派方法.例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a.对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b.对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c.对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.2.有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.3.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.4.方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.5.有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.6.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.7.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有_____个.11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.16. 设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有多少个?排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用.3.排列数、组合数的公式及性质)(!n m m −+C m -1n__ 二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ()(2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( )(4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )【答案】×;×;√;√;×;√题组二教材改编2. [P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.【答案】24“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.3. [P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.【答案】48末位数字排法有A12种,其他位置排法有A34种,共有A12A34=48(种)排法,所以偶数的个数为48.题组三易错自纠4. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种. 【答案】216第一类:甲在左端,有A55=5×4×3×2×1=120(种)排法;第二类:乙在最左端,甲不在最右端,有4A44=4×4×3×2×1=96(种)排法.所以共有120+96=216(种)排法.5. 为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.【答案】540②一个国家派3名,一个国家派2名,一个国家派1名,有C36C23C11A33=360(种);③每个国家各派6. 寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)【答案】45设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符的坐法,设E同学坐在自己的座位上,则其他四位都不坐自己的座位,则有BADC,BDAC,BCDA,CADB,CDAB,CDBA,DABC,DCAB,DCBA,共9种坐法,则恰有一人坐对与自己车票相符座位的坐法有9×5=45(种).三、课中讲解题型一排列问题1. 某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)【答案】1 560由题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560(条)留言.2. 用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.【答案】432根据题意,分三步进行:第一步,先将1,3,5分成两组,共C23A22种排法;第二步,将2,4,6排成一排,共A33种排法;第三步,将两组奇数插入三个偶数形成的四个空位,共A24种排法. 综上,共有C23A22A33 A24=3×2×6×12=432(种)排法.3. 在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________. 【答案】864解析先把数字1,3,5,7作全排列,有A44=24种排法,再排数字6,由于数字6不与3相邻,在排好的排列中,除去3的左、右2个空隙,还有3个空隙可排数字6,故数字6有3种排法,最后排数字2,4,又数字2,4不与6相邻,故在剩下的4个空隙中排上2,4,有A24种排法,故共有A44×3×A24=864(种)排法.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?【答案】(1)从余下的34种商品中,选取2种有C234=561种取法,∴某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984种取法.∴某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1种,从15种假货中选取2种有C120C215=2 100种取法.∴恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3种假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).∴至少有2种假货在内的不同的取法有2 555种.(5)方法一(间接法)选取3种的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.方法二(直接法)选取3种真货有C320种,选取2种真货有C220C115种,选取1种真货有C120C215种,因此共有选取方式C320+C220C115+C120C215=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.【答案】30因为甲、乙两位同学从四个不同的项目中各选两个项目的选法有C24C24种.其中甲、乙所选的项目完全相同的选法有C24种,所以甲、乙所选的项目中至少有1个不相同的选法共有C24C24-C24=30(种).练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种. 【答案】66共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C45+C44+C25C24=66(种).题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.【答案】602位男生不能连续出场的排法共有N1=A33×A24=72(种),女生甲排第一个且2位男生不连续出场的排法共有N2=A22×A23=12(种),所以出场顺序的排法种数为N=N1-N2=60.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.【答案】24根据题意,分两种情况讨论:①A家庭的孪生姐妹在甲车上,甲车上另外的两个孩子要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个孩子中任选一个来乘坐甲车,有C23×C12×C12=12(种)乘坐方式;②A家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个孩子都在甲车上,对于剩余的两个家庭,从每个家庭的2个孩子中任选一个来乘坐甲车,有C13×C12×C12=12(种)乘坐方式,故共有12+12=24(种)乘坐方式.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.【答案】90例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.【答案】36则共有6×6=36(种)不同的保送方案.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a. 对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b. 对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c. 对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.【答案】36由题意可知,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C13·C24·A22=练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)【答案】660方法一只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C12C36A24=480(种)选法.有2名女生时,再选2名男生,有C26种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C26A24=180(种)选法. 所以依据分类计数原理知,共有480+180=660(种)不同的选法.方法二不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26-A26C24=840-180=660(种).练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.【答案】36将产品A与B捆绑在一起,然后与其他三种产品进行全排列,共有A22A44种方法,将产品A,B,C 捆绑在一起,且A在中间,然后与其他两种产品进行全排列,共有A22A33种方法. 于是符合题意的摆法共有A22A44-A22A33=36(种).四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.【答案】18为A25-2=18.2. 有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.【答案】12A33A22=12.3. 某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.【答案】24将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6种排法,再将捆绑在一起的4个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.4. 方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.【答案】62a,b均不为0,且b取互为相反数的两数时抛物线相同,故分a取1与a不取1两类:①a取1时,b2取值为4,9两类,当b2=4和b2=9时,c都有5种情况,此时有2×5=10(种);②a不取1时有C14种,不妨设a取2,则b2取值有1,4,9三类,当b2=1时,c有4种,当b2=4时,c有4种,当b2=9时,c有5种,此时有C14(4+4+5)=52(条)不同的抛物线.故共有10+52=62(种)不同的抛物线.5. 有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.【答案】18由题意知,名次排列的种数为C13A33=18.6. 用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.【答案】72由题可知,五位数要为奇数,则个位数只能是1,3,5.分为两步:先从1,3,5三个数中选一个作为个位数有C13种选法,再将剩下的4个数字排列有A44种排法,则满足条件的五位数有C13·A44=72(个).7. 若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)【答案】11把g,o,o,d 4个字母排一列,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共1种排法,所以总的排法种数为A24=12.其中正确的有一种,所以错误的共有A24-1=12-1=11(种).8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)【答案】60分两类:第一类:3张中奖奖券分给3个人,共A34种分法;第二类:3张中奖奖券分给2个人相当于把3张中奖奖券分两组再分给4人中的2人,共有C23A24种分法.总获奖情况共有A34+C23A24=60(种).9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.【答案】362名内科医生的分法为A22,3名外科医生与3名护士的分法为C23C13+C13C23,共有A22(C23C13+C13C23)=36(种)不同的分法.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有________个.【答案】240由题意,知本题是一个分步计数问题,从1,2,3,4四个数中选取一个有四种选法,接着从这五个数中选取3个在中间三个位置排列,共有A35=60个,根据分步计数原理知,有60×4=240(个).11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.【答案】120先安排小品节目和相声节目,然后让歌舞节目去插空. 安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”. 对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法. 由分类计数原理知,共有36+36+48=120(种)安排方法.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)【答案】1145个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C35·A33=90种,A,B住同一房间有C23·A33=18种,故有90-18=72(种),根据分类计数原理可知,共有42+72=114(种).13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.【答案】360前排3人有4个空,从甲、乙、丙3人中选1人插入,有C14C13种方法,对于后排,若插入的2人不相邻,有A25种方法;若相邻,有C15A22种,故共有C14C13(A25+C15A22)=360(种).14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.【答案】150标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,故可分成(3,1,1)和(2,2,1)15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.【答案】150这三家酒店入住的参会国数目有以下两种可能:满足题意的安排方法共有90+60=150(种).。
高中数学排列组合相关公式3篇

高中数学排列组合相关公式第一篇:排列组合基本概念和公式排列和组合是数学中的重要概念,属于初中和高中数学中的基础知识。
这两个概念通常用于处理有关选择或安排事物的问题。
排列:从n个不同的元素中任选r个元素排成一列,称为从n个不同元素中选r个元素的排列。
排列的基本公式如下:An^r = n(n-1)(n-2) …… (n-r+1)其中An^r表示从n个不同的元素中任选r个元素排成一列的方案数。
例如,从5个不同的元素中任选3个元素排成一列,即为5选3的排列。
根据排列的基本公式,5选3的排列数为An^r=5×4×3=60。
组合:从n个不同的元素中任选r个元素,不考虑元素之间的顺序,称为从n个不同元素中选r个元素的组合。
组合的基本公式如下:Cn^r = n!/r!(n-r)!其中Cn^r表示从n个不同的元素中任选r个元素的组合方案数。
n!表示n的阶乘,即n×(n-1)×(n-2)×……×2×1。
例如,从5个不同的元素中任选3个元素的组合数,即为5选3的组合。
根据组合的基本公式,5选3的组合数为C5^3=5!/(3!2!)=10。
排列和组合的关系:排列和组合有很多类似的性质,但是也有不同点。
其中最重要的一点是:一个排列中,每个元素的位置不同,导致不同的排列。
而在一个组合中,元素之间是不考虑顺序的,所以如果元素相同,不同的顺序算作同一种组合。
第二篇:排列组合的应用排列组合在数学中有着广泛的应用,下面将介绍几个常见的例子。
1. 生日问题如果有23个人在一起,那么至少有两个人生日相同的概率是多少?将每一个人的生日当做一个元素,一共有365个不同的生日(不考虑闰年的情况)。
这时我们要求的其实是在这23个人中选取2个或2个以上有相同生日的概率,也就是不出现任何两个人生日相同的概率。
按照组合的计算方法,我们可以得到不出现任何两个人生日相同的概率为:P = C365^23/365^23 ≈ 0.493所以至少有两个人生日相同的概率为:1-P ≈ 0.5072. 球队比赛现在有5个球队进行比赛,每个球队需要和其他球队各打一场比赛,问总共需要打几场?我们可以将这个问题看作是5个不同的元素进行排列组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学中的排列与组合问题在高中数学中,排列与组合是一个重要的概念和方法。
它们在各种
数学问题中都有广泛的应用,涉及到很多领域,如概率、统计、数论等。
本文将介绍排列与组合的基本概念、性质和应用,帮助读者更好
地理解和运用这些知识。
一、排列问题
排列是指将一组元素按照一定顺序进行排列的方法。
在数学中,排
列的符号通常用P表示。
对于n个元素的集合,从中选择r个元素进行排列,可以得到的排列数目记为P(n, r)。
对于排列,有以下几个基本概念和性质:
1. 阶乘:n的阶乘表示为n!,定义为n! = n * (n-1) * (n-2) * ... * 2 * 1。
例如,4的阶乘为4! = 4 * 3 * 2 * 1 = 24。
2. 全排列:对于n个元素,全排列是指所有可能的排列情况。
全排
列的总数为n!。
3. 有重复元素的排列:当n个元素中包含重复元素时,排列数目会
受到影响。
在这种情况下,排列数目可以通过除以重复元素的阶乘来
计算。
4. 循环排列:循环排列是一种特殊的排列,其中首尾元素是连续的。
对于n个元素的循环排列,有(n-1)!种可能。
排列问题的应用非常广泛,特别是在概率和统计中。
例如,当需要
计算可能的组合数目时,就需要使用排列的概念和方法。
排列还可以
帮助解决问题,如求解问题的总数、计算概率等。
二、组合问题
组合是指从一组元素中选择若干个元素,不考虑其排列顺序的方法。
在数学中,组合的符号通常用C表示。
对于n个元素的集合,从中选
择r个元素进行组合,可以得到的组合数目记为C(n, r)。
对于组合,有以下几个基本概念和性质:
1. 组合数的性质:对于组合数C(n, r),有以下的性质:
- C(n, r) = C(n, n-r);
- C(n, r) = C(n-1, r) + C(n-1, r-1);
- C(n, 0) = C(n, n) = 1。
2. 杨辉三角形:杨辉三角形是一种用于计算组合数的图形。
在杨辉
三角形中,每个数等于它上方两个数的和。
杨辉三角形可以帮助我们
快速计算组合数。
3. 组合恒等式:组合恒等式是一种用于计算组合数的等式。
其中,
最常用的是Vandermonde恒等式和二项式定理。
组合问题的应用也非常广泛。
例如,在概率统计中,我们经常使用
组合来进行计数和计算概率。
组合还可以用于求解问题的可能性、求
解问题的最优解等。
结语
排列与组合是高中数学中的重要概念和方法,对于理解和解决各种
数学问题都有着重要的作用。
通过学习和掌握排列与组合的基本概念、性质和应用,我们可以更好地应对数学问题,提高自己的数学能力。
希望本文对读者有所帮助,并开启大家对排列与组合更深入的探索与
思考。