高一数学上册期末试卷(含答案)

合集下载

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。

2023-2024学年上海中学高一上学期数学期末试卷及答案(2024.01)

2023-2024学年上海中学高一上学期数学期末试卷及答案(2024.01)

1上海中学2023学年第一学期高一年级数学期末2024.01一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.函数224y x x =−+的图像关于直线________成轴对称. 2.已知函数()21,2,lg ,2,x x f x x x +<= ≥ 则()()()05f f f +=________.3.已知扇形的弧长和半径都是4,则扇形的面积为________.4.已知点()sin ,cos P αα在第二象限,则角α的终边在第________象限.5.化简:4224441sin cos sin cos sin cos θ⋅θ+θ⋅θ=−θ−θ________.6.若函数()1f x x a =−+在区间[)1,+∞上是严格增函数,则实数a 的取值范围为______. 7.函数()21yf x =−的定义域为()0,1,则函数()1yf x =−的定义域为________.8.函数3132xx y −=−的值域是________.9.已知函数()y f x =是定义域为R 的偶函数,且当0x >时,其表达式为()22x f x x =+,则当0x <时,其表达式为()f x =________.10.已知函数()3log ,034,3x x f x x x <<= −≥,若存在0a b c <<<满足()()f a f b ==()f c ,则()()f a f c abc的取值范围为________.11.已知函数()f x ,()g x ,()h x 的定义域均为R .给出以下3个命题: (1)()f x 一定可以写成一个奇函数和一个偶函数之差;(2)若()f x 是奇函数,且在().0−∞是严格减函数,则()f x 在R 上是严格减函数; (3)若()()f x g x +,()()g x h x +,()()h x f x +在R 上均是严格增函数;则()f x ,()g x ,2()h x 中至少有一介在R 上是严格增函数.其中,假命题的序号为________.12.已知函数()f x 满足:()()()()22114f x f x f x f x +−++−=则下列三个结论: (1)()()()()2220242024186518654f f f f −+−=;(2)()()20232024f f =; (3)()()202418654f f +≤.其中正确的结论是________. 二、选择题(本大题共有4题,满分20分,每题5分) 13.若幂函数()()22235mm f x mm x −−=+−的图像不经过原点,则m 的值为( )A .2B .3−C .3D .3−或214.存在函数()f x 满足:x R ∀∈都有( ) A .()31fx x +=B .211f x x=−C .()211f x x +=+D .()221f x x x +=+15.已知函数()()1,0,2,0,x x f x x x x +< =−≥ 若(1)f x −在区间I 上恒负,且是严格减函数,则区间I 可以是( ).A .()2,1−−B .()1,0−C .()0,1D .()1,216.定义域和值域均为[],a a −(常数0a >)的函数()y f x =和()y g x =的图像如图所示,给出下列四个命题:其中正确的个数是( ). (1)函数()()f g x 有且仅有三个零点; (2)函数()()g f x 有且仅有三个零点; (3)函数()()f f x 有且仅有九个零点; (4)函数()()g g x 有且仅有一个零点,A .1B .2C .3D .43三、解答题(共5道大题,其中17题14分,18题14分,19题14分,20题16分,21题18分,共计76分)17.(本题满分14分.本题共2小题,第(1)小题7分,第(2)小题7分.)已知函数()f x 是R 上的严格增函数,()g x 是R 上的严格减函数,判断函数()()f x g x −的单调性,并利用定义证明.18.(本题满分14分.本题共2小题,第(1)小题8分,第(2)小题6分.) 在下面的坐标系中画出下列函数的图像: (1)2y x −=(2)22x y =−.419.(本题满分14分.本题共2小题,第(1)小题6分,第(2)小题8分.) 解下列关于x 的方程:(1)162log log 163x x +=; (2)()()2416290x x x a a a −+⋅−−⋅=.20.(本题满分16分.本题共有3小题,第(1)小题满分4分,第(2)小题满分6分.第 (3)小题满分6分)某地中学生社会实践小组为研究学校附近某路段交通拥堵情况,经实地调查、数学建模,得该路段上平均行车速度v (单位:km/h )与该路段上的行车数量n (单位:辆)的关系为:2600,9,1033000,10,n n v n n k ≤ += ≥ + 其中常数k R ∈.该路段上每日t 时的行车数量22(125)100n t =−−−+,[)0,24t ∈,t Z ∈.已知某日17时测得的平均行车速度为3km/h .(1)求实数k 的值;(2)定义q nv =,求一天内q 的最大值(结果四舍五入到整数).521.(本题满分18分.本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,在第(3)小题满分8分)若对任意的1a b ≤<,()f x 在区间(],a b 上不存在最小值,且对任意正整数n ,当(),1x n n ∈+时有()()()()()()11f n f x f x f n f n f n −+−+=−+.(1)比较()f n 与()1f n +,*n N ∈的大小关系; (2)判断()f x 是否为[)1,+∞上的增函数,并说明理由; (3)证明:当1x ≥时,()()2f x f x >.6参考答案一、填空题1.1x =;2.1;3.8;4.四;5.12; 6.(],2−∞; 7.()0,2; 8.()1,1,2−∞∪+∞;9.212x x +; 10.10,3; 11.(3); 12.(1)(3); 二、选择题13.A ; 14.D ; 15.B ; 16.B16.定义域和值域均为[],a a −(常数0a >)的函数()y f x =和()y g x =的图像如图所示,给出下列四个命题:其中正确的个数是( ).(1)函数()()f g x 有且仅有三个零点; (2)函数()()g f x 有且仅有三个零点; (3)函数()()f f x 有且仅有九个零点; (4)函数()()g g x 有且仅有一个零点,A .1B .2C .3D .4B(1)方程()0f g x = 有且仅有三个解;()g x 有三个不同值,由于()y g x =是减函数,所以有三个解,正确;(2)方程()0g f x = 有且仅有三个解;从图中可知,()()0f x ,a ∈可能有1,2,3个解,不正确; (3)方程()0f f x = 有且仅有九个解;类似(2)不正确;(4)方程()0g g x = 有且仅有一个解.结合图象,()y g x =是减函数,故正确.7故选B . 三、解答题 17.严格增,证明略 18. 画图略 19. (1)416x or =(2)①当0a ≤时,()23log 1x a =−;②当01a <<时,()()122233log 1,log 2x a x a =−=;③当1a ≥时,()23log 2x a =20.某地中学生社会实践小组为研究学校附近某路段交通拥堵情况,经实地调查、数学建模,得该路段上平均行车速度v (单位:km/h )与该路段上的行车数量n (单位:辆)的关系为:2600,9,1033000,10,n n v n n k≤ +=≥ + 其中常数k R ∈.该路段上每日t 时的行车数量22(125)100n t =−−−+,[)0,24t ∈,t Z ∈.已知某日17时测得的平均行车速度为3km/h .(1)求实数k 的值;(2)定义q nv =,求一天内q 的最大值(结果四舍五入到整数). (1)1000k = (2)522(1)由17时测得的平均行车速度为3/km h ,得100n =, 代入*2600,9,1033000,10,……n n vn N n n k +∈ +,可得2330003100k =+,解得1000k =. (2)①当9…n 时,60060010101nq nv n n===++为增函数,所以6009300109…q ×<+; ②当10…n 时,330001000q nv n n==+在(0,上单调递增,在,)+∞上单调递减,8且由()31.631.7,知,当31,32n n ==时,较大的q 值为最大值, 分别代入31n =和32n =计算,结果均约为522,故522max q ≈. 综上可知,一天内车流量q 的最大值为522.21.若对任意的1a b ≤<,()f x 在区间(],a b 上不存在最小值,且对任意正整数n ,当(),1x n n ∈+时有()()()()()()11f n f x f x f n f n f n −+−+=−+.(1)比较()f n 与()1f n +,*n N ∈的大小关系; (2)判断()f x 是否为[)1,+∞上的增函数,并说明理由; (3)证明:当1x ≥时,()()2f x f x >.(1)()f n <()1f n + (2)不是 (3)证明见解析(3)①首先证明对于任意*n N ∈,()()1.f n f n <+当()1x n,n ∈+时,由()()()()()()11f n f x f x f n f n f n −+−+=−+∣∣ 可知()f x 介于()f n 和()1f n +之间.若()()1,…f n f n +则()f x 在区间(]1n,n +上存在最小值()1f n +,矛盾. 利用归纳法和上面结论可得:对于任意*,k n N ∈,()(),.n k f n f k <<当时 ②其次证明当1…n 且x n >时,()()f x f n >;当2…n 且x n <时,()()…f x f n . 任取x n >,设正整数k 满足1剟n k x k <+,则()()()()1剟剟f n f k f x f k …+. 若存在01厖k x k n +>使得()()0…f x f n ,则()()()()00剟?f x f n f k f x , 即()()0f k f x =.由于当()1x k ,k ∈+时,()()…f k f x , 所以()f x 在区间(0k ,x 有最小值()0f x ,矛盾.9类似可证,当2…n 且x n <时,()()…f x f n .③最后证明:当1…x 时,()()2f x f x >.当1x =时,()()21f f >成立.当1x >时,由21x x x −=>可知,存在*n N ∈使得2x n x <<,所以()()()2…f x f n f x <.当()1x n,n ∈+时,有:()()()()()()11f n f x f x f n f n f n −+−+=−+∣∣ 若()()1f n f n =+,则()()()1,f x f n f n ==+所以()f x 在(]1n,n +上存在最小值,故不具有性质p ,故不成立.若()()1f n f n ≠+,则()(){}()()(){},11min f n f n f x max f n ,f n +<<+假设()()1f n f n +<,则()f x 在(]1n,n +上存在最小值,故不具有性质p ,故假设不成立. 所以当()1x n,n ∈+时,()()()1f n f x f n <<+对于任意*n N ∈都成立. 又()()1f n f n <+,故当()*m n m n N <∈、所以()()()()11,f m f m f n f n <+<…<−<即()()f m f n <.所以当x n <时,则存在正整数m 使得1剟m x m n −<,则()()()()1剟f m f x f m f n −< 所以当x n <时,()()f x f n <,同理可证得当x n >时,()()f x f n >.所以当1x >时,必然存在正整数n ,使得2x n x <<,所以()()()2f x f n f x <<; 当1x =时,()()21f f >显然成立; 所以综上所述:当1…x 时,()()2f x f x >.。

高一上学期期末数学试卷及答案

高一上学期期末数学试卷及答案

高一上期末数学试卷一、选择题1.已知集合M={0,2},则M的真子集的个数为()A.1B.2C.3D.42.已知幂函数y=f(x)的图象过点(,4),则f(2)=()A.B.1C.2D.43.下列条件中,能判断两个平面平行的是()A.一个平面内的两条直线平行于另一个平面B.一个平面内的无数条直线平行于另一个平面C.平行于同一个平面的两个平面D.垂直于同一个平面的两个平面4.已知a=log32,b=log2,c=20.5,则a,b,c的大小关系为()A.a<b<cB.b<a<cC.c<b<aD.c<a<b5.已知函数f(x)的定义域为[0,2],则函数f(x﹣3)的定义域为()A.[﹣3,﹣1]B.[0,2]C.[2,5]D.[3,5]6.已知直线l1:(m﹣2)x﹣y+5=0与l2:(m﹣2)x+(3﹣m)y+2=0平行,则实数m的值为()A.2或4B.1或4C.1或2D.47.如图,关于正方体ABCD﹣A1B1C1D1,下面结论错误的是()A.BD⊥平面ACC1A1B.AC⊥BDC.A1B∥平面CDD1C1D.该正方体的外接球和内接球的半径之比为2:18.过点P(1,2),并且在两坐标轴上的截距相等的直线方程是()A.x+y﹣3=0或x﹣2y=0B.x+y﹣3=0或2x﹣y=0C.x﹣y+1=0或x+y﹣3=0D.x﹣y+1=0或2x﹣y=09.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g (x)=b+log a x的图象大致是()A.B.C.D.10.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A.cm3B.cm3C.2cm3D.4cm311.已知函数y=f(x)的图象关于直线x=1对称,当x<1时,f(x)=|()x ﹣1|,那么当x>1时,函数f(x)的递增区间是()A.(﹣∞,0)B.(1,2)C.(2,+∞)D.(2,5)12.已知点M(a,b)在直线4x﹣3y+c=0上,若(a﹣1)2+(b﹣1)2的最小值为4,则实数c的值为()A.﹣21或19B.﹣11或9C.﹣21或9D.﹣11或19二、填空题13.log240﹣log25=_______.14.已知函数f(x)=则f(f(e))=________.15.如图所示的正四棱台的上底面边长为2,下底面边长为8,高为3,则它的侧棱长为_______.16.给出下列结论:①已知函数f(x)是定义在R上的奇函数,若f(﹣1)=2,f(﹣3)=﹣1,则f (3)<f(﹣1);②函数y=log(x2﹣2x)的单调递增减区间是(﹣∞,0);③已知函数f(x)是奇函数,当x≥0时,f(x)=x2,则当x<0时,f(x)=﹣x2;④若函数y=f(x)的图象与函数y=e x的图象关于直线y=x对称,则对任意实数x,y都有f(xy)=f(x)+f(y).则正确结论的序号是_____________(请将所有正确结论的序号填在横线上).三、解答题17.已知全集U=R,集合A={x|0<log2x<2},B={x|x≤3m﹣4或x≥8+m}(m<6).(1)若m=2,求A∩(∁U B);(2)若A∩(∁U B)=∅,求实数m的取值范围.18.如图,在正三棱锥P﹣ABC中,D,E分别是AB,BC的中点.(1)求证:DE∥平面P AC;(2)求证:AB⊥PC.19.已知△ABC的三个顶点坐标分别为A(﹣1,1),B(7,﹣1),C(﹣2,5),AB边上的中线所在直线为l.(1)求直线l的方程;(2)若点A关于直线l的对称点为D,求△BCD的面积.20.在如图所示的几何体中,四边形DCFE为正方形,四边形ABCD为等腰梯形,AB∥CD,AC=,AB=2BC=2,且AC⊥FB.(1)求证:平面EAC⊥平面FCB;(2)若线段AC上存在点M,使AE∥平面FDM,求的值.21.2016年9月,第22届鲁台经贸洽谈会在潍坊鲁台会展中心举行,在会展期间某展销商销售一种商品,根据市场调查,每件商品售价x(元)与销量t(万元)之间的函数关系如图所示,又知供货价格与销量呈反比,比例系数为20.(注:每件产品利润=售价﹣供货价格)(1)求售价15元时的销量及此时的供货价格;(2)当销售价格为多少时总利润最大,并求出最大利润.22.已知a∈R,当x>0时,f(x)=log2(+a).(1)若函数f(x)过点(1,1),求此时函数f(x)的解析式;(2)若函数g(x)=f(x)+2log2x只有一个零点,求实数a的范围;(3)设a>0,若对任意实数t∈[,1],函数f(x)在[t,t+1]上的最大值与最小值的差不大于1,求实数a的取值范围.高一期末数学试卷(三)参考答案与试题解析一、选择题二、填空题 13.3 14.2 15.6 16.①③④. 三、解答题 17.答案:见解析解析:全集U =R ,集合A ={x |0<log 2x <2}={x |1<x <4}, B ={x |x ≤3m ﹣4或x ≥8+m }(m <6); (1)当m =2时,B ={x |x ≤2或x ≥10}, ∴∁U B ={x |2<x <10}, A ∩(∁U B )={x |2<x <4}; (2)∁U B ={x |3m ﹣4<x <8+m },当∁U B =∅时,3m ﹣4≥8+m ,解得m ≥6,不合题意,舍去; 当∁U B ≠∅时,应满足6634481m m m m <<⎧⎧⎨⎨-≥+≤⎩⎩或解得8673m m ≤<≤-或 ∴实数m 的取值范围是8673m m ≤<≤-或.点拨:(1)m =2时,求出集合B ,根据补集与交集的定义计算即可; (2)求出∁U B ,讨论∁U B =∅和∁U B ≠∅时,对应实数m 的取值范围. 18.答案:见解析解析:(1)∵在正三棱锥P ﹣ABC 中,D ,E 分别是AB ,BC 的中点. ∴DE ∥AC ,∵DE⊄平面P AC,AC⊂平面P AC,∴DE∥平面P AC.(2)连结PD,CD,∵正三棱锥P﹣ABC中,D是AB的中点,∴PD⊥AB,CD⊥AB,∵PD∩CD=D,∴AB⊥平面PDC,∵PC⊂平面PDC,∴AB⊥PC.点拨:(1)推导出DE∥AC,由此能证明DE∥平面P AC.(2)连结PD,CD,则PD⊥AB,CD⊥AB,从而AB⊥平面PDC,由此能证明AB⊥PC.19.答案:见解析解析:(1)AB中点坐标为(3,0),∴直线l的方程为y=(x﹣3),即x+y ﹣3=0;(2)设D(a,b),则,∴a=2,b=4,即D(2,4),直线BC的方程为y+1=(x﹣7),即2x+3y﹣11=0,D到直线BC的距离d==,|BC|==3,∴△BCD的面积S==.点拨:(1)求出AB中点坐标,即可求直线l的方程;(2)求出点A关于直线l的对称点为D,直线BC的方程,即可求△BCD的面积.20.答案:见解析解析:(1)在△ABC中,∵AC=,AB=2BC=2,∴AC2+BC2=AB2.∴AC⊥BC.又∵AC⊥FB,BF∩CB=B,∴AC⊥平面FBC.∵AC⊂平面平面EAC,∴平面EAC⊥平面FCB.(2)线段AC上存在点M,且M为AC中点时,有EA∥平面FDM,证明如下:连接CE与DF交于点N,连接MN.由CDEF为正方形,得N为CE中点.∴EA∥MN.∵MN⊂平面FDM,EA⊄平面FDM,∴EA∥平面FDM.所以线段AC上存在点M,且=1,使得EA∥平面FDM成立.点拨:(1)推导出AC⊥BC,AC⊥FB,从而AC⊥平面FBC,由上能证明平面EAC⊥平面FCB.(2)线段AC上存在点M,且M为AC中点时,连接CE与DF交于点N,连接MN.则EA∥MN.由此推导出线段AC上存在点M,且=1,使得EA∥平面FDM成立.21.答案:见解析解析:(1)每件商品售价x(元)与销量t(万件)之间的函数关系为t=20﹣x (0≤x≤20),设价格为y,则y=,x=15时,t=5万件,y=4万元;(2)总利润L=(x﹣)t=xt﹣20=x(20﹣x)﹣20≤﹣20=80,当且仅当x=10元时总利润最大,最大利润80万元.点拨:(1)每件商品售价x(元)与销量t(万件)之间的函数关系为t=20﹣x (0≤x≤20),设价格为y,则y=,即可求售价15元时的销量及此时的供货价格;(2)总利润L=(x﹣)t=xt﹣20=x(20﹣x)﹣20≤﹣20=80,可得结论.22.答案:见解析解析:(1)∵a∈R,当x>0时,f(x)=log2(+a).函数f(x)过点(1,1),∴f(1)=log2(1+a)=1,解得a=1,∴此时函数f(x)=log2(+1)(x>0).(2)g(x)=f(x)+2log2x=+2log2x=log2(x+ax2),∵函数g(x)=f(x)+2log2x只有一个零点,∴g(x)=f(x)+2log2x=log2(x+ax2)=0∴(+a)•x2=1化为ax2+x﹣1=0∴h(x)=ax2+x=1在(0,+∞)上只有一个解,∴当a=0时,h(x)=x﹣1,只有一个零点,可得x=1;当a≠0时,h(x)=ax2+x﹣1在(0,+∞)上只有一个零点,当a>0时,成立;当a<0时,令△=1+4a=0解得a=﹣,可得x=2.综上可得,a≥0或a=﹣.(3)f(x)=,f′(x)=﹣,当x>0时,f′(x)<0,f(x)在[t,t+1]上的最大值与最小值分别是f(t)与f (t+1),由题意,得f(t)﹣f(t+1)≤1,∴≤2,整理,得a ≥,设Q(t)=,Q′(t)=,当t∈[,1]时,Q′(t)<0,则a≥Q(t),∴a≥Q (),解得a ≥.∴实数a的取值范围是[,+∞).点拨:(1)由f(1)=log2(1+a)=1,解得a=1,由此能求出此时函数f(x)的解析式.(2)g(x)=log2(x+ax2),由函数g(x)只有一个零点,从而h(x)=ax2+x=1在(0,+∞)上只有一个解,由此能求出a.(3)f(x)=,,由题意,得f(t)﹣f(t+1)≤1,从而a ≥,设Q(t)=,Q′(t)=,由此利用导数性质能求出实数a的取值范围.第11页(共11页)。

2023-2024学年江苏省徐州市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省徐州市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省徐州市高一(上)期末数学试卷一、选择题。

本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x|14<2x <4},B ={0,1,2},则A ∩B =( )A .{0}B .{0,1}C .{1,2}D .{0,1,2}2.已知扇形的半径为2cm ,弧长为4cm ,则该扇形的面积为( ) A .1cm 2B .2cm 2C .4cm 2D .8cm 23.若命题“∃x ∈R ,x 2+4x +t <0“是假命题,则实数t 的最小值为( ) A .1B .2C .4D .84.已知a >b ,则下列不等式中,正确的是( ) A .a 2>b 2 B .|a |>|b |C .sin a >sin bD .2a >2b5.若α=4π3,则√1−sinα1+sinα+√1+sinα1−sinα=( ) A .4B .2C .4√33D .2√336.2023年12月30日,我国在酒泉卫星发射中心使用长征二号丙运载火箭成功发射卫星互联网技术试验卫星.在不考虑空气阻力的情况下,火箭的最大速度v (单位:km /s )和燃料的质量M (单位:kg )、火箭(除燃料外)的质量m (单位:kg )的函数关系是v =alg(1+Mm)(a 是参数).当M =5000m 时,v 大约为( )(参考数据:1g 2≈0.3010) A .2.097aB .3.699aC .3.903aD .4.699a7.已知函数f(x)=1x 2+1−e 4x +1e2x ,若a =tan171°,b =tan188°,c =tan365°,则( )A .f (a )<f (b )<f (c )B .f (b )<f (a )<f (c )C .f (b )<f (c )<f (a )D .f (c )<f (b )<f (a )8.已知函数f (x )=x +1x −2,且关于x 的方程f (|e x ﹣1|)+2k|e x −1|−3k 2=0有三个不同的实数解,则实数k 的取值范围为( ) A .(0,23)B .(−12,0)∪(23,+∞)C .(1+√73,+∞) D .{−12}∪(1+√73,+∞)二、选择题。

2023-2024学年江苏省南通市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省南通市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省南通市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若扇形的圆心角为2rad,半径为1,则该扇形的面积为()A.12B.1C.2D.42.已知全集U=R,集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},则集合A∩(∁U B)=()A.{x|﹣1≤x≤3}B.{x|x≤3或x≥4}C.{x|﹣2≤x<﹣1}D.{x|﹣2≤x<4}3.函数f(x)=4x+9x+1,x∈(﹣1,+∞)的最小值为()A.6B.8C.10D.124.若角θ的终边经过点P(1,3),则sinθcosθ+cos2θ=()A.−65B.−25C.25D.655.函数f(x)=2log3x+2x﹣5的零点所在区间是()A.(0,1)B.(1,32)C.(32,2)D.(2,3)6.设函数f(x)=sin(ωx+π4)(ω>0)的最小正周期为T.若2π<T<3π,且对任意x∈R,f(x)+f(π3)≥0恒成立,则ω=()A.23B.34C.45D.567.已知函数f(x)的定义域为R,y=2f(x)﹣sin x是偶函数,y=f(x)﹣cos x是奇函数,则[f(x)]2+[f(π2+x)]2=()A.5B.2C.32D.548.已知函数f(x)=lg|x|﹣cos x,记a=f(log0.51.5),b=f(1.50.5),c=f(sin(1﹣π)),则()A.a<b<c B.a<c<b C.c<b<a D.c<a<b二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.下列各式中,计算结果为1的是()A.sin75°cos15°+cos75°sin15°B.cos222.5°﹣sin222.5°C.√3−tan15°1+√3tan15°D.tan22.5°1−tan222.5°10.若a>b>0,c>d>0,则()A .a ﹣c >b ﹣dB .a (a +c )>b (b +d )C .d a+d<c b+cD .b+d b+c<a+d a+c11.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =x −23B .y =2|x |+1C .y =x 2﹣x ﹣2D .y =2x ﹣2﹣x12.如图,弹簧挂着的小球做上下振动,小球的最高点与最低点间的距离为10(单位:cm ),它在t (单位:s )时相对于平衡位置(静止时的位置)的高度hcm 由关系式ℎ=Asin(πt +π4)确定,其中A >0,t ≥0.则下列说法正确的是( )A .小球在往复振动一次的过程中,从最高点运动至最低点用时2sB .小球在往复振动一次的过程中,经过的路程为20cmC .小球从初始位置开始振动,重新回到初始位置时所用的最短时间为12sD .小球从初始位置开始振动,若经过最高点和最低点的次数均为10次,则所用时间的范围是[2014,2114)三、填空题:本题共4小题,每小题5分,共20分。

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。

(−∞,3)∪(5,+∞)B。

(−∞,3)∪[5,+∞)C。

(−∞,3]∪[5,+∞)D。

(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。

a^3B。

a^3/2C。

a^3/4D。

都不对3.下列指数式与对数式互化不正确的一组是A。

e=1与ln1=0B。

8^(1/3)=2与log2^8=3C。

log3^9=2与9=3D。

log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。

x^2B。

x^3C。

e^xD。

1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。

log2B。

−1/lg2C。

lg2D。

−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。

y=−3x^−2B。

y=3^xC。

y=log_3xD。

y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。

2023-2024学年山东省东营市高一上册期末数学试题(含解析)

2023-2024学年山东省东营市高一上册期末数学试题(含解析)

2023-2024学年山东省东营市高一上册期末数学试题一、单选题1.已知集合{}2560,{10}A x x x B x x =-+≥=-<,则A B = ()A .(,1)-∞B .(2,1)--C .(3,1)--D .(3,)+∞【正确答案】A【分析】解不等式求得集合,A B ,由此求得A B ⋂.【详解】()()256230x x x x -+=--≥,解得2x ≤或3x ≥,所以(][),23,A =-∞⋃+∞,而(),1B =-∞,所以A B = (,1)-∞.故选:A2.十名工人某天生产同一零件,生产的件数分别是:15,17,14,10,15,17,17,16,14,12,设其中位数为a ,众数为b ,第一四分位数为c ,则a ,b ,c 大小关系为()A .a b c <<B .<<c a bC .c b a <<D .a c b<<【正确答案】B【分析】根据中位数、众数、分位数的定义求解.【详解】对生产件数由小到大排序可得:10,12,14,14,15,15,16,17,17,17,所以中位数151515,2a +==众数为b =17,100.25 2.5⨯=,所以第一四分位数为第三个数,即c =14,所以<<c a b ,故选:B.3.已知函数()f x 的定义域为R ,则“()00f =”是“()f x 是奇函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B【分析】通过反例和奇函数的性质可直接得到结论.【详解】若()2f x x =,则()00f =,此时()f x 为偶函数,充分性不成立;若()f x 为奇函数,且其定义域为R ,则()00f =恒成立,必要性成立;∴函数()f x 的定义域为R ,则“()00f =”是“()f x 是奇函数”的必要不充分条件.故选:B.4.如图是函数()f x 的图象,则下列说法不正确的是()A .()02f =-B .()f x 的定义域为[]3,2-C .()f x 的值域为[]22-,D .若()0f x =,则12x =或2【正确答案】C【分析】结合函数的图象和定义域,值域等性质进行判断即可.【详解】解:由图象知(0)2f =-正确,函数的定义域为[3-,2]正确,函数的最小值为3-,即函数的值域为[3-,2],故C 错误,若()0f x =,则12x =或2,故D 正确故选:C .5.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法运算,数学家拉普拉斯称赞“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知lg20.3010,lg30.4771≈≈,设71249N =⨯,则N 所在的区间为()A .()131410,10B .()141510,10C .()151610,10D .()161710,10【正确答案】C【分析】根据对数的运算性质,结合题中所给的数据进行判断即可.【详解】因为712712142449,lg lg4lg9lg2lg314lg224lg3 4.21411.450415N N =⨯=+=+=+≈+≈.6644,所以()15.664415161010,10N =∈.故选:C6.方程24x x +=的根所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【正确答案】B构造函数()24xf x x =+-,利用零点存在定理可得出结论.【详解】构造函数()24xf x x =+-,则函数()f x 为R 上的增函数,()110f =-< ,()220f =>,则()()120f f ⋅<,因此,方程24x x +=24x x +=的根所在的区间为()1,2.故选:B.7.已知偶函数()f x 在[0,)+∞上单调递减,且2是它的一个零点,则不等式(1)0f x ->的解集为()A .(1,3)-B .(,3)(1,)-∞-+∞C .(3,1)-D .(,1)(3,)-∞-⋃+∞【正确答案】A【分析】根据函数的单调性和奇偶性解不等式.【详解】因为偶函数()f x 在[0,)+∞上单调递减,所以()f x 在(],0-∞上单调递增,又因为2是它的一个零点,所以(2)0f =,所以(2)(2)0f f -==,所以当22x -<<时()0f x >,所以由(1)0f x ->可得212x -<-<解得13x -<<,故选:A.8.设()f x 是定义在(,0)(0,)-∞+∞ 上的奇函数,对任意的12,(0,)x x ∈+∞满足()()2112120x f x x f x x x->- 且(1)2f =,则不等式()2f x x >的解集为()A .(1,0)(1,)-⋃+∞B .(1,0)(0,1)-C .,1(),)1(-∞-⋃+∞D .(,2)(2,)-∞-+∞ 【正确答案】A 【分析】设()()f x F x x=,判断出()F x 的奇偶性、单调性,由此求得不等式()2f x x >的解集.【详解】设()()f x F x x =,由于()f x 是定义在(,0)(0,)-∞+∞ 上的奇函数,所以()()()()f x f x F x F x x x--===-,所以()F x 是定义在(,0)(0,)-∞+∞ 上的偶函数.任取120x x <<,120x x -<,则:()()()()()()1221121212120f x f x x f x x f x F x F x x x x x --=-=<,()()12F x F x <,所以()F x 在()0,∞+上递增,则()F x 在(),0∞-上递减.()(1)21f f ==-,()()()11211f F F ===-,对于不等式()2f x x >,当0x >时,有()2f x x >,即()()11F x F x >⇒>;当0x <时,由()2f x x<,即()()110F x F x <-⇒-<<,综上所述,不等式()2f x x >的解集为(1,0)(1,)-⋃+∞.故选:A二、多选题9.有一组样本数据123,,,,n x x x x ,由这组数据得到新样本数据1232,2,2,,2n x x x x ++++ ,则下列结论正确的是()A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样本数据的样本极差相同【正确答案】CD【分析】根据一组数据的平均数、中位数、标准差和极差的定义求解.【详解】数据123,,,,n x x x x 的平均数为123nx x x x x n++++=,新数据1232,2,2,,2n x x x x ++++ 的平均数为123123222222n n x x x x x x x x nx n n++++++++++++==++ ,故A 错误;若数据123,,,,n x x x x 的中位数为i x ,则新数据1232,2,2,,2n x x x x ++++ 的中位数为2i x +,故B 错误;数据123,,,,n x x x x 的标准差为s =,新数据1232,2,2,,2n x x x x ++++ 的标准差为1s s ==,故C 正确;若数据123,,,,n x x x x 中的最大数为,m x 最小数为n x ,则极差为m n x x -,则数据1232,2,2,,2n x x x x ++++ 的极差为22m n m n x x x x +--=-,故D 正确,故选:CD.10.若a b >,则下列不等式一定成立的是()A .22lg lg a b >B .22a b--<C .11a b<D .33a b >【正确答案】BD【分析】应用特殊值23a b =>=-,判断A 、C ,根据2x y =,3y x =的单调性判断B 、D.【详解】当23a b =>=-时,则()22239<-=,而lg 4lg9<,又1123>-,∴A ,C 不正确;∵2x y =,3y x =都是R 上单调递增函数,∴B ,D 是正确的.故选:BD.11.关于x 的方程221x k xx x x-=--的解集中只含有一个元素,则k 的值可能是()A .0B .1-C .1D .3【正确答案】ABD【分析】由方程有意义可得0x ≠且1x ≠,并将方程化为220x x k +-=;根据方程解集中仅含有一个元素可分成三种情况:方程220x x k +-=有且仅有一个不为0和1的解、方程220x x k +-=有两个不等实根,其中一个根为0,另一根不为1、方程220x x k +-=有两个不等实根,其中一个根为1,另一根不为0;由此可解得k 所有可能的值.【详解】由已知方程得:210x x x -≠-≠⎧⎨⎩,解得:0x ≠且1x ≠;由221x k x x x x-=--得:220x x k +-=;若221x k x x x x-=--的解集中只有一个元素,则有以下三种情况:①方程220x x k +-=有且仅有一个不为0和1的解,440k ∴∆=+=,解得:1k =-,此时220x x k +-=的解为1x =-,满足题意;②方程220x x k +-=有两个不等实根,其中一个根为0,另一根不为1;由0200k +⨯-=得:=0k ,220x x ∴+=,此时方程另一根为2x =-,满足题意;③方程220x x k +-=有两个不等实根,其中一个根为1,另一根不为0;由1210k +⨯-=得:=3k ,2230x x ∴+-=,此时方程另一根为3x =-,满足题意;综上所述:1k =-或0或3.故选:ABD.12.已知函数2()21xx f x =+,下列说法正确的是()A .若2()1f a >,则0a >B .()f x 在R 上单调递增C .当120x x +>时,()()121f x f x +>D .函数()y f x =的图像关于点1,02⎛⎫⎪⎝⎭成中心对称【正确答案】ABC【分析】根据指数不等式、函数单调性、对称性等知识对选项进行分析,从而确定正确答案.【详解】A 选项,()21f a >,即221,2221,21,021aa a a aa ⨯>⨯>+>>+,A 选项正确.B 选项,1221()12111212x x x x xf x ==+=-+++-,由于121x y =+在R 上递减,所以()f x 在R 上递增,B 选项正确.C 选项,当120x x +>时,12x x >-,所以()()12f x f x >-,即12122221212112x x x x x -->=+++,所以()()1221222122221212121211x x x x x x x f x f x +=>++=++++,C 选项正确.D 选项,()()112212122x x xf x f x ---==≠-++,D 选项错误.故选:ABC三、填空题13.已知幂函数()f x x α=的图像经过点(8,2),则1()f x -=_________.【正确答案】3x 【分析】根据幂函数的的知识求得α,然后根据反函数的知识求得正确答案.【详解】依题意,幂函数()f x x α=的图像经过点(8,2),所以182,3αα==,所以()13f x x =,令13y x =,解得3x y =,交换,x y 得3y x =,所以13()f x x -=故3x 14.设两个相互独立事件A 与B ,若事件A 发生的概率为p ,B 发生的概率为1p -,则A 与B 同时发生的概率的最大值为______.【正确答案】14##0.25【分析】求出相互独立事件同时发生的概率,利用二次函数求最值.【详解】因为事件A 与B 同时发生的概率为()[]()221110,124p p p p p p ⎛⎫-=-=--+∈ ⎪⎝⎭,所以当12p =时,最大值为14.故1415.已知函数(),y f x x =∈R ,且(1)(2)()(0)3,2,2,,2,N (0)(1)(1)f f f n f n f f f n *===∈- ,写出函数()y f x =的一个解析式:________.【正确答案】()32xf x =⨯【分析】利用累乘的方法可求解函数解析式.【详解】因为(1)(2)()(0)3,2,2,,2,N (0)(1)(1)f f f n f n f f f n *===∈- ,所以(1)(2)()(0)32(0)(1)(1)n f f f n f f f f n ⨯⨯⨯=⨯- ,即()32n f n =⨯,所以函数()y f x =的一个解析式为()32x f x =⨯,故答案为:()32x f x =⨯.16.已知函数2()|2|4f x x x a a a =-+-,若函数()f x 有三个不同的零点123,,x x x ,且123x x x <<,则123111x x x ++的取值范围是_________.【正确答案】1,2⎛⎫+∞ ⎪ ⎪⎝⎭【分析】将()f x 表示为分段函数的形式,对a 进行分类讨论,求得12123,,x x x x x +,由此求得123111x x x ++的取值范围.【详解】()222224,224,2x ax a a x af x x ax a a x a ⎧-+-≥=⎨-++-<⎩,当0a >时,方程有3个不相等的实数根,()f x 在()2,a +∞上递增,所以2x a ≥时,22240x ax a a -+-=有1个根,且2x a <时,22240x ax a a -++-=有2个根,所以()222444040a a a a a ⎧+->⎪⎨-<⎪⎩,解得24a <<.由于123x x x <<,则2121232,4,2x x a x x a a x a +==-+=+,所以122123123111124x x a x x x x x x a a +++=+=+-+()24a a a =+-()()244a a a a a a -=-==--()()221111=----,)2111,311<<-<<,)22110-<-<,()2111<-()212214211+-<=-.当a<0时,当2x a >时,方程22240x ax a a -+-=的判别式()22444160a a a a ∆=--=<,所以此时不符合题意.当0a =时,()22,0,0x x f x x x ⎧≥=⎨-<⎩,不符合题意.综上所述,a 的取值范围是1,2⎛⎫++∞ ⎪ ⎪⎝⎭.故12⎛⎫+∞ ⎪ ⎪⎝⎭研究含有绝对值的函数的零点,关键点在于去绝对值,将所研究的函数表示为分段函数的形式,由此再对参数进行分类讨论,结合零点个数来求得参数的取值范围.在分类讨论时,要注意做到不重不漏.四、解答题17.求解下列问题:(1)2433641)27--⎛⎫-++ ⎪⎝⎭;(2)2log 3491lg2log 27log 8100-+-⋅.【正确答案】(1)2916(2)74-【分析】(1)根据根式、指数运算求得正确答案.(2)根据对数运算求得正确答案.【详解】(1)2433641)27--⎛⎫++ ⎪⎝⎭24333324123--⎡⎤⎛⎫⎛⎫=++⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦224123--⎛⎫=++ ⎪⎝⎭9129116416=++=.(2)2log 3491lg2log 27log 8100--⋅221233223lg10ln e 3log 3log 2-=-+-⋅2313323log 3log 2222=--+-⋅192324=--+-74=-.18.甲、乙两人想参加某项竞赛,根据以往20次的测试,将样本数据分成[50,60),[60,70),[70,80),[80,90),[90,100]五组,并整理得到如下频率分布直方图:已知甲测试成绩的中位数为75.(1)求x ,y 的值,并分别求出甲、乙两人测试成绩的平均数(假设同一组中的每个数据可用该组区间中点值代替);(2)从甲、乙两人测试成绩不足60分的试卷中随机抽取3份,求恰有2份来自乙的概率.【正确答案】(1)0.025x =;0.02y =;甲的平均分为74.5,乙的平均分为73.5;(2)35.(1)根据甲测试成绩的中位数为75,由0.0110100.04(7570)0.5y ⨯+⨯+⨯-=,求得y ,再利用各矩形的面积的和为1,求得x ,然后利用平均数公式求解.(2)易得甲测试成绩不足60分的试卷数2,乙测试成绩不足60分的试卷数3,先得到从中抽3份的基本事件数,再找出恰有2份来自乙的基本事件数,代入古典概型公式求解.【详解】(1)∵甲测试成绩的中位数为75,∴0.0110100.04(7570)0.5y ⨯+⨯+⨯-=,解得0.02y =.∴0.0110100.0410100.005101y x ⨯+⨯+⨯+⨯+⨯=,解得0.025x =.同学甲的平均分为550.0110650.0210750.0410850.02510950.0051074.5⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=.同学乙的平均分为550.01510650.02510750.0310850.0210950.011073.5⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=.(2)甲测试成绩不足60分的试卷数为200.01102⨯⨯=,设为A ,B .乙测试成绩不足60分的试卷数为200.015103⨯⨯=,设为a ,b ,c .从中抽3份的情况有(),,A B a ,(),,A B b ,(),,A B c ,(),,A a b ,(),,A a c ,(),,A b c ,(),,B a b ,(),,B a c ,(),,B b c ,(),,a b c ,共10种情况.满足条件的有(),,A a b ,(),,A a c ,(),,A b c ,(),,B a b ,(),,B a c ,(),,B b c ,共6种情况,故恰有2份来自乙的概率为63105=.19.已知关于x 的不等式2540bx x -+>的解集为{|1x x <或}x a >(1a >).(1)求a ,b 的值;(2)当0x >,0y >,且满足1a b x y+=时,有226x y k k +>--恒成立,求k 的取值范围.【正确答案】(1)41a b =⎧⎨=⎩(2)(3,5)-【分析】(1)根据一元二次不等式的解法可得1和a 是方程2540bx x -+=的两个实数根且0b >,从而利用韦达定理建立方程组即可求解;(2)由均值不等式中“1”的灵活运用可得min ()9x y +=,从而解一元二次不等式22150k k --<即可得答案.【详解】(1)解:因为不等式2540bx x -+>的解集为{|1x x <或}x a >(1a >),所以1和a 是方程2540bx x -+=的两个实数根且0b >,所以5141a b a b ⎧+=⎪⎪⎨⎪⋅=⎪⎩,解得41a b =⎧⎨=⎩;(2)解:由(1)知411x y+=,且0x >,0y >,所以414()559y x x y x y x y x y ⎛⎫+=++=+++= ⎪⎝⎭,当且仅当4y x x y =,即63x y =⎧⎨=⎩时等号成立,依题意有2min ()26x y k k +>--,即2926k k >--,所以22150k k --<,解得35k -<<,所以k 的取值范围为(3,5)-.20.甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.【正确答案】(1)1327;(2)427.【分析】(1)根据规则乙先投进,分情况讨论,求各个情况下概率和即可;(2)根据规则第四次乙先进球或第五次甲先进球,符合题意,求概率和即可.【详解】(1)记“乙获胜”为事件C ,记甲第i 次投篮投进为事件i A ,乙第i 次投篮投进为事件iB 由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知()()()()111122112233P C P A B P A B A B P A B A B A B =+⋅⋅+⋅⋅⋅⋅()()()()()()()()()()()()111122112233P A P B P A P B P A P B P A P B P A P B P A P B =++⋅22332121211332323227⎛⎫⎛⎫⎛⎫⎛⎫=⨯++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)记“投篮结束时乙只投了2个球”为事件D ,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知()()()112211223P D P A B A B P A B A B A =⋅⋅+⋅⋅⋅()()()()()()()()()112211223P A P B P A P B P A P B P A P B P A =+⋅22222121143232327⎛⎫⎛⎫⎛⎫⎛⎫=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.21.提高隧道的车辆通行能力可改善附近路段高峰期间的交通状况.一般情况下,隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)满足关系式:50,020,60,20120.140x v k x x <≤⎧⎪=⎨-<≤⎪-⎩研究表明,当隧道内的车流密度达到120辆/千米时会造成堵塞,此时车流速度为0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅.求隧道内车流量的最大值(精确到1辆/小时)及隧道内车流量达到最大时的车流密度(精确到1辆/千米).2.646=)【正确答案】(1)(1)车流速度v 不小于40千米/小时,车流密度x 的取值范围为(0,80];(2)(2)隧道内车流量的最大值为3250辆/小时,车流量最大时的车流密度87辆/千米.【分析】(1)由120x =(辆/千米)时,0v =(千米/小时)求得k ,可得v 关于x 的关系式,再由40v 求解x 的范围得结论;(2)结合(1)写出隧道内的车流量y 关于x 的函数,再由函数的单调性及基本不等式求出分段函数的最值,则答案可求.【详解】(1)解:由题意,当120x =(辆/千米)时,0v =(千米/小时),代入60140k v x=--,得060140120k =--,解得1200k =.∴50,020120060,20120140x v x x <⎧⎪=⎨-<⎪-⎩,当020x <时,5040v =,符合题意;当20120x <时,令12006040140x--,解得80x ,2080x ∴<.综上,080x <.故车流速度v 不小于40千米/小时,车流密度x 的取值范围为(0,80];(2)由题意得,50,020120060,20120140x x y x x x x <⎧⎪=⎨-<⎪-⎩,当020x <时,50y x =为增函数,20501000y ∴⨯=,等号当且仅当20x =时成立;当20120x <时,12002020(140)28006060()60[140140140x x x y x x x x x x--=-=-=+---2800280060(2060[160(140)140140x x x x=+-=-----60(16060(1603250-=-≈.当且仅当2800140140x x-=-,即14087(20x =-≈∈,120]时成立,综上,y 的最大值约为3250,此时x 约为87.故隧道内车流量的最大值为3250辆/小时,车流量最大时的车流密度87辆/千米.22.函数()()lg 93x x f x a =+-.(1)若()f x 的定义域为R ,求实数a 的取值范围;(2)当0a ≤时,若()f x 的值域为R ,求实数a 的值;(3)在(2)条件下,()g x 为定义域为R 的奇函数,且0x >时,()()109f x x g x =-,对任意的R t ∈,解关于x 的不等式()32()2|()|g x g x tx t g x +-≥.【正确答案】(1)0a ≤;(2)0a =;(3)答案详见解析.【分析】(1)由930x x a +->恒成立分离常数a ,结合指数函数、二次函数的性质求得正确答案;(2)令()93x x h x a =+-,结合()h x 的值域包含()0,∞+列不等式,由此求得正确答案;(3)先求得()g x 的解析式,由此化简不等式()32()2|()|g x g x tx t g x +-≥.对t 进行分类讨论,由此求得正确答案.【详解】(1)由题930x x a +->恒成立,则93x x a <+恒成立,由于1130,322x x >+>,所以211933024x x x ⎛⎫+=+-> ⎪⎝⎭,所以0a ≤;(2)令()93x x h x a =+-,则()h x 的值域包含()0,∞+,因为21193324x x x a a a ⎛⎫+-=+-->- ⎪⎝⎭,所以0a -≤,即0a ≥,又因为0a ≤,所以0a =;(3)当0x >时,()()1093f x x x g x =-=;若0x <,0x ->,()3x g x --=,又因为()g x 为定义域为R 的奇函数,所以当0x <时,()3xg x -=-,所以()3,00,03,0x x x g x x x -⎧>⎪==⎨⎪-<⎩,()()3g x g x =()()20g x x ≠,不等式()()()322g x g x tx t g x +-≥等价于()()()2220g x tx t g x x +-≥≠,由于()3,00,03,0x x x g x x x -⎧>⎪==⎨⎪-<⎩在()(),00,∞-+∞U 上是单调递增函数,所以原不等式等价于()2220x tx t x x +-≥≠,即:()()()200x x t x -+≥≠,当2t <-时,解集为{|2x x ≤且0x ≠或}x t ≥-;当2t =-时,解集为{}0x x ≠;当20t -<≤时,解集为{|x x t ≤-且0x ≠或}2x ≥;当0t >时,解集为{|x x t ≤-或}2x ≥.根据函数的奇偶性求函数的解析式要注意的地方有:1.如果函数的定义域为R ,则对于奇函数来说,必有()00f =,偶函数则不一定;2.当0x >时,0x -<(或当0x <时,0x ->),需要代入对应范围的解析式,结合()()=f x f x -或()()f x f x =--来求得函数的解析式.。

2023-2024学年江苏省南京市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省南京市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省南京市高一(上)期末数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符 1.已知集合M ={﹣1,0,1},N ={0,1,2},则M ∪N =( ) A .{﹣1,0,1,2} B .{﹣1,0,1} C .{﹣1,0,2}D .{0,1}2.命题“∀x ∈R ,x +2≤0”的否定是( ) A .∃x ∈R ,x +2>0 B .∃x ∈R ,x +2≤0 C .∀x ∈R ,x +2>0D .∀x ∉R ,x +2>0 3.若函数f (x )=x 2﹣mx +3在区间(﹣∞,2)上单调递减,则实数m 的取值范围是( ) A .(﹣∞,2]B .[2,+∞)C .(﹣∞,4]D .[4,+∞)4.已知角θ的终边经过点P (x ,﹣5),且tanθ=512,则x 的值是( ) A .﹣13B .﹣12C .12D .135.已知a =log 0.32,b =log 0.33,c =log 32,则下列结论正确的是( ) A .a <b <cB .a <c <bC .c <a <bD .b <a <c6.北京时间2023年5月10日21时22分,搭载天舟六号货运飞船的长征七号遥七运载火箭,在我国文昌航天发射场点火发射,约10分钟后,天舟六号货运飞船与火箭成功分离并进入预定轨道,发射取得圆满成功.在不考虑空气阻力的情况下,火箭的最大速度v (km /s )和燃料的质量M (kg )、火箭(除燃料外)的质量m (kg )的函数关系的表达式为v =2ln(1+Mm ),若火箭的最大速度v 达到10km /s ,则M m的值是( ) A .5e ﹣1B .e 5﹣1C .510﹣1D .105﹣17.已知定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)的值是( )A .−√32B .−12C .12D .√328.在等式a b =N 中,如果只给定a ,b ,N 三个数中的一个数,那么a b =N 就成为另两个数之间的“函数关系”.如果N 为常数10,将a 视为自变量x (x >0且x ≠1),则b 为x 的函数,记为y ,那么x y =10,现将y 关于x 的函数记为y =f (x ).若f (m 2)>f (2m ),则实数m 的取值范围是( ) A .(0,2)B .(1,2)C .(0,1)∪(1,2)D .(0,12)∪(1,2)二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题 9.若a <b <0,c ∈R ,则( )A .a +c <b +cB .ab <b 2C .1a <1bD .b a <ab10.已知关于x 的不等式ax 2+bx +c >0的解集是{x |1<x <3},则( ) A .a <0B .a +b +c =0C .4a +2b +c <0D .不等式cx 2﹣bx +a <0的解集是{x |x <﹣1或x >−13}11.古人立杆测日影以定时间,后来逐步形成了正切和余切的概念.余切函数可以用符号表示为f (x )=cot x ,其中cotx =tan(π2−x),则下列关于余切函数的说法正确的是( )A .定义域为{x |x ≠k π,k ∈Z }B .在区间(π2,π)上单调递增C .与正切函数有相同的对称中心D .将函数y =﹣tan x 的图象向右平移π2个单位可得到函数y =cot x 的图象12.已知扇形的半径为r ,弧长为l .若其周长的数值为面积的数值的2倍,则下列说法正确的是( ) A .该扇形面积的最小值为8 B .当扇形周长最小时,其圆心角为2 C .r +2l 的最小值为9D .1r 2+4l 2的最小值为12三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上 13.已知幂函数f (x )=x α的图象经过点(9,3),则f (8)的值是 . 14.已知sin(x +π6)=13,则sin 2(π3−x)的值是 .15.已知定义在实数集R 上的偶函数f (x )在区间[0,+∞)上是单调增函数,若f (lgx )<f (1),则实数x 的取值范围是 .16.已知函数f(x)=log 9x +12x −1的零点为x 1.若x 1∈(k ,k +1)(k ∈Z ),则k 的值是 ;若函数g (x )=3x +x ﹣2的零点为x 2,则x 1+x 2的值是 .四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明, 17.(10分)(1)已知a +a﹣1=3,求a 12+a−12的值;(2)求值:e ln 2+(lg 5)2+lg 5lg 2+lg 20.18.(12分)设全集U =R ,已知集合A ={x |x 2﹣5x +4≤0},B ={x |m ≤x ≤m +1}. (1)若A ∩B =∅,求实数m 的取值范围;(2)若“x ∈B ”是“x ∈A ”的充分条件,求实数m 的取值范围.19.(12分)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示. (1)求函数f (x )的解析式;(2)求函数y =f (x )在区间[﹣π,0]上的单调减区间.20.(12分)已知函数f(x)=a⋅2x−12x +1(a ∈R).(1)若函数f (x )为奇函数,求a 的值;(2)当a =3时,用函数单调性的定义证明:函数f(x)=a⋅2x−12x +1在R 上单调递增;(3)若函数y =f (x )﹣2x 有两个不同的零点,求a 的取值范围.21.(12分)如图,有一条宽为30m 的笔直的河道(假设河道足够长),规划在河道内围出一块直角三角形区域(图中△ABC )种植荷花用于观赏,C ,B 两点分别在两岸l 1,l 2上,AB ⊥AC ,顶点A 到河两岸的距离AE =h 1,AD =h 2,设∠ABD =α.(1)若α=30°,求荷花种植面积(单位:m 2)的最大值; (2)若h 2=4h 1,且荷花的种植面积为150m 2,求sin α.22.(12分)若存在实数对(a ,b ),使等式f (x )•f (2a ﹣x )=b 对定义域中每一个实数x 都成立,则称函数f (x )为(a ,b )型函数.(1)若函数f (x )=2x 是(a ,1)型函数,求a 的值; (2)若函数g(x)=e 1x 是(a ,b )型函数,求a 和b 的值;(3)已知函数h (x )定义在[﹣2,4]上,h (x )恒大于0,且为(1,4)型函数,当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2.若h (x )≥1在[﹣2,4]恒成立,求实数m 的取值范围.2023-2024学年江苏省南京市高一(上)期末数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符1.已知集合M={﹣1,0,1},N={0,1,2},则M∪N=()A.{﹣1,0,1,2}B.{﹣1,0,1}C.{﹣1,0,2}D.{0,1}解:因为集合M={﹣1,0,1},N={0,1,2},所以M∪N={﹣1,0,1,2},故选:A.2.命题“∀x∈R,x+2≤0”的否定是()A.∃x∈R,x+2>0B.∃x∈R,x+2≤0C.∀x∈R,x+2>0D.∀x∉R,x+2>0解:命题为全称命题,则命题的否定为“∃x∈R,x+2>0”.故选:A.3.若函数f(x)=x2﹣mx+3在区间(﹣∞,2)上单调递减,则实数m的取值范围是()A.(﹣∞,2]B.[2,+∞)C.(﹣∞,4]D.[4,+∞)解:函数f(x)=x2﹣mx+3开口向上,对称轴方程为x=m 2,所以函数的单调递减区间为(﹣∞,m2 ],要使在区间(﹣∞,2)上单调递减,则m2≥2,解得m≥4.即m的范围为[4,+∞).故选:D.4.已知角θ的终边经过点P(x,﹣5),且tanθ=512,则x的值是()A.﹣13B.﹣12C.12D.13解:由题意得,tanθ=512=−5x,故x=﹣12.故选:B.5.已知a=log0.32,b=log0.33,c=log32,则下列结论正确的是()A.a<b<c B.a<c<b C.c<a<b D.b<a<c解:∵log0.33<log0.32<log0.31=0,∴b<a<0,∵log32>log31=0,∴c>0,∴b<a<c.故选:D.6.北京时间2023年5月10日21时22分,搭载天舟六号货运飞船的长征七号遥七运载火箭,在我国文昌航天发射场点火发射,约10分钟后,天舟六号货运飞船与火箭成功分离并进入预定轨道,发射取得圆满成功.在不考虑空气阻力的情况下,火箭的最大速度v (km /s )和燃料的质量M (kg )、火箭(除燃料外)的质量m (kg )的函数关系的表达式为v =2ln(1+Mm ),若火箭的最大速度v 达到10km /s ,则M m的值是( ) A .5e ﹣1B .e 5﹣1C .510﹣1D .105﹣1解:由题意知火箭的最大速度v 达到10km /s ,故10=2ln(1+M m ),即1+Mm =e 5,∴M m =e 5−1. 故选:B .7.已知定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)的值是( )A .−√32B .−12C .12D .√32解:定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)=f(83π)=f(5π3)=f(2π3)=f(−π3)=cos(−π3)=12. 故选:C .8.在等式a b =N 中,如果只给定a ,b ,N 三个数中的一个数,那么a b =N 就成为另两个数之间的“函数关系”.如果N 为常数10,将a 视为自变量x (x >0且x ≠1),则b 为x 的函数,记为y ,那么x y =10,现将y 关于x 的函数记为y =f (x ).若f (m 2)>f (2m ),则实数m 的取值范围是( ) A .(0,2)B .(1,2)C .(0,1)∪(1,2)D .(0,12)∪(1,2)解:因为x y =10,(x >0且x ≠1),所以lgx y =lg 10=1,即ylgx =1, 所以y =f (x )=1lgx,所以函数f (x )在(0,1),(1,+∞)上单调递减, 若f (m 2)>f (2m ),则0<m 2<2m <1,或1<m 2<2m ,解得0<m <12或1<m <2.故选:D .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题 9.若a <b <0,c ∈R ,则( ) A .a +c <b +cB .ab <b 2C .1a <1bD .b a <ab解:对于A ,由a <b ,两边都加上c ,可得a +c <b +c ,故A 正确; 对于B ,a <b <0,两边都乘以b ,可得ab >b 2,故B 不正确; 对于C ,a <b <0,则1a −1b =b−a ab >0,可知1a >1b,故C 不正确;对于D,a<b<0,则ba −ab=b2−a2ab=(b+a)(b−a)ab<0,可得ba<ab,故D正确.故选:AD.10.已知关于x的不等式ax2+bx+c>0的解集是{x|1<x<3},则()A.a<0B.a+b+c=0C.4a+2b+c<0D.不等式cx2﹣bx+a<0的解集是{x|x<﹣1或x>−13}解:因为不等式ax2+bx+c>0的解集是{x|1<x<3},所以a<0且1,3为方程ax2+bx+c=0的两根,A正确;故{1+3=−ba1×3=ca,所以b=﹣4a,c=3a,所以a+b+c=a﹣4a+3a=0,B正确;4a+2b+c=4a﹣8a+3a=﹣a>0,C错误;由不等式cx2﹣bx+a=3ax2+4ax+a<0可得3x2+4x+1>0,解得x<﹣1或x>−13,D正确.故选:ABD.11.古人立杆测日影以定时间,后来逐步形成了正切和余切的概念.余切函数可以用符号表示为f(x)=cot x,其中cotx=tan(π2−x),则下列关于余切函数的说法正确的是()A.定义域为{x|x≠kπ,k∈Z}B.在区间(π2,π)上单调递增C.与正切函数有相同的对称中心D.将函数y=﹣tan x的图象向右平移π2个单位可得到函数y=cot x的图象解:根据cotx=tan(π2−x),所以余切函数的图象如图所示:对于A:函数的定义域为{x|x≠kπ,k∈Z},故A正确;对于B:在区间(π2,π)上单调递减,故B错误;对于C :与正切函数有相同的对称中心,都为(kπ2,0)(k ∈Z ),故C 正确;对于D :将函数y =﹣tan x 的图象向右平移π2个单位可得到函数y =﹣tan (x −π2)=cot x 的图象,故D 正确. 故选:ACD .12.已知扇形的半径为r ,弧长为l .若其周长的数值为面积的数值的2倍,则下列说法正确的是( ) A .该扇形面积的最小值为8 B .当扇形周长最小时,其圆心角为2 C .r +2l 的最小值为9D .1r 2+4l 2的最小值为12解:因为扇形的半径为r ,弧长为l ,所以扇形的周长为2r +l ,面积为12lr ;因为2r +l =2×12lr ,所以l =2rr−1,且r >1;所以扇形的面积为S =12×2r r−1×r =r 2r−1=(r−1)2+2(r−1)+1r−1=(r ﹣1)+1r−1+2≥2√(r −1)⋅1r−1+2=4,当且仅当r ﹣1=1r−1,即r =2时取等号,所以选项A 错误; 扇形的周长为L =2r +2r r−1=2(r ﹣1)+2r−1+4≥2√2(r −1)⋅2r−1+4=8, 当且仅当2(r ﹣1)=2r−1,即r =2时取等号,此时圆心角为|α|=l r =42=2,α=±2,选项B 错误; r +2l =r +4r r−1=r +4+4r−1=(r ﹣1)+4r−1+5≥2√(r −1)⋅4r−1+5=9, 当且仅当r ﹣1=4r−1,即r =3时取等号,选项C 正确; 1r 2+4l 2=1r 2+(r−1)2r 2=1−2r +2r 2=2(1r −12)2+14]≥12,当r =2时取等号,所以选项D 正确.故选:CD .三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上 13.已知幂函数f (x )=x α的图象经过点(9,3),则f (8)的值是 2√2 . 解:根据幂函数f (x )=x α的图象经过点(9,3),可得9α=3,求得α=12,故f (x )=x 12=√x .故f (8)=√8=2√2.故答案为:2√2.14.已知sin(x +π6)=13,则sin 2(π3−x)的值是 89 .解:∵cos (π3−x )=sin(x +π6)=13,∴sin2(π3−x)=1﹣cos2(π3−x)=1−19=89.故答案为:8 9.15.已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(lgx)<f(1),则实数x的取值范围是110<x<10.解:∵f(x)定义在实数集R上的偶函数,在区间[0,+∞)上是单调增函数∴f(x)中(﹣∞,0)上是减函数又f(lgx)<f(1)∴﹣1<lgx<1∴110<x<10故答案为:110<x<1016.已知函数f(x)=log9x+12x−1的零点为x1.若x1∈(k,k+1)(k∈Z),则k的值是1;若函数g (x)=3x+x﹣2的零点为x2,则x1+x2的值是2.解:函数f(x)=log9x+12x−1是增函数,f(1)=−12<0,f(2)=log92>0,满足f(1)f(2)<0,所以函数的零点x1∈(1,2),所以k的值为1.函数f(x)=log9x+12x−1=12(log3x+x﹣2),函数的零点是y=log3x与y=2﹣x两个函数的图象的交点的横坐标x1,函数g(x)=3x+x﹣2的零点为x2,是函数y=3x与y=2﹣x图象交点的横坐标,由于y=log3x与y=3x是反函数,关于y=x对称,并且y=2﹣x与y=x垂直,交点坐标(1,1),所以x1+x2的值是2.故答案为:1;2.四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,17.(10分)(1)已知a+a﹣1=3,求a 12+a−12的值;(2)求值:e ln2+(lg5)2+lg5lg2+lg20.解:(1)因为(a 12+a−12)2=a+a﹣1+2=3+2=5,又因为a 12+a−12>0,所以a12+a−12=√5;(2)e ln2+(lg5)2+lg5lg2+lg20=2+1g5(lg5+1g2)+1g2+1=2+1g5+1g2+1=2+1+1=4.18.(12分)设全集U=R,已知集合A={x|x2﹣5x+4≤0},B={x|m≤x≤m+1}.(1)若A∩B=∅,求实数m的取值范围;(2)若“x∈B”是“x∈A”的充分条件,求实数m的取值范围.解:(1)由x 2﹣5x +4≤0,解得1≤x ≤4,所以A ={x |1≤x ≤4}. 因为A ∩B =∅,且B ≠∅,所以m +1<1或m >4,得m <0或m >4, 所以实数m 的取值范围是{m |m <0或m >4}.(2)因为“x ∈B ”是“x ∈A ”的充分条件,所以B ⊆A , 所以{m ≥1m +1≤4,解得1≤m ≤3,所以实数m 的取值范围是{m |1≤m ≤3}.19.(12分)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示. (1)求函数f (x )的解析式;(2)求函数y =f (x )在区间[﹣π,0]上的单调减区间.解:(1)由图可知A =2,T =4×(π3−π12)=π,所以ω=2πT=2.∵f (x )=2sin (2x +φ)的图象经过点(π12,2), ∴π6+φ=π2+2kπ,k ∈Z ,即φ=π3+2kπ,k ∈Z .∵0<φ<π,所以φ=π3,∴f(x)=2sin(2x +π3).(2)令π2+2kπ≤2x +π3≤3π2+2kπ,k ∈Z ,解得π12+kπ≤x ≤7π12+kπ,k ∈Z ,∴f(x)=2sin(2x +π3)的减区间为[π12+kπ,7π12+kπ],k ∈Z ,∴f(x)=2sin(2x +π3)在[﹣π,0]上的减区间为[−11π12,−5π12].20.(12分)已知函数f(x)=a⋅2x−12x +1(a ∈R).(1)若函数f (x )为奇函数,求a 的值;(2)当a =3时,用函数单调性的定义证明:函数f(x)=a⋅2x−12x +1在R 上单调递增;(3)若函数y =f (x )﹣2x 有两个不同的零点,求a 的取值范围.解:(1)由 f (0)=0,得a =1,此时f(x)=2x−12x +1.因为f(−x)=2−x−12−x +1=1−2x1+2x =−f(x),所以f (x )为奇函数,故a =1. 证明:(2)当a =3时,f(x)=3⋅2x−12x +1=3−42x +1.任取x 1,x 2∈R ,且x 1<x 2,则f(x 1)−f(x 2)=42x 2+1−42x 1+1=4(2x1−2x2)(1+2x 1)(1+2x 2), 因为x 1<x 2,所以2x 1<2x 2,2x 1+1>0,2x 2+1>0, 所以4(2x 1−2x 2)(1+2x 1)(1+2x 2)<0,即f (x 1)<f (x 2),所以函数f(x)=a⋅2x−12x +1在R 上单调递增.解:(3)y =f (x )﹣2x 有两个不同的零点,等价于(2x )2+(1﹣a )2x +1=0有两个不同的实数解. 令t =2x (t >0),则t 2+(1﹣a )t +1=0在(0,+∞)有两个不同的实数解, 所以{(1−a)2−4>0a −1>0,解得a >3.所以a 的取值范围为(3,+∞).21.(12分)如图,有一条宽为30m 的笔直的河道(假设河道足够长),规划在河道内围出一块直角三角形区域(图中△ABC )种植荷花用于观赏,C ,B 两点分别在两岸l 1,l 2上,AB ⊥AC ,顶点A 到河两岸的距离AE =h 1,AD =h 2,设∠ABD =α.(1)若α=30°,求荷花种植面积(单位:m 2)的最大值; (2)若h 2=4h 1,且荷花的种植面积为150m 2,求sin α.解:由题可得,AB =ℎ2sinα,AC =ℎ1cosα. (1)当α=30°时,AB =2h 2,AC =2√31, 所以S △ABC =12AB ⋅AC =2√31ℎ2,又因为h 1+h 2=30,h 1,h 2≥0, 所以S △ABC =√31ℎ2≤√3(ℎ1+ℎ22)2=150√3,当且仅当h 1=h 2=15时取等号.所以荷花种植区域面积的最大值为150√3m 2.(2)因为h 1+h 2=30,h 2=4h 1,所以h 1=6,h 2=24,故AB =24sinα,AC =6cosα,α∈(0,π2), 从而S △ABC =12AB ⋅AC =72sinαcosα=150, 所以sinαcosα=1225,① 所以(sinα+cosα)2=1+2sinαcosα=4925. 又因为α∈[0,π2],所以sinα+cosα=75,② 由①②解得:sinα=35或45. 22.(12分)若存在实数对(a ,b ),使等式f (x )•f (2a ﹣x )=b 对定义域中每一个实数x 都成立,则称函数f (x )为(a ,b )型函数.(1)若函数f (x )=2x 是(a ,1)型函数,求a 的值;(2)若函数g(x)=e 1x 是(a ,b )型函数,求a 和b 的值;(3)已知函数h (x )定义在[﹣2,4]上,h (x )恒大于0,且为(1,4)型函数,当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2.若h (x )≥1在[﹣2,4]恒成立,求实数m 的取值范围.解:(1)由f (x )=2x 是(a ,1)型函数,得f (x )•f (2a ﹣x )=2x •22a ﹣x =1,即22a =1,所以a =0. (2)由g(x)=e 1x是(a ,b )型函数,得g(x)⋅g(2a −x)=e 1x ⋅e 12ax −x =b ,则1x +12a−x =lnb ,因此x 2lnb ﹣2axlnb +2a =0对定义域{x |x ≠0}内任意x 恒成立,于是{lnb =02alnb =02a =0,解得a =0,b =1,所以a =0,b =1.(3)由h (x )是(1,4)型函数,得h (x )•h (2﹣x )=4,(1)当x =1时,h (1)•h (1)=4,而h (x )>0,则h (1)=2,满足h (x )≥1;(2)当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2≥1恒成立,令log 2x =t ,则当t ∈(0,2]时,﹣t 2+mt +2≥1恒成立,于是m ≥t −1t 恒成立,而函数y =t −1t在(0,2]单调递增,则t −1t ≤32,当且仅当t =2时取等号,因此m ≥32; (3)当x ∈[﹣2,1)时,2﹣x ∈(1,4],则ℎ(x)=4ℎ(2−x)=4−[log 2(2−x)]2+m⋅log 2(2−x)+2,由h (x )≥1,得0<−[log 2(2−x)]2+m ⋅log 2(2−x)+2≤4,令log 2(2﹣x )=u ,则当u ∈(0,2]时,0<﹣u 2+mu +2≤4,由(2)知﹣u 2+mu +2≥1,则只需u ∈(0,2]时,﹣u 2+mu +2≤4恒成立,即m ≤2u +u 恒成立,又u +2u≥2√u ⋅2u =2√2,当且仅当u =√2时取等号,因此m ≤2√2, 所以实数m 的取值范围是:[32,2√2].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学上册期末试卷(含答案)
高一数学上册期末试卷(含答案)
第Ⅰ卷
一.选择题(本大题共12小题,每小题5分,共60分)
1.如果集合A={x|ax2-2x-1=0}只有一个元素则a的值是( )
A.0
B.0或1
C.-1
D.0或-1
2. 的值为( )
A. B. C. D.
3.若tan α=2,tan β=3,且α,β∈0,π2,则α+β的值为( )
A.π6
B.π4
C.3π4
D.5π4
4.已知,则 ( )
A. B. C. D. 或
5.设则( )
A B C D
6.若x∈[0,1],则函数y=x+2-1-x的值域是( )
A.[2-1,3-1]
B.[1,3 ]
C.[2-1,3 ]
D.[0,2-1]
7若,则 ( )
A. B. C.- D.
8.若函数图象的两条相邻的对称轴之间的距离为,且该函数图象关于点成中心对称,,则 ( )
A. B. C. D.
9.已知函数的值域为R,则实数的范围是( )
A. B. C. D.
10.将函数y=3sin2x+π3的图像向右平移π2个单位长度,所得图像对应的函数( )
A.在区间π12,7π12上单调递减
B.在区间π12,7π12上单调递增
C在区间-π6,π3上单调递减 D在区间-π6,π3上单调递增
11.函数的值域为( )
A.[1,5]
B.[1,2]
C.[2,5]
D.[5,3]
12.设是定义在上的偶函数,对,都有,且当时,,若在区间内关于的方程恰有3个不同的实数根,则的取值范围是( )
A. B. C. D.
第II卷(非选择题,共70分)
二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题纸上)
13.已知则的值为------
14.3tan 12°-34cos212°-2sin 12°=________.
15.已知 ,试求y= 的`值域—
16.设(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤fπ6对一切x∈R恒成立,则以下结论正确的是_____(写出所有正确结论的编号).
① ;
② ≥ ;
③f(x)的单调递增区间是kπ+π6,kπ+2π3(k∈Z);
④f(x)既不是奇函数也不是偶函数;
17.(本题满分8分)已知:,,,,

18.(本题满分10分)已知函数,且
(Ⅰ)求的值; (Ⅱ)判断并证明函数在区间上的单调性.
19.(本题满分10分)已知函数 (
(1)若是最小正周期为的偶函数,求和的值;
(2)若在上是增函数,求的最大值.
20(本题满分12分)已知函数,,( )
(1)当≤ ≤ 时,求的最大值;(2)若对任意的,总存在,使成立,求实数的取值范围;(3)问取何值时,方程在上有两解?
21.(附加题)(本题满分10分)已知函数
(1)求函数的零点;
(2)若实数t满足,求的取值范围.
高一数学参考答案
一.选择题:DBCBA CCCCB AC
二.填空题:13. 0 14. 15. 16. ①②④ .
17.解:,,∴ ,∴ = = = ......8分
18.【解答】解:(Ⅰ)∵ ,,
由,∴ ,又∵a,b∈N*,∴b=1,a=1;………………3分
(Ⅱ)由(1)得,函数在(﹣1,+∞)单调递增.
证明:任取x1,x2且﹣1<x1<x2,< p="">
= ,
∵﹣1<x1<x2,< p="">
∴ ,
∴ ,
即f(x1)<f(x2),< p="">
故函数在(﹣1,+∞)上单调递增.………………10分
19.解:(1)由 =2 (
∵ …………又是最小正周期为的偶函数,∴ ,即,…………3分且,即……6分,∴ 为所求;…………………………………………………5分
(2)因为在上是增函数,
∴ ,…………………………………………7分
∵ ,∴ ,∴ ,
于是,∴ ,即的最大值为,………此时……10分
20.试题分析:(1) 设,则
∴ ∴当时,……4分
(2)当∴ 值域为当时,则
有①当时,值域为
②当时,值域为
而依据题意有的值域是值域的子集
则或∴ 或 8分
(3) 化为在上有两解,
令则t∈ 在上解的情况如下:
①当在上只有一个解或相等解,有两解或
∴ 或②当时,有惟一解③当时,有惟一解故或……12分
21.(1) 的零点分别为和 2分
(2)由题意,当时,,
同理,当时,,,所以函数是在R上的偶函数,…5分所以,由,.………………
时,为增函数,,即 .………10分。

相关文档
最新文档