步进电机转速与方向控制系统方案设计书
步进电机的PLC控制系统设计方案

一、引言随着微电子技术和计算机技术的发展,可编程序控制器有了突飞猛进的发展,其功能已远远超出了逻辑控制、顺序控制的范围,它与计算机有效结合,可进行模拟量控制,具有远程通信功能等。
有人将其称为现代工业控制的三大支柱<即PLC,机器人,CAD/CAM)之一。
目前可编程序控制器<Programmable Controller)简称PLC已广泛应用于冶金、矿业、机械、轻工等领域,为工业自动化提供了有力的工具。
二、PLC的基本结构PLC采用了典型的计算机结构,主要包括CPU、RAM、ROM和输入/输出接口电路等。
如果把PLC看作一个系统,该系统由输入变量-PLC-输出变量组成,外部的各种开关信号、模拟信号、传感器检测的信号均作为PLC的输入变量,它们经PLC外部端子输入到内部寄存器中,经PLC内部逻辑运算或其它各种运算、处理后送到输出端子,它们是PLC的输出变量,由这些输出变量对外围设备进行各种控制。
三、控制方法及研究1、FP1的特殊功能简介(1> 脉冲输出FP1的输出端Y7可输出脉冲,脉冲频率可通过软件编程进行调节,其输出频率范围为360Hz~5kHz。
(2> 高速计数器<HSC)FP1内部有高速计数器,可同时输入两路脉冲,最高计数频率为10kHz,计数范围-8388608~+8388607。
(3> 输入延时滤波FP1的输入端采用输入延时滤波,可防止因开关机械抖动带来的不可靠性,其延时时间可根据需要进行调节,调节范围为1ms~128ms。
(4> 中断功能FP1的中断有两种类型,一种是外部硬中断,一种是内部定时中断。
2、步进电机的速度控制FP1有一条SPD0指令,该指令配合HSC和Y7的脉冲输出功能可实现速度及位置控制。
速度控制梯形图见图1,控制方式参数见图2,脉冲输出频率设定曲线见图3。
图1 速度控制梯形图图2 控制方式参数图3 脉冲输出频率设定曲线 3、控制系统的程序运行图4 控制系统原理图图4是控制系统的原理接线图,图4中Y7输出的脉冲作为步进电机的时钟脉冲,经驱动器产生节拍脉冲,控制步进电机运转。
步进电机简易控制系统设计

目录第1章设计目的 (3)第2章设计任务与要求 (3)第3章设计思路与方案 (4)3.1 控制电机正/反向转 (4)3.2 控制电机运转速度 (5)第4章硬件电路设计 (5)4.1 主控模块 (5)4.2 驱动控制模块 (6)4.3 按键控制模块 (7)4.4 显示模块 (8)第5章系统软件设计 (9)5.1 主程序 (9)5.2 子程序 (10)第6章系统仿真 (10)6.1 KEIL调试控制程序 (10)6.2 Proteus仿真 (11)第7章收获与体会 (13)附录1 总电路图 (15)附录2 源程序清单 (17)步进电机简易控制系统设计第1章设计目的随着科学技术特别是微型计算机技术的高速发展,单片微机技术也获得了飞速发展。
目前,单片机已经在日常生活和控制领域等方面得到广泛的应用,它正为我国经济的快速发展发挥着举足轻重的作用。
而《单片机原理与应用》是自动化专业的一门重要专业课,对应用能力和动手能力要求很高,课程设计环节是学生学习该课程后进行的一项必不可少的基本训练。
其主要目的是使学生增进对单片机的感性认识,加深对单片机理论方面的理解,巩固学生所学理论知识;使学生掌握单片机的内部功能模块的应用,培养学生系统设计的思想;使我们对单片机理论知识有一个深刻的认识和全面的掌握。
另外通过这一真正意义上的实践活动,我们可以从中发现自己不足之处并能够在自己的深思下和老师的指导下得到及时的解决。
再次,它能使我们的应用能力和科技创新能力得到较大的提高第2章设计任务与要求(1)能用按键控制步进电机的正反装运行。
(2)能在一定范围内控制电机的加速和减速。
(3)在不断电的情况下能通过一个按钮能随时控制电机的停止。
(4)能显示电机当前的运行情况。
第3章设计思路与方案对步进电动机的控制,接口采用软件方法控制步进电动机的旋转。
步进电动机的驱动电路由ULN2003A芯片实现,并通过90C52芯片的P1.0~P1.6端口引脚出发,然后通过ULN2003A芯片再驱动电动机。
步进电机控制及驱动电路的方案设计书

课程设计任务书学生姓名:专业班级:指导教师:工作单位:信息工程学院题目: 步进电机的控制及驱动电路设计初始条件:本设计既可以使用集成移位寄存器、驱动器、555定时器和必要的门电路,以及所需电阻、电容、二极管、三极管、开关等元件。
本设计也可以使用单片机系统构建步进电机的控制及驱动电路。
自行设计所需电源。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、课程设计工作量:1周。
2、技术要求:①设计一个方波发生器提供系统时钟;②设计一个步进电机的驱动信号发生器,可以实现电机正转/反转控制和转速控制;③要求驱动器有足够的输出电流以驱动小功率4相步进电机;④要求可以实现步进电机的单相或双相激励;⑤确定设计方案,按功能模块的划分选择元、器件和集成电路,设计分电路,阐述基本原理。
⑥绘制总体电路原理图。
3、查阅至少5篇参考文献。
按《武汉理工大学课程设计工作规范》要求撰写设计报告书。
全文用A4纸打印,图纸应符合绘图规范。
时间安排:1、2008 年 7 月 5 日集中,作课设具体实施计划与课程设计报告格式的要求说明。
2、2008 年 7 月 5 日,查阅相关资料,学习电路的工作原理。
2、2008 年 7 月 6 日至 2007 年 7月 7 日,方案选择和电路设计。
2、2008 年 7 月 8 日至 2007 年 7 月 10 日,电路调试和设计说明书撰写。
3、2008 年 7 月 11 日上交课程设计成果及报告,同时进行答辩。
课设答疑地点:鉴主14楼电子科学与技术实验室。
指导教师签名:年月日系主任(或责任教师)签名:年月日目录1.步进电机原理 (2)1.1步进电机简介 (2)1.2步进电机原理及控制技术 (2)1.3 步进电机驱动方法 (2)1.4总体设计方框图 (3)1.5设计原理分析 (3)1.5.1元器件介绍 (3)1.5.2方案论证 (5)2硬件设计 (6)2.1控制电路 (6)2.2最小系统 (6)2.3驱动电路 (7)2.4显示电路 (7)2.5总体电路图 (8)3软件设计 (9)4程序编写 (9)5实验心得及体会 (17)参考文献 (17)1.步进电机原理及硬件和软件设计1.1步进电机简介步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。
步进电机控制系统设计方案

目录1 前言 ....................................................2 方案设计 (1)2.1任务 (1)2.3技术方案与论证 (1)3 电路设计3.1系统电路原理......................................................3.2主要元器件选择 ....................................................3.3单元电路设计 ...................................................... 4程序设计................................................4.1系统程序流程 ......................................................4.2系统程序设计 ...................................................... 5.系统仿真5.1 系统仿真5.2 系统仿真结果分析6 总结与体会 (22)参考文献资料 (23)第1章方案设计1.1设计任务1.1.1设计要求(1)用带中断行列式键盘作为数据和暂停等功能的输入(2)七段数码管显示当前步进电机的运行状态(3)采用集成芯片作为步进电机的驱动电路(4)使用PROTEUS软件对程序进行仿真和调试1.1.2设计任务(1)根据设计要求划分功能模块(2)编程实现模块要求(3)根据模块画出总电路图(4)画出模块程序流程图(5)编写整个源程序代码(6)PROTEUS仿真与调试1.2方案设计与论证1.2.1总体方案论证与比较方案一、采用AT89C51单片机作为整机的控制单元。
以AT89C51单片机为核心的控制电路,采用模块化的设计方案,使用行列式键盘作为数据的输入、数码管做数据的输出显示、以L298作为驱动控制步进电机,实现步进电机进行正转、反转、暂停、继续。
步进电机控制系统设计(个人制作)

目录第一章步进电机控制系统设计........................................................................... - 1 -1.1 设计目的................................................................................................... - 1 -1.2 设计任务................................................................................................... - 1 -1.3 设计要求................................................................................................... - 1 -1.3.1 基本功能......................................................................................... - 1 - 第二章系统方案设计和工作原理....................................................................... - 2 -2.1 系统方案设计........................................................................................... - 2 -2.2 工作原理................................................................................................... - 2 - 第三章硬件电路设计........................................................................................... - 4 -3.1 驱动电路的设计....................................................................................... - 4 -3.1.1 脉冲分配器..................................................................................... - 5 -3.1.2 功率驱动单元................................................................................. - 5 -3.2 显示电路和控制按键............................................................................... - 5 - 第四章软件设计流程........................................................................................... - 6 -4.1 主程序设计............................................................................................... - 6 -4.2 调速程序设计........................................................................................... - 6 -4.2.1 电机的启动/停止控制 ................................................................... - 6 -4.2.2 电机正反转控制............................................................................. - 6 -4.2.3 电机加减速控制............................................................................. - 7 - 第五章系统仿真、调试结果及性能分析........................................................... - 8 -5.1 系统仿真................................................................................................... - 8 -5.2 调试结果................................................................................................. - 11 -5.3 性能分析................................................................................................. - 11 - 第六章实验心得................................................................................................. - 12 - 参考文献................................................................................................................. - 13 - 附录1 系统完整原理图...................................................................................... - 14 - 附录2 源程序...................................................................................................... - 15 -摘要步进伺服是一种用脉冲信号进行控制,并将脉冲信号转换成相应的角位移的控制系统。
步进电机正反转及调速设计

步进电机正反转及调速设计陈超渭南师范学院物理与电气工程系2008级电气(1)班摘要:本系统用52系列单片机和LY-36电机驱动芯片并加入了按钮来控制步进电机实现转向、转速等。
系统中使用的四相步进电机,相应的驱动和控制电路对于其整体性能起着非常重要的作用。
经系统调试,能够很好的控制步进电机的正反转、加减速,从而达到预期目的。
整个系统具有结构简单、可靠性高、成本低和实用性强等特点,具有较高的通用性和应用推广价值。
关键词:四相步进电机 52单片机控制 YL-36驱动电路正反转1 绪论1.1 概述步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化系统中,与其他类型的电机相比具有易于精确控制,无累积误差等优点。
步进电机是一种将电脉冲转化为角位移的执行机构。
当步进驱动器接收到一个脉冲信号,就驱动步进电机按设定的方向转一个固定的角度,它的旋转是以固定的角度一步一步运行的,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
步进电机可以作为一种控制用的特种电机,利用其没有累积误差的特点,广泛应用于各种开环控制。
单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上,用它来做一些控制电器一类不是很复杂的工作[1]。
单片机内部也用和电脑功能类似的模块,比如CPU,内存,并行总线,还有和硬盘作用相同的存储器件。
本文设计一种用STC89C52作为核心部件进行逻辑控制及信号产生的步进电机控制系统。
为使步进电机系统的可靠性、通用性、可维护性以及性价比最优,根据系统的功能要求,通过单片机存储器、I/O口、中断、键盘、LED显示器的扩展来实现步进电机的启停、正反转、加减速等功能。
1.2 步进电机及单片机的发展趋势步进电机的发展,将依赖于新型材料的应用、设计手段,以及与驱动技术的最佳匹配。
随着自动控制技术、计算机网络通信技术在众多领域中的快速发展,以及进一步数字化、智能化,步进电机将会在更深入广泛的领域中得意应用。
单片机课程设计-正反转可控的步进电机

正反转可控的步进电机1 引言本课程设计目的是为了进一步掌握单片机系统,加强对系统设计和应用能力的培养而开设的综合设计训练环节。
本系统用51单片机和ULN2003A电机驱动芯片并加入控制按钮来实现步进电机的正、反转控制。
2 设计方案及原理步进电机可以对旋转角度和转动速度进行高精度的控制。
作为控制执行部件,广泛应用于自动控制和精密仪器等领域。
例如在仪器仪表、机床设备以及计算机的外围设备中(如打印机和绘图仪),常有对精确的、可控制的回转源的需要。
在这种情况下,使用步进电机最为理想。
2.1 步进电机控制步进电机两个相邻磁极之间的夹角为60°,线圈绕过相对的两个磁极构成一相。
此外各磁极上还有5个分布均匀的锯形小齿。
电机转子上没有绕组。
当某相绕组通电时,响应的两个磁极就分别形成N-S极,产生磁场,并与转子形成磁路。
如果这是定子的小齿与转子的小齿没有对齐,则在磁场的作用下,转子将转动一定的角度,使转子齿与定子齿对齐,从而使步进电机向前“走”一步。
如果通过单片机按顺序给绕组施加有序的脉冲电流,就可以控制电机的转动,从而进行了数字到角度的转换。
转动的角度大小与施加的脉冲数成正比,转动的速度与脉冲频率成正比,而转动方向则与脉冲的顺序有关。
2.2 步进电机驱动方式步进电机常用的驱动方式是全电压驱动,即在电机移步与锁步时都加载额定电压。
为防止电机过流及改善驱动特性需加限流电阻。
由于步进电机锁步时,限流电阻要消耗掉大量的功率。
因此,限流电阻要有较大功率容量,并且开关管也要有较高的负载能力。
步进电机也可以使用软件方法,即使用单片机实现,这样不但简化了电路,同时降低了成本。
使用单片机以软件方式驱动步进电机,不但可以通过编程方法在一定范围之内自由的设定步进电机的转速,往返转动的角度以及转动次数等;还可以方便灵活的控制步进电机的运行状态,以满足不同用户的需求。
因此常把单片机步进电机控制电路称之为可编程步进电机控制驱动器。
步进电机调速控制系统方案

物联网控制课程设计说明书院(部):信息与电气工程学院专业:____________ 物联网工程_______________ 所在班级:___________ 物联121 _______________ 姓名:____________ 翌毎____________________ 学号:指导教师:______________ 生阴__________________ 成绩:2015年7月目录控制原理与技术课程设计错误!未定义书签。
摘要2一、设计的目的与要求21.1设计目的21.2设计要求3二•方案的设计32. 1设计分析32.2方案选择42. 2.1核心单片机的选择42.2.2步进电机选择92. 2.3程序流程图112.2.4结构框图132. 2.5程序设计14结论17致18参考文献18步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。
在非超载的情况下,电机的转速湄止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的本文应用单片机AT89C52和步进电机驱动器等,构建了步进电机控制器和驱动器为一体的步进电机控制系统。
通过AT89C52完成步进电机的各种运行控制方式,实现步进电机的正反转控制和加减速控制。
整个系统采用模块化设计,通过人机交互换接口可实现各功能设置,操作方便,结构简单。
该系统可应用于步进电机在机电一体化控制等大多数场合。
一'设计的目的与要求1・1 设计目的(1)完成转速负反馈直流调速控制系统设计(所设计系统可以是同学们自行选定的控制系统),要求运用已学过的各类传感器、执行器、微控制器、I/O 接口等知识,完成该系统的硬件方案、设备选型和系统设计.(2)通过课程设计,巩固和加深了对“微机原理与接口技术”课程中所学的理论知识和实验能力,基本掌握计算机接口应用电路的一般设计方法,提高电子电路的设计和实验能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
步进电机转速及方向控制系统设计摘要步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。
控制系统通过单片机存储器、I/O接口、中断、键盘、LED显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。
为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。
人们用它来驱动时钟和其他采用指针的仪器,打印机、绘图仪,磁盘光盘驱动器、各种自动控制阀、各种工具,还有机器人等机械装置。
此外作为执行元件,步进电机是机电一体化的关键产品之一,被广泛应用在各种自动化控制系统中,随着微电子和计算机技术的发展,它的需要量与日俱增,在各个国民经济领域都有应用。
步进电机是机电数字控制系统中常用的执行元件,由于其精度高、体积小、控制方便灵活,因此在智能仪表和位置控制中得到了广泛的应用,大规模集成电路的发展以及单片机技术的迅速普及,为设计功能强,价格低的步进电机控制驱动器提供了先进的技术和充足的资源。
关键词:步进电机;转速控制;方向控制;单片机控制1.步进电机原理及硬件和软件设计1.1步进电机原理及控制技术由于步进电机是一种将电脉冲信号转换成直线或角位移的执行元件,它不能直接接到交直流电源上,而必须使用专业设备----步进电机控制驱动器,典型步进电机控制系统如图1所示:控制器可以发出脉冲频率从几赫兹到几千赫兹可以连续变化的脉冲信号,它为环形分配器提供脉冲序列,环形分配器的主要功能是把来自控制环节的脉冲序列按一定的规律分配后,经过功率放大器的放大加到步进电机驱动电源的各项输入端,以驱动步进电机的转动,环形分配器主要有两大类:一类是用计算机软件设计的方法实现环形分配器要求的功能,通常称软环形分配器。
另一类是用硬件构成的环形分配器,通常称硬环形分配器。
功率放大器主要对环形分配器的较小输出信号进行放大,以达到驱动步进电机的目的,步进电机的基本控制包括转向控制和速度控制两个方面。
从结构上看,步进电机分为三相单三拍、三相双三拍和三相六拍3种,其基本原理如下:(1)换相顺序的控制通电换相这一过程称为脉冲分配。
例如,三相步进电机在单三拍的工作方式下,其各相通电顺序为A→B→C→A,通电控制脉冲必须严格按照这一顺序分别控制A、B、C相的通断。
三相双三拍的通电顺序为AB→BC→CA→AB,三相六拍的通电顺序为A→AB→B→BC→C→CA→A。
(2)步进电机的换向控制如果给定工作方式正序换相通电,步进电机正转。
若步进电机的励磁方式为三相六拍,即A→AB→B→BC→C→CA→A。
如果按反序通电换相,即A→AC→C→CB→B→BA→A,则电机就反转。
其他方式情况类似。
(3)步进电机的速度控制如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。
两个脉冲的间隔越短,步进电机就转得越快。
调整送给步进电机的脉冲频率,就可以对步进电机进行调试。
(4)步进电机的起停控制步进电机由于其电气特性,运转时会有步进感。
为了使电机转动平滑,减小振动,可在步进电机控制脉冲的上升沿和下降沿采用细分的梯形波,可以减小步进电机的步进角,跳过电机运行的平稳性。
在步进电机停转时,为了防止因惯性而使电机轴产生顺滑,则需采用合适的锁定波形,产生锁定磁力矩,锁定步进电机的转轴,使步进电机转轴不能自由转动。
(5)步进电机的加减速控制在步进电机控制系统中,通过实验发现,如果信号变化太快,步进电机由于惯性跟不上电信号的变化,这时就会产生堵转和失步现象。
所有步进电机在启动时,必须有加速过程,在停止时波形有减速过程。
理想的加速曲线一般为指数曲线,步进电机整个降速过程频率变化规律是整个加速过程频率变化规律的逆过程。
选定的曲线比较符合步进电机升降过程的运行规律,能充分利用步进电机的有效转矩,快速响应性好,缩短了升降速的时间,并可防止失步和过冲现象。
在一个实际的控制系统中,要根据负载的情况来选择步进电机。
步进电机能响应而不失步的最高步进频率称为“启动频率”,于此类似“停止频率”是指系统控制信号突然关断,步进电机不冲过目标位置的最高步进频率。
电机的启动频率、停止频率和输出转矩都要和负载的转动惯量相适应,有了这些数据,才能有效地对电机进行加减速控制。
加速过程有突然施加的脉冲启动频率f0。
步进电机的最高启动频率(突跳频率)一般为0.1KHz到3~4KHz,而最高运行频率则可以达到N*102KHz,以超过最高启动频率的频率直接启动,会产生堵转和失步的现象。
在一般的应用中,经过大量实践和反复验证,频率如按直线上升或下降,控制效果就可以满足常规的应用要求。
用PLC实现步进电机的加P减速控制,实践上就是控制发脉冲的频率。
加速时,使脉冲频率增高,减速则相反。
如果使用定时器来控制电机的速度,加减速控制就是不断改变定时中断的设定值。
速度从v1~v2变化,如果是线性增加,则按给定的斜率加P减速;如果是突变,则按阶梯加速处理。
在此过程中要处理好两个问题:①速度转换时间应尽量短。
为了缩短速度转换的时间,可以采用建立数据表的方法。
结合各曲线段的频率和各段间的阶梯频率,就可以建立一个连续的数据表,并通过转换程序将其转换为定时初始表。
通过在不同的阶段调用相应的定时初值,就可控制电机的运行。
定时初值的计算是在定时中断外实现的,并不占用中断时间,保证电机的高速运行。
②保证控制速度的精确性。
要从一个速度准确达到另一个速度,就要建立一个校验机制,以防超过或未达到所需速度。
(6)步进电机的换向控制步进电机换向时,一定要在电机降速停止或降到突跳频率范围之内在换向,以免产生较大的冲击而损坏电机。
换向信号一定要在前一个方向的最后一个脉冲结束后以及下一个方向的第一个脉冲前发出。
对于脉冲的设计主要要求其有一定的脉冲宽度、脉冲序列的均匀度及高低电平方式。
在某一高速下的正、反向切换实质包含了降速→换向→加速3个过程。
步进电机有如下特点:①步进电机的角位移与输入脉冲数严格成正比,因此当它转一转后,没有累计误差,具有良好的跟随性。
②由步进电机与驱动电路组成的开环数控系统,既非常方便、廉价,也非常可靠。
同时,它也可以有角度反馈环节组成高性能的闭环数控系统。
③步进电机的动态响应快,易于启停、正反转及变速。
④速度可在相当宽的范围内平滑调节,低速下仍能保证获得很大的转矩,因此一般可以不用减速器而直接驱动负载。
⑤步进电机只能通过脉冲电源供电才能运行,它不能直接用交流电源或直流电源。
⑥步进电机自身的噪声和振动比较大,带惯性负载的能力强。
1.2总体设计方框图总体设计方框图如图2所示。
1.3设计原理分析1.3.1元器件介绍(1)步进电机步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。
步进电机区别于其他控制电机的最大特点是:它是通过输入脉冲信号来进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由脉冲信号频率决定。
步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB),步进电机又称为脉冲电机,是工业过程控制和仪表中一种能够快速启动,反转和制动的执行元件,其功用是将电脉冲转换为相应的角位移或直线位移,由于开环下就能实现精确定位的特点,使其在工业控制领域获得了广泛应用。
步进电机的运转是由电脉冲信号控制的,其角位移量或线位移量与脉冲数成正比,每个一个脉冲,步进电机就转动一个角度(不距角)或前进、倒退一步。
步进电机旋转的角度由输入的电脉冲数确定,所以,也有人称步进电机为数字/角度转换器。
①四相步进电机的工作原理该设计采用了20BY-0型步进电机,该电机为四相步进电机,采用单极性直流电源供电。
只要对步进电机的各相绕组按合适的时序通电,就能使步进电机转动。
当某一相绕组通电时,对应的磁极产生磁场,并与转子形成磁路,这时,如果定子和转子的小齿没有对齐,在磁场的作用下,由于磁通具有力图走磁阻最小路径的特点,则转子将转动一定的角度,使转子与定子的齿相互对齐,由此可见,错齿是促使电机旋转的原因。
②步进电机的静态指标及术语相数:产生不同队N、S磁场的激磁线圈对数,常用m表示。
拍数:完成一个磁场周期性变化所需脉冲用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,单四拍运行方式:A-B-C-D-A.,有四相四拍运行方式即AB→BC→CD→DA→AB,四相八拍运行方式即A→AB→B→BC→C→CD→D→DA→A。
步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。
Θ=360度(转子齿角运行拍数),以常规二、四相,转子齿角为50齿角电机为例。
四相运行时步距角为θ=360度/(50*4)=1.8度,八拍运行时步距角为θ=360度/(50*8)=0.9度。
定位转矩:电机在不通电的状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)。
静转矩:电机在额定静态作业下,电机不做旋转运动时,电机转轴的锁定力矩。
此力矩是衡量电机体积的标准,与驱动电压及驱动电源等无关。
虽然静态转矩与电磁激磁匝数成正比,与定子和转子间的气隙有关。
但过分采用减小气隙,增加励磁匝数来提高静转矩是不可取的,这样会造成电机的发热及机械噪音。
③四相步进电机的脉冲分配规律目前,对步进电机的控制主要有分散器件组成的环形脉冲分配器、软件环形脉冲分配器、专用集成芯片环形脉冲分配器等。
本设计利用单片机进行控制,主要是利用软件进行环形脉冲分配。
四相步进电机的工作方式为四相单四拍,双四拍和四相八拍工作的方式。
各种工作方式在电源通电时的时序与波形分别如图 1 a、b、c所示。
本设计的电机工作方式为四相单四拍,根据步进电机的工作的时序和波形图,总结出其工作方式为四相单四拍时的脉冲分配规律,四相双四拍的脉冲分配规律,在每一种工作方式中,脉冲的频率越高,其转速就越快,但脉冲频率高到一定程度,步进电机跟不上频率的变化后电机会出现失步现象,所以脉冲频率一定要控制在步进电机允许的范围内。
(2)89C51单片机Atmel公司生产的89C51单片机是一种低功耗/低电压‘高性能的8位单片机,它采用CMOS和高密度非易失性存储技术,而且其输出引脚和指令系统都与MCS-51兼容;片内的Flash ROM允许在系统内改编程序或用常规的非易失性编程器来编程,内部除CPU外,还包括256字节RAM,4个8位并行I/O口,5个中断源,2个中断优先级,2个16位可编程定时计数器,89C51单片机是一种功能强、灵活性高且价格合理的单片机,完全满足本系统设计需要。