热学习题解答_第五章 热力学第一定律

合集下载

练习思考-热力学第一定律(物理化学)

练习思考-热力学第一定律(物理化学)

第一章 热力学第一定律首 页难题解析 学生自测题 学生自测答案 难题解析 [TOP]例 1-1某会场开会有1000人参加,若每人平均每小时向周围散发出400kJ 的热量。

试求:(1) 如果以礼堂中空气和椅子等为系统,则在开会时的30分钟内系统的热力学能增加了多少?(2) 如果以礼堂中的空气、人和其他所有的东西为系统,则其热力学能的增加又为多少? 解:(1)开会30分钟时产生的热量为:()J 100.2603010400100083⨯=⨯⨯⨯=Q此为恒容系统,故0=W 根据热力学第一定律: ()J 100.28⨯=+=∆W Q U(2) 因为此为孤立系统,所以:0=∆U例 1-2mol 单原子理想气体在298K 时,分别按下列三种方式从15.00dm 3膨胀到40.00 dm 3:(1)自由膨胀;(2)恒温可逆膨胀;(3)恒温对抗100kPa 外压下膨胀。

求上述三种过程的Q 、W 、ΔU 和ΔH 。

解:(1)自由膨胀过程,0)(0)(1212e ===V V V V p W -⨯--因为理想气体的热力学能和焓都只是温度的函数,而理想气体自由膨胀过程温度不变,所以:ΔU =ΔH =f (T )=00=-∆=W U Q(2)因为理想气体等温过程,所以:ΔU =ΔH =0J 486000.1500.40ln 298314.82ln 12-=⨯⨯⨯-=-V V nRT W = J4860=-=W Q (3)同理,ΔU =ΔH =0J 250010)00.1500.40(100000)(312e -=⨯-⨯-=--=-V V p WJ 2500=-=W Q例 1-3具有无摩擦活塞的绝热气缸内有5mol 双原子理想气体,压力为1013.25kPa ,温度为298.2K 。

(1)若该气体绝热可逆膨胀至101.325kPa ,计算系统所做的功。

(2)若外压从1013.25kPa 骤减至101.325kPa ,系统膨胀所做的功为多少?解:(1) R C V 25m ,=,R C p 27m ,=,4.1/m ,m ,==V p C C γK p T =-γγ1, γγγ--=121112/p p T T4.154)110298(4.1/14.04.04.12=⨯⨯=-T K 绝热 0=Q , )(12m ,T T nC U W V -=∆=kJ 94.14)2.2984.154(314.8255-=-⨯⨯⨯=W (2)对抗恒定外压101.325kPa 绝热膨胀,0=Q ,U W ∆=⎪⎪⎭⎫ ⎝⎛--=--=1122e 12e )(p nRT p nRT p V V p W ⎪⎭⎫ ⎝⎛-⨯⨯-=102.298314.852T )2.298(314.8255)(212m ,-⨯⨯⨯=-=∆T T T nC U VK 5.2212=TkJ 97.7)102.2985.221(314.85-=-⨯⨯-=W 学生自测题 [TOP]一、填空题1、系统的性质分为__________和_____________。

大学物理 热力学第一定律 习题(附答案)

大学物理 热力学第一定律 习题(附答案)
气体对外做的总功(等于系统在过程 1-3 中的总吸热)
A13 = Q13 = 1.25 × 10 4 ( J)
(5)由(1)有系统终态的体积为
hi
5 R , R = 8.31 J / mol ⋅ K 。 2
na
T V3 = V2 ( 2 ) γ−1 = 40 × 21. 5 = 113 ( l) T1 nRT3 2 × 8.31 × 300 p3 = = ÷ 1.013 × 10 5 = 0.44 ( atm) −3 V3 113 × 10
0 . 44
O
om
p (atm ) 1 2
3
三、计算题: 1.2 mol 初始温度为 27 � C ,初始体积为 20 L 的氦气,先等压过程膨胀到体积加倍, 然 后绝热过程膨胀回到初始温度。 (1)在 p-V 平面上画出过程图。 (2)在这一过程中系统总吸热是多少? (3)系统内能总的改变是多少? (4)氦气对外界做的总功是多少?其中绝热膨胀过程对外界做功是多少? (5)系统终态的体积是多少?
5 = 1 × R × 60 = 1.25 × 10 3 ( J) 2
γ
(B) p 0 γ (D) p 0 / 2
(γ = C
p
/ Cv )
p0
解:绝热自由膨胀过程中 Q = 0,A = 0,由热力学第一定律,有 ∆ E = 0 ,膨胀前后系统
[
]
(A) (B) (C) (D)
这是一个放热降压过程 这是一个吸热升压过程 这是一个吸热降压过程 这是一个绝热降压过程
将状态 a、b 分别与 o 点相连有
om
A
O
V1
V2
V
T B
C
Q
V
等压过程中吸收了相同的热量,则它们对外做功之比为 A 1: A 2 = (各量下角标 1 表示氢气,2 表示氦气)

大学物理课后答案第5章

大学物理课后答案第5章

第五章 热力学基础5-1 在水面下50.0 m 深的湖底处(温度为4.0℃),有一个体积为1.0×10-5 m 3的空气泡升到湖面上来,若湖面的温度为17.0℃,求气泡到达湖面的体积。

(大气压P 0 = 1.013×105 Pa ) 分析:将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态。

利用理想气体物态方程即可求解本题。

位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出,其中ρ为水的密度(常取ρ = 1.0⨯103 kg·m -3)。

解:设气泡在湖底和湖面的状态参量分别为(p 1,V 1,T 1)和(p 2,V 2,T 2)。

由分析知湖底处压强为ghp gh p p ρρ+=+=021。

利用理想气体的物态方程可得空气泡到达湖面的体积为()3510120121212m 1011.6-⨯=+==T p V T gh p T p V T p V ρ5-2 氧气瓶的容积为3.2×10-2 m 3,其中氧气的压强为1.30×107 Pa ,氧气厂规定压强降到1.00×106 Pa 时,就应重新充气,以免经常洗瓶。

某小型吹玻璃车间,平均每天用去0.40 m 3 压强为1.01×105 Pa 的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变) 分析:由于使用条件的限制,瓶中氧气不可能完全被使用。

从氧气质量的角度来分析。

利用理想气体物态方程pV = mRT /M 可以分别计算出每天使用氧气的质量m 3和可供使用的氧气总质量(即原瓶中氧气的总质量m 1和需充气时瓶中剩余氧气的质量m 2之差),从而可求得使用天数321/)(m m m n -=。

解:根据分析有RT V Mp m RT V Mp m RT V Mp m 333122111===;;则一瓶氧气可用天数()()5.933121321=-=-=V p V p p m m m n5-3 一抽气机转速ω=400r ּmin -1,抽气机每分钟能抽出气体20升。

大学物理化学1-热力学第一定律课后习题及答案

大学物理化学1-热力学第一定律课后习题及答案

热力学第一定律课后习题一、是非题下列各题中的叙述是否正确?正确的在题后括号内画“√”,错误的画“⨯”。

1.在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的热力学能和焓也不变。

( )2. d U = nC V,m d T这个公式对一定量的理想气体的任何pVT过程均适用。

( )3. 一个系统从始态到终态,只有进行可逆过程才有熵变。

( )4. 25℃时H2(g)的标准摩尔燃烧焓等于25℃时H2O(g)的标准摩尔生成焓。

( )5. 稳定态单质的∆f H(800 K) = 0。

( )二、选择题选择正确答案的编号,填在各题后的括号内:1. 理想气体定温自由膨胀过程为:()。

(A)Q > 0;(B)∆U < 0;(C)W <0;(D)∆H = 0。

2. 对封闭系统来说,当过程的始态和终态确定后,下列各项中没有确定的值的是:( )。

( A ) Q;( B ) Q+W;(C ) W( Q = 0 );( D ) Q( W = 0 )。

3. pVγ = 常数(γ = C p,m/C V,m)适用的条件是:( )(A)绝热过程;( B)理想气体绝热过程;( C )理想气体绝热可逆过程;(D)绝热可逆过程。

4. 在隔离系统内:( )。

( A ) 热力学能守恒,焓守恒;( B ) 热力学能不一定守恒,焓守恒;(C ) 热力学能守恒,焓不一定守恒;( D) 热力学能、焓均不一定守恒。

5. 从同一始态出发,理想气体经可逆与不可逆两种绝热过程:( )。

( A )可以到达同一终态;( B )不可能到达同一终态;( C )可以到达同一终态,但给环境留下不同影响。

6. 当理想气体反抗一定的压力作绝热膨胀时,则:( )。

( A )焓总是不变;(B )热力学能总是增加;( C )焓总是增加;(D )热力学能总是减少。

7. 已知反应H2(g) +12O2(g) ==== H2O(g)的标准摩尔反应焓为∆r H(T),下列说法中不正确的是:()。

热力学第一定律习题及答案

热力学第一定律习题及答案

热⼒学第⼀定律习题及答案热⼒学第⼀定律习题⼀、单选题1) 如图,在绝热盛⽔容器中,浸⼊电阻丝,通电⼀段时间,通电后⽔及电阻丝的温度均略有升⾼,今以电阻丝为体系有:( )A. W =0,Q <0,U <0B. W <0,Q <0,U >0C. W <0,Q <0,U >0D. W <0,Q =0,U >02) 如图,⽤隔板将刚性绝热壁容器分成两半,两边充⼊压⼒不等的空⽓(视为理想⽓体),已知p右> p左,将隔板抽去后: ( )A. Q=0, W =U =0B. Q=0, W U >0C. Q >0, W U >0U =0, Q=W3)对于理想⽓体,下列关系中哪个是不正确的:( )A. (?U/?T)V=0B. (?U/?V)T=0C. (?H/?p)T=0D. (?U/?p)T=04)凡是在孤⽴孤体系中进⾏的变化,其U 和H 的值⼀定是:( )U H U =H=U H <0U =0,H ⼤于、⼩于或等于零不能确定。

5)在实际⽓体的节流膨胀过程中,哪⼀组描述是正确的: ( )A. Q H=p < 0B. Q=H p >0C. Q=H =p <0D. Q H =p <06)如图,叙述不正确的是:( )A.曲线上任⼀点均表⽰对应浓度时积分溶解热⼤⼩H1表⽰⽆限稀释积分溶解热H2表⽰两浓度n1和n2之间的积分稀释热D.曲线上任⼀点的斜率均表⽰对应浓度时HCl的微分溶解热7)H=Q p此式适⽤于哪⼀个过程: ( )A.理想⽓体从101325Pa反抗恒定的10132.5Pa膨胀到10132.5sPaB.在0℃、101325Pa下,冰融化成⽔C.电解CuSO4的⽔溶液D.⽓体从(298K,101325Pa)可逆变化到(373K,10132.5Pa )8) ⼀定量的理想⽓体,从同⼀初态分别经历等温可逆膨胀、绝热可逆膨胀到具有相同压⼒的终态,终态体积分别为V1、V2。

第五章热力学第一定律-2

第五章热力学第一定律-2
等容热效应等于体系内能的增量
讨论等容热的特点:
等容且非体积功为零:W=We + W’=0
△U = Qv + W = Qv 等容, 简单物理过程, 相变化过程,化学变 化过程。
结论:热虽不是一个状态函数,但在W’=0的等容 过程中,它的值等于状态函数热力学能的增量。 在等容这一过程中,系统与环境交换的热量只取决 于初态和末态,而与具体的途径无关。
C v ,m
Cv n
注意:这是一个强度性质,单位是 J· -1· -1 K mol 针对简单物理过程,是显热。
3、简单物理变化过程等容热的计算: QV CV dT n Cv,m dT
Qv n Cv,m dT
T1
T2
当C v,m为常数时,
Qv n C v,m (T2 T1 )
如何求体系变化过程中的热?
§ 1-3热容,恒容热、恒压热
1. 热容 (heat capacity)
(显热:单纯pVT变化)
定义: 系统不发生相变化和化学变化时,体系温度升高1K 时,所需热量 即为热容。单位 J · -1 K
Q δQ C ,C T dT
2.4.1
注意:系统变化无限小量时 Q, W为过程变量用 δQ, δW表示,状态函数变量用d X 表示
平均热容
Q Q C T T2 T1
真热容:
lim Q C dT 0 dT
2 影响C的因素
① 物质性质:物质不同,热容不同 ② 物质的量 热容是广度量,与物质的量有关
1kg物质C :比热容:c J -1 · -1·K-1 Kg 1mol物质C:摩尔热容:Cm J-1 · -1 · -1 mol K
T1

第5、6章(热学部分)习题解答

第5、6章(热学部分)习题解答

第五章气体分子动理论5-6 在容积为332.010m -⨯的容器中,有内能为26.7510⨯ J 的刚性双原子分子理想气体。

求:(1)气体的压强;(2)若容器中分子总数为225.410⨯个,则分子的平均平动动能及气体的温度为多少?分析:(1)由一定量理想气体的内能公式和理想气体物态方程可求出气体的压强,刚性双原子分子的自由度5i =。

(2)由分子数密度定义和p nkT =求出T ,最后由气体分子的平均平动动能公式求出分子的平均平动动能。

解:(1)由2M i E RT μ=和MpV RT μ=得气体压强:(2)分子数密度Nn V=,则该气体的温度: 53222231.35102.0103.6210()5.410 1.3810p pV T K nk Nk --⨯⨯⨯====⨯⨯⨯⨯ 气体分子的平均平动动能为:2322133 1.3810 3.62107.4910()22k kT J ε--⨯⨯⨯⨯===⨯5-7 自行车轮直径为71.12cm ,内胎截面直径为3cm 。

在03C -的空气里向空胎里打气。

打气筒长30cm ,截面半径为1.5cm 。

打了20下,气打足了,问此时胎内压强是多少?设车胎内最后气体温度为07C 。

分析:可根据理想气体物态方程求解此题。

解: 设向自行车内胎所打的空气的摩尔数为γ由理想气体物态方程pV RT γ=得 :111p V RT γ=其中,22231111,203010(1.510),3273270p atm V m T K π--==⨯⨯⨯⨯⨯=-+= 气打足后,胎内空气的体积 22232371.1210(10)2V m ππ--=⨯⨯⨯⨯⨯温度2(7273)280T K K =+=,压强为 2p , 222RT p V γ=1125222111222222211.01310203010(1.510)280371.1210(10)2702pV RT RT pVT p V V T πππ----⋅⨯⨯⨯⨯⨯⨯⨯⨯∴===⨯⨯⨯⨯⨯⨯ 52.8410() 2.8()a p atm -=⨯=25322 6.7510 1.3510()5 2.010E p Pa iV -⨯⨯===⨯⨯⨯5-8 某柴油机的气缸充满空气,压缩前其中空气的温度为047C ,压强为48.6110Pa ⨯。

物理化学课后答案热力学第一定律

物理化学课后答案热力学第一定律

物理化学课后答案热⼒学第⼀定律物理化学课后答案热⼒学第⼀定律公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]第⼆章热⼒学第⼀定律【复习题】【1】判断下列说法是否正确。

(1)状态给定后,状态函数就有⼀定的值,反之亦然。

(2)状态函数改变后,状态⼀定改变。

(3)状态改变后,状态函数⼀定都改变。

(4)因为△U=Q v , △H =Q p ,所以Q v ,Q p 是特定条件下的状态函数。

(5)恒温过程⼀定是可逆过程。

(6)汽缸内有⼀定量的理想⽓体,反抗⼀定外压做绝热膨胀,则△H= Q p =0。

(7)根据热⼒学第⼀定律,因为能量不能⽆中⽣有,所以⼀个系统若要对外做功,必须从外界吸收热量。

(8)系统从状态Ⅰ变化到状态Ⅱ,若△T=0,则Q=0,⽆热量交换。

(9)在等压下,机械搅拌绝热容器中的液体,使其温度上升,则△H =Q p = 0。

(10)理想⽓体绝热变化过程中,W=△U,即W R =△U=C V △T,W IR =△U=C V △T,所以W R =W IR 。

(11)有⼀个封闭系统,当始态和终态确定后;(a )若经历⼀个绝热过程,则功有定值;(b )若经历⼀个等容过程,则Q 有定值(设不做⾮膨胀⼒);(c )若经历⼀个等温过程,则热⼒学能有定值;(d )若经历⼀个多⽅过程,则热和功的代数和有定值。

(12)某⼀化学反应在烧杯中进⾏,放热Q 1,焓变为△H 1,若安排成可逆电池,使终态和终态都相同,这时放热Q 2,焓变为△H 2,则△H 1=△H 2。

【答】(1)正确,因为状态函数是体系的单质函数,体系确定后,体系的⼀系列状态函数就确定。

相反如果体系的⼀系列状态函数确定后,体系的状态也就被惟⼀确定。

(2)正确,根据状态函数的单值性,当体系的某⼀状态函数改变了,则状态函数必定发⽣改变。

(3)不正确,因为状态改变后,有些状态函数不⼀定改变,例如理想⽓体的等温变化,内能就不变。

(4)不正确,ΔH=Qp ,只说明Qp 等于状态函数H 的变化值 ΔH,仅是数值上相等,并不意味着Qp 具有状态函数的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章热力学第一定律5-1、0、020Kg的氦气温度由升为,若在升温过程中:(1)体积保持不变;(2)压强保持不变;(3)不与外界交换热量,试分别求出气体内能的改变,吸收的热量,外界对气体所作的功,设氦气可瞧作理想气体,且,解:理想气体内能就是温度的单值函数,一过程中气体温度的改变相同,所以内能的改变也相同,为:热量与功因过程而异,分别求之如下:(1)等容过程:V=常量A=0由热力学第一定律,(2)等压过程:由热力学第一定律,负号表示气体对外作功,(3)绝热过程Q=0由热力学第一定律5-2、分别通过下列过程把标准状态下的0、014Kg氮气压缩为原体积的一半;(1)等温过程;(2)绝热过程;(3)等压过程,试分别求出在这些过程中气体内能的改变,传递的热量与外界对气体所作的功,设氮气可瞧作理想气体,且,解:把上述三过程分别表示在P-V图上,(1)等温过程理想气体内能就是温度的单值函数,过程中温度不变,故由热一、负号表示系统向外界放热(2)绝热过程由或得由热力学第一定律另外,也可以由及先求得A(3)等压过程,有或而所以===由热力学第一定律,也可以由求之另外,由计算结果可见,等压压缩过程,外界作功,系统放热,内能减少,数量关系为,系统放的热等于其内能的减少与外界作的功。

5-3 在标准状态下的0、016Kg的氧气,分别经过下列过程从外界吸收了80cal的热量。

(1)若为等温过程,求终态体积。

(2)若为等容过程,求终态压强。

(3)若为等压过程,求气体内能的变化。

设氧气可瞧作理想气体,且解:(1)等温过程则故(2)等容过程(3)等压过程5-4 为确定多方过程方程中的指数n,通常取为纵坐标,为横坐标作图。

试讨论在这种图中多方过程曲线的形状,并说明如何确定n。

解:将两边取对数或比较知在本题图中多方过程曲线的形状为一直线,如图所示。

直线的斜率为可由直线的斜率求n。

或即n可由两截距之比求出。

5-5 室温下一定量理想气体氧的体积为,压强为。

经过一多方过程后体积变为,压强为。

试求:(1)多方指数n;(2)内能的变化;(3)吸收的热量;(4)氧膨胀时对外界所作的功。

设氧的。

解:(1)或取对数得(2)=内能减少。

(3)(4)由热力学第一定律也可由求5-6 一摩尔理想气体氦,原来的体积为,温度为,设经过准静态绝热过程体积被压缩为,求在压缩过程中,外界对系统所作的功。

设氦气的。

解:由热力学第一定律5-7 在标准状态下的氧气,经过一绝热过程对外作功。

求终态压强、体积与温度。

设氧气为理想气体,且,解:绝热由热力学第一定律5-8、0、0080Kg氧气。

原来温度为,体积为0、41l,若(1)经过绝热膨胀体积增为4、1l;(2)先经过等温过程再经过等容过程达到与(1)同样的终态。

试分别计算在以上两种过程中外界对气体所作的功。

设氧气可瞧作理想气体,且。

解:如图,将两种过程在图上表示。

(1)绝热过程负号表示系统对外界作功(2)等容过程外界对气体不作功=5-9、在标准状态下,一摩尔单原子理想气体先经过一绝热过程,再经过一等温过程,最后压强与体积均为原来的两倍,求整个过程中系统吸收的热量。

若先经过等温过程再经过绝热过程而达到同样的状态,则结果就是否相同?解:(1)先绝热压缩再等温膨胀,从态1到态2如图,对态2又,仅等温过程吸热(2)先等温膨胀再绝热压缩,气体从态1到态2,如图由(1)知又=仅等温过程态1到态4吸热,=8、31×273ln16=6、3×J可见,结果与(1)中不同,说明热量就是过程量。

5-10、一定量的氧气在标准状态下体积为10、0l,求下列过程中气体所吸收的热量:(1)等温膨胀到20、0l;(2)先等容冷却再等压膨胀到(1)所达到的终态。

设氧气可瞧作理想气体,且。

解:(1)等温膨胀=1、013××10×=702J(2)先等容冷却在等压膨胀对1-2-3全过程:则由热力学第一定律=507J5-11、图5-11中的实线表示一任意形状系统的界面。

设当系统的界面由实线膨胀到虚线的微元过程中,系统总体积增加dv,而在这过程界面上各均受到与界面垂直的外界对系统所作体积功为;若过程为准静态的,则此功又可表示为,其中P表示系统内部均匀压强。

证:如图,当系统的界面由实线膨胀到虚线的微元过程中,所取面元ds移动距离dl,移动方向与相反,所以此微元过程中外界压强对面元ds作的功为由于在界面上各处均匀,且在微元过程中可视为不变,则外界对整个系统所作的体积功为对于无摩擦的准静态过程故此功又可表为其中P表示系统内部均匀压强。

5-13、某气体服从状态方程,内能为:、为常数。

试证明,在准静态绝热过程中,这气体满足方程:常数其中证:由热力学第一定律,(1)由,对准静态绝热过程则(1)式为(2)将微分代入(2)式得:或(3)又,该气体有已知为常数,则为常数。

令则为常数代入(3)式积分得=常数5-14、在时水蒸气的饱与气压为0、029824bar。

若已知在这条件下水蒸气的焓就是2545、0KJ ,水的焓就是100、59 KJ,求在这条件下水蒸气的凝结热。

解:在水蒸气凝结为水的等温等压过程中,系统吸收的热量等于其焓的增加,为=H水-H气=100、59-2545、0=-24444、41 KJ即该条件下水蒸气的凝结热,负号表示水蒸气凝结时放热。

5-15、分析实验数据表明,在1atm下,从300K到1200K范围内,铜的定压摩尔热容量可表示为其中a=2、3×,b=5、92,的单位就是〔〕。

试由此计算在1atm下,当温度从300K增加到1200K时铜的焓的改变。

解:铜在升温过程中压强不变,吸收的热量等于其焓的增加,所以==5-16、设一摩尔固体的物态方程可写作内能可表示为其中a、b、c与均就是常数。

试求:(1)摩尔焓的表达式;(2)摩尔热容量与解:(1)(2)利用先将u表示为T,v的函数===注意:这道题目出的有毛病,因为由热力学关系可证但由本题所给条件=-aT而-T-p=-aT-bp显然不满足()式,即本题条件违背热力学基本关系。

5-17 、若把氮气、氢气与氨气都瞧着作理想气体(p0),由气体热力学性质表[9]可查到它们在298K 的焓值分别为8669J m0、试求在定压下氨的合成热。

氨的合成反应为+解:系统在定压下吸收的热量等于其焓的增加,为==即氮的合成热。

负号表示此合成反应就是放热的。

5-18、料电池就是把化学能直接转化为电能的装置。

图5-18所示就是燃料电池一例。

把氢气与氧气连续通入多孔Ni电极,Ni电极就是浸在KOH电解溶液中的(电极的孔径很小,可使电解液因毛细现象而渗入,但氢与氧气都透不过)。

负极上的化学反应就是,氢与电解液中的氢氧根离于结合,生成离子与水:电子通过电极跑到外电路去。

正极上的化学反应就是,氧与电解液中的水、电子结合为氢氧子:这燃料电池反应的总效果就是:若一燃料电池工作于298K定压下,在反应前后焓的改变为两极电压为。

试求这燃料电池的效率。

解:定压下,1摩尔氢尔与半摩尔氧化合成1摩尔水时吸收的热量为负号表示实际放出的热量为每产生1个水分子就有两个电子自阴极跑到阳极,因而生成1摩尔的水就有个电子自阴极跑到阳极。

每个电子的电量为库仑,故总电量为库仑已知两极间电压为,故所作电功为焦耳则,这燃料电池的效率为5-19、大气温度随高度Z降低的主要原因就是,低处与高处各层间不断发生空气交换。

由于空气的导热性能不好,所以空气在升高时的膨胀(及下降时的压缩)可认为就是绝热过程。

若假设过程就是准静态的,并注意到大气达到稳定机械平衡时压强差与高度的关系,证明空气的温度梯度为其中p为空气压强, 、T分别为紧度与温度,就是空气的。

证:所谓“大气达稳定机械平衡”,指重力场中的气体分子在热运动与重力两种互相对立的作用下的平衡,平衡时分子数密度随高度减小的规律可由玻尔兹曼分布律给出,结合p=nkT可得大气压强差与高度差的关系(等温气压公式):微分得,从有代入上式得(1)认为一定量的空气上升时经历的过程,就是理想气体的准静态绝热膨胀,有取对数,再微分,有或将(1)代入此式得:即空气的温度梯度。

5-20、利用大气压随高度变化的微分公式证明:其中与为地面的温度与压强,p就是高度h处的压强。

假设上升空气的膨胀就是准静态绝热过程。

证:将dp表达式中的变量T用绝热方程换掉后积分即得证明,具体作法如下:取一定量空气在地面与高度z处两状态,由绝热方程得代入dp的表达式中,得或积分整理而所以5-21、图5-21有一除底部外都就是绝热的气筒,被一位置固定的导热板隔成相等的两部分A与B,其中各盛有一摩尔的理想气体氮。

今将80cal 的热量缓慢地同底部供给气体,设活塞上的压强始终保持为1、00atm,求A部与B部温度的改变以及各吸收的热量(导热板的热容量可以忽略)、若将位置固定的导热板换成可以自由滑动的绝热隔板,重复上述讨论、解:(1)导热板位置固定经底部向气体缓慢传热时,A部气体进行的就是准静态等容过程,B部进行的就是准表态等压过程。

由于隔板导热,A、B两部气体温度始终相等,因而=6、7K=139、2J(2)绝热隔板可自由滑动B部在1大气压下整体向上滑动,体积保持不变且绝热,所以温度始终不变。

A部气体在此大气压下吸热膨胀5-22、图5-22所示就是一种测定=C P/C V的装置。

经活塞B将气体压入营容器A中,使压强略高于大气压(设为P1)。

然后迅速开户再关闭活塞C,此时气体绝热膨胀到大气压P0。

经过一段时间,容器中气体的温度又恢复到与室温相同,压强变为P2,假设开启C后关闭C前气体经历的就是准静态绝热过程,试定出求的表达式。

解:由于P1略大于P0,当开启C后,将有一部分气体冲出容器A,把仍留在A中的气体作为研究对象,则从开户C后到关闭C前,系统经历准静态绝热膨胀过程,由状态1(P1,T0)到状态2(P0,T2);从关闭C到留在A的气体恢复室温,系统经历准静态等容吸热过程,由状态2(P0,T2)到状3(P2,T0)。

两过程可表示如图绝热过程中等容过程中取对数整理得:5-23、如图5-23,瓶内盛有气体,一横截面为A的玻璃管通过瓶塞插入瓶内。

玻璃管内放有一质量为m的光滑金属小球(象一个活塞)。

设小球在平衡位置时,气体体积为V,压强为P=P0+(P0为大气压强)现将小球稍向下移,然后放手,则小球将以周期T在平衡位置附近振动。

假定在小再教育上下振动的过程中,瓶内气体进行的过程可瞧作准静态过程,试证明:(1)使小球进行简谐振动的准静态弹性力为这里=C P/C V y为位移。

(2)小球进行简谐振动的周期为(3)由此说明如何利用这些现象测定证:(1)取Y坐标原点在小球平衡位置处,向下为正。

小球所受的大气压力与重力始终为P0A+mg,方向向下。

相关文档
最新文档