一元二次不等式的解法

合集下载

一元二次不等式解法公式

一元二次不等式解法公式

一元二次不等式解法公式
在解决一元二次不等式时,需要使用一些特定的解法公式。

一元二次不等式是
一个形式为ax^2+bx+c>0(或<0)的不等式,其中a、b、c为实数且a ≠ 0。

解法公式如下:
1. 定义问题:将不等式中的所有项移至一侧,使不等式的形式为ax^2+bx+c >
0(或 < 0)。

2. 因式分解:准确分解左侧的二次项,将不等式转化为(ax + m)(ax + n) > 0
(或 < 0)的形式,其中m和n是实数。

3. 求解根:令(ax + m)(ax + n) = 0,从中可以得到x的两个根,即x = -m/a 和 x = -n/a。

4. 构建数轴:将x的解绘制在数轴上。

5. 数轴测试:在数轴上任选一测试点,代入原不等式中并判断不等式是否成立。

6. 确定解区间:根据数轴测试的结果确定不等式成立的区间。

这些步骤可以协助我们找到不等式的解。

这种方法比较符合问题的要求,同时
可帮助我们理解一元二次不等式的本质。

请在具体的案例中使用这个公式并进行解题,以便更好地理解和应用它。

一元二次不等式公式解法

一元二次不等式公式解法

一元二次不等式公式解法一元二次不等式是指类似于ax+bx+c>0的不等式,其中a、b、c 为实数且a≠0。

解一元二次不等式的方法可以分为以下两种公式解法:1.配方法当a>0时,我们可以通过配方法将一元二次不等式转化为(x+m)+n>0的形式。

具体步骤如下:①将一元二次不等式转化为ax+bx+c≥0的形式。

②将a提出来,得到a(x+bx/a+c/a)≥0。

③将b/a的一半平方再减去c/a,得到(b/2a)-c/a=m,其中m为实数。

④将式子转化为a[(x+b/2a)-(b/2a)+c/a]≥0。

⑤将式子化简,得到(x+b/2a)+(4ac-b)/4a>0。

⑥将4ac-b表示为n,得到(x+b/2a)+n/4a>0。

⑦由于a>0,所以n>0,而完全平方数加上正数大于0,所以(x+b/2a)+n/4a>0,即(x+m)+n>0。

2.因式分解法当a<0时,我们可以通过因式分解法将一元二次不等式转化为(ax+b)(x+c)<0或(ax+b)(x+c)>0的形式。

具体步骤如下:①将一元二次不等式转化为ax+bx+c≤0或ax+bx+c≥0的形式。

②将a提出来,得到a(x+bx/a+c/a)≤0或a(x+bx/a+c/a)≥0。

③将x+bx/a+c/a表示为(x+d)(x+e)的形式,其中d、e为实数。

④当a<0时,(x+d)(x+e)>0;当a>0时,(x+d)(x+e)<0。

⑤当a<0时,解(x+d)(x+e)>0的方法为:找出实数d、e的大小关系,将实数轴分为三段,判断每一段上的符号,最后得到不等式的解集;当a>0时,解(x+d)(x+e)<0的方法为:找出实数d、e的大小关系,将实数轴分为三段,判断每一段上的符号,最后得到不等式的解集。

以上就是一元二次不等式的两种公式解法。

需要注意的是,在解一元二次不等式时,我们需要根据a的正负性和不等式的形式来选择不同的解法。

一元二次不等式的解法

一元二次不等式的解法

一元二次不等式的解法在数学中,一元二次不等式是指形如ax^2+bx+c>0或ax^2+bx+c<0的二次不等式。

解一元二次不等式的方法可以通过图像法、代入法和判别法来实现。

本文将介绍这三种解法,并通过实例来说明其具体步骤。

图像法图像法是解一元二次不等式最直观的方法之一,它通过绘制一元二次函数的图像来找到不等式的解集。

下面以一元二次不等式x^2-4x+3>0为例来说明图像法的解题步骤:首先,将不等式转化为方程x^2-4x+3=0,求出方程的根。

我们可以通过求解x的一元二次方程来得到根,即使用求根公式x = (-b±√(b^2-4ac))/(2a)。

将方程x^2-4x+3=0代入求根公式中,得到x=1和x=3。

其次,在数轴上绘制一元二次函数y=x^2-4x+3的图像。

根据函数的开口方向和图像的凹凸性,我们可以确定函数在x<1和x>3的区间上为正值,即图像在该区间上位于x轴之上。

最后,根据不等式的正号,我们可以得出一元二次不等式x^2-4x+3>0的解集为x<1或x>3。

代入法代入法是通过代入特定的数值来判断一元二次不等式的真假。

下面以一元二次不等式x^2-4x+3>0为例来说明代入法的解题步骤:首先,将不等式转化为方程x^2-4x+3=0,求出方程的根。

我们可以使用同样的方法得到x=1和x=3。

其次,选择一些特定的数值,代入一元二次不等式中,判断不等式的真假。

例如,选择x=0、x=2和x=4来代入不等式。

计算得到代入x=0时,不等式为3>0,代入x=2时,不等式为-1>0,代入x=4时,不等式为3>0。

根据计算结果,我们可以确定不等式在x<1和x>3的区间上为真。

最后,根据不等式的真假,我们可以得出一元二次不等式x^2-4x+3>0的解集为x<1或x>3。

判别法判别法是解一元二次不等式的一种常用方法,它利用一元二次不等式的判别式来确定不等式的解集。

一元二次不等式全部解法

一元二次不等式全部解法

一元二次不等式全部解法一元二次不等式是指形如ax^2 + bx + c > 0或ax^2 + bx + c < 0的不等式,其中a、b、c是已知实数且a ≠ 0。

要求解一元二次不等式,我们需要找到其解集,即使不等式成立的x的取值范围。

下面将介绍几种解一元二次不等式的方法。

方法一:图像法通过绘制二次函数的图像,我们可以直观地观察到不等式的解集。

以ax^2 + bx + c > 0为例,我们可以绘制出函数y = ax^2 + bx + c的图像,然后观察函数图像在x轴上的位置。

如果函数图像位于x轴上方,则不等式成立的x的取值范围为图像所在的区间;如果函数图像位于x轴下方,则不等式不成立的x的取值范围为图像所在的区间。

方法二:因式分解法对于一元二次不等式ax^2 + bx + c > 0,我们可以先通过因式分解将其转化为(ax + m)(ax + n) > 0的形式,其中m、n是已知实数。

然后根据乘积大于零的性质,我们可以得到两个因子同时大于零或同时小于零时不等式成立。

因此,我们需要解以下两个不等式:ax + m > 0和ax + n > 0,得到的解集再取交集,即为原不等式的解集。

方法三:配方法对于一元二次不等式ax^2 + bx + c > 0,我们可以通过配方法将其转化为完全平方的形式。

具体步骤如下:1. 将不等式移项,得到ax^2 + bx + c = 0的形式。

2. 根据二次方程的求根公式,求得方程的两个根x1和x2。

3. 根据二次函数的性质,我们可以得到该二次函数在x1和x2之间变号。

即对于ax^2 + bx + c > 0来说,当x在x1和x2之间时,不等式成立。

方法四:求解判别式对于一元二次不等式ax^2 + bx + c > 0,我们可以先求解对应的二次方程ax^2 + bx + c = 0的判别式Δ=b^2-4ac。

根据判别式的值,我们可以得到不等式的解集:1. 当Δ>0时,二次方程有两个不相等的实根x1和x2,此时不等式成立的x的取值范围为x<x1或x>x2。

一元二次不等式方程的解法

一元二次不等式方程的解法

一元二次不等式方程的解法含有一个未知数且未知数的最高次数为2次的的不等式叫做一元二次不等式,它的一般形式是ax2+bx+c>0或ax2+bx+c<0(a不等于0),其中ax2+bx+c实数域上的二次三项式。

一元二次不等式的解法有哪几种?1、公式法可以解所有的一元二次方程,公式法不能解没有实数根的方程(也就是b²-4ac<0的方程)。

求根公式: x=-b±√(b2-4ac)/2a。

2、配方法比较简单:首先将方程二次项系数a化为1,然后把常数项移到等号的右边,最后后在等号两边同时加上一次项系数绝对值一半的平方。

3、数轴穿根:用穿根法解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,依次穿过这些零点,大于零的不等式的解对应这曲线在x轴上方部分的实数x的值的集合,小于零的则相反。

这种方法叫做序轴穿根法,又叫“穿根法”。

口诀是“从右到左,从上到下,奇穿偶不穿。

”4、一元二次不等式也可通过一元二次函数图象进行求解。

通过看图象可知,二次函数图象与X轴的两个交点,然后根据题中所需求"<0"或">0"而推出答案。

求一元二次不等式的解集实际上是将这个一元二次不等式的所有项移到不等式一侧并进行因式分解分类讨论求出解集。

解一元二次不等式,可将一元二次方程不等式转化成二次函数的形式,求出函数与X轴的交点,将一元二次不等式,二次函数,一元二次方程联系起来,并利用图象法进行解题,使得问题简化。

等式的基本性质:1、等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。

用字母表示为:若a=b,c为一个数或一个代数式。

2、等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。

用字母表示为:若a=b,c为一个数或一个代数式(不为0)。

3、不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;4、不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;5、不等式的两边同时乘(或除以)同一个负数,不等号的方向变。

一元二次不等式6种解法大全

一元二次不等式6种解法大全

一元二次不等式6种解法大全一元二次不等式是指形如ax²+bx+c>0或ax²+bx+c≥0的二次不等式,其中a、b、c为实数,a≠0。

这种不等式的解法有很多种,下面我将介绍其中的六种解法。

解法一:使用因式分解法。

对于形如(ax+b)(cx+d)>0或(ax+b)(cx+d)≥0的一元二次不等式,可以尝试将其因式分解为两个一次因式相乘的形式,然后根据不等式的性质讨论各个因式的取值范围,从而求得不等式的解。

解法二:使用它的图像解法。

将一元二次不等式对应的二次函数的图像画出来,然后根据图像的特点来确定使得函数大于0(或大于等于0)的x的取值范围,即为不等式的解。

解法三:使用开平方法。

对于形如x²+a≥0或x²+a>0的一元二次不等式,可以通过开平方的方法来求解。

首先将不等式移到一边,得到一个完全平方的形式,然后对不等式两边同时开平方,得到关于x的两个二次方程,根据二次方程的性质来求解。

解法四:使用代数求解法。

对于一元二次不等式ax²+bx+c>0或ax²+bx+c≥0,可以将其转化为一个关于x的二次方程ax²+bx+c=0的解的范围问题。

求得这个二次方程的解,然后根据这些解的范围来确定不等式的解。

解法五:使用数轴法。

将一元二次不等式对应的二次函数的图像画在数轴上,然后根据函数的凸性来确定函数取正值的x的取值范围,即为不等式的解。

解法六:使用区间法。

将一元二次不等式移项,化成形如ax²+bx+c<0或ax²+bx+c≤0的不等式,然后求出二次函数的零点,并根据二次函数的凸性来确定函数小于0(或小于等于0)的x的取值范围,即为不等式的解。

以上是关于一元二次不等式的六种解法,每种解法都有其独特的思路和方法。

在实际的解题过程中,可以根据具体的题目情况选择合适的解法来求解,以提高解题效率和准确性。

一元二次不等式解法

一元二次不等式解法

提高题:
3.若a<0 ,则关于x的不等式x2-4ax-5a2>0的
{x︳x>-a或x<5a 解是____________________ }
将a<0改成a∈R,则不 等式的解集是 ______________
变式题: x2-4ax-4<0的解集是_______; x∈
x∈R (1)若 a<0 ,则关于x的不等式 x2-4ax-4>0的解是_____;
△>0 y x1 O
y>0
△=0
y
y>0
△<0
y
y>0
x2 x
y<0
(a>0)
ax2+bx+c=0 (a>0)的根
O x1
x
O
没有实根
x
有两相异实根 x1, x2 (x1<x2)
有两相等实根 b x1=x2= 2a
ax2+bx+c>0 {x|x<x1或 x>x2} (y>0)的解集 ax2+bx+c<0 {x|x < x <x } 1 2 (y<0)的解集
解关于x的不等式 变式1: 变式2:
2a 1) 0(a 0)
ax (2a 1)x 2 0(a 0)
2
变式3: 已知不等式 ax2 bx c 0(a 0)的解是 求不等式 bx2 ax c 0 的解. x 2, 或 x 3
一元二次不等式的解法 (一)
一元二次不等式 1、定义:
含有一个未知数且未知数的最高次数为2次 的不等式叫做一元二次不等式; 它的一般形式是ax2+bx+c>0或ax2+bx+c<0 (a≠0),(其中ax2+bx+c实数域上的二次三项式 )

一元二次不等式的解法

一元二次不等式的解法

一元二次不等式的解法一元二次不等式是由一个二次方程构成的数学不等式,其形式通常为 ax^2 + bx + c > 0 或 ax^2 + bx + c < 0。

解一元二次不等式需要运用一些特定的方法和原理,下面将介绍一些常用的解法。

1. 图像法图像法是一种直观的解一元二次不等式的方法。

首先,我们可以将不等式的左边化简成一个二次函数的形式,例如将 ax^2 + bx + c > 0 转化为 y = ax^2 + bx + c 的图像。

然后,通过观察图像的形状和位置,确定不等式的解集。

对于一元二次不等式 ax^2 + bx + c > 0,可以按照以下步骤使用图像法解答:a) 计算二次函数的顶点坐标 (-b/(2a), f(-b/(2a))),其中 f(x) = ax^2 + bx + c。

b) 如果 a > 0,表示二次函数开口向上,则解集为顶点坐标的右侧部分。

如果 a < 0,表示二次函数开口向下,则解集为顶点坐标的左侧部分。

c) 如果二次函数与 x 轴有交点,则解集还包括这些交点。

举例说明:假设要解一元二次不等式 x^2 + 4x + 3 > 0。

a) 通过计算,可得到顶点坐标为 (-2, -1)。

b) 由于 a > 0,解集为顶点坐标的右侧部分。

c) 二次函数与 x 轴的交点为 (-3, 0) 和 (-1, 0)。

因此,解集为 (-∞, -3) ∪ (-1, +∞)。

2. 因式分解法对于一元二次不等式,我们可以先将其因式分解为二次方程的形式,然后再解这个二次方程。

具体步骤如下:a) 将不等式左边移项,将其写成一个完全平方的形式,例如 a(x -r)(x - s) > 0 或 a(x - r)(x - s) < 0,其中 r 和 s 是待定系数。

b) 将方程 a(x - r)(x - s) = 0 求解,得到方程的根(解),记作 x = r和 x = s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点一:一元二次不等式的定义
只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式。

比如:.
任意的一元二次不等式,总可以化为一般形式:或
.
知识点二:一般的一元二次不等式的解法
设一元二次方程的两根为且,,则相应的不等式的解集的各种情况如下表:
注意:
(1)一元二次方程的两根是相应的不等式的解集的端点的取值,是抛物线与轴的交点的横坐标;
(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;
(3)解集分三种情况,得到一元二次不等式
与的解集。

知识点三:解一元二次不等式的步骤
(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数;
(2)写出相应的方程,计算判别式:
①时,求出两根,且(注意灵活运用因式分解和配方法);
②时,求根;
③时,方程无解
(3)根据不等式,写出解集.
知识点四:用程序框图表示求解一元二次不等式ax2+bx+c>0(a>0)的过程规律方法指导
1.解一元二次不等式首先要看二次项系数a是否为正;若为负,则将其变为正数;2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法;
3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论;4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系;
5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数
二次函数()的图象
经典例题透析
类型一:解一元二次不等式
1.解下列一元二次不等式
(1);(2);(3)
思路点拨:转化为相应的函数,数形结合解决,或利用符号法则解答.
总结升华:
1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力;
2. 当时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当
且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题).
3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三:
【变式1】解下列不等式
(1) ;(2)
(3) ;(4) .
【变式2】解不等式:
类型二:已知一元二次不等式的解集求待定系数
2.不等式的解集为,求关于的不等式的解集。

总结升华:二次方程的根是二次函数的零点,也是相应的不等式的解集的端点.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系,这一点是解此类题的关键。

举一反三:
【变式1】不等式ax2+bx+12>0的解集为{x|-3<x<2},则a=_______, b=________。

【变式2】已知的解为,试求、,并解不等式.
【变式3】已知关于的不等式的解集为,求关于的不等式的解集. 类型三:二次项系数含有字母的不等式恒成立恒不成立问题
3.已知关于x的不等式(m2+4m-5)x2-4(m-1)x+3>0对一切实数x恒成立,数m的取值围。

思路点拨:不等式对一切实数恒成立,即不等式的解集为R,要解决这个问题还需要讨论二次项的系数。

总结升华:情况(1)是容易忽略的,所以当我们遇到二次项系数含有字母时,一般需讨论。

举一反三:【变式1】若关于的不等式的解集为空集,求的取值围.
【变式2】若关于的不等式的解为一切实数,求的取值围.
【变式3】若关于的不等式的解集为非空集,求的取值围.
类型四:含字母系数的一元二次不等式的解法
4.解下列关于x的不等式
(1)x2-2ax≤-a2+1;
(2)x2-ax+1>0;
(3)x2-(a+1)x+a<0;
总结升华:对含字母的二元一次不等式,一般有这样几步:
①定号:对二次项系数大于零和小于零分类,确定了二次曲线的开口方向;
②求根:求相应方程的根。

当无法判断判别式与0的关系时,要引入讨论,分类求解;
③定解:根据根的情况写出不等式的解集;当无法判断两根的大小时,引入讨论。

举一反三:
【变式1】解关于x 的不等式:
【变式2】解关于的不等式:()
5.解关于x的不等式:ax2-(a+1)x+1<0。

总结升华:熟练掌握一元二次不等式的解法是解不等式的基础,对最高项含有字母系数的不等式,要注意按字母的取值情况进行分类讨论,分类时要“不重不漏”。

举一反三:
【变式3】解关于x的不等式:ax2-x+1>0 【变式1】解关于x的不等式:(ax-1)(x-2)≥0;
【变式2】解关于x的不等式:ax2+2x-1<0;
学习成果测评
基础达标:
1.不等式x2-ax-12a2<0(其中a<0)的解集为()
A.(-3a ,4a)B.(4a,-3a)C .(-3,-4)D.(2a,6a)
2.使有意义的x的取值围是()
A.B.
C .D.
3.不等式ax2+5x+c>0的解集为,则a,c的值为()
A.a=6,c=1 B.a=-6,c=-1 C.a=1,c=1 D.a=-1,c=-6
4.解不等式得到解集,那么的值等于( ) A.10 B.-10 C.14 D .-14
5.不等式x2-ax-b<0的解集是{x|2<x<3},则bx2-ax-1>0的解集是()A.B.
C.D.
6.抛物线y=-x 2+5x-5上的点位于直线y=1的上方,则自变量x的取值围是____。

7.如果关于x的方程x2-(m-1)x+2-m=0的两根为正实数,则m的取值围是____。

8.解下列不等式
(1) 14-4x2≥x;(2) x2+x+1>0;
(3) 2x2+3x+4<0;(4) ;
(5) ;(6) ;(7)
9.已知不等式ax2-3x+6>4的解集为{x|x<1或x>b}。

(1)求a,b;
(2)解不等式ax2-(ac+b)x+bc<0。

10. 不等式mx2+1>mx 的解集为实数集R,数m的取值围.
能力提升:
11.不等式的解集是全体实数,则a的取值围是( ) A.B.C.D.
12.对于满足0≤p≤4的实数p,使恒成立的x的取值围是__ .
13.已知的解集为,则不等式
的解集是________.
14.若函数的定义域为R,则a的取值围为________________. 15.若使不等式和同时成立的x的值使关于x的不等式也成立,则a的取值围是________________.
16.若不等式ax2+bx+c>0 的解集为{x|2<x<3},则不等式ax2-bx+c<0 的解集是___________;不等式cx2+bx+a>0的解集是_____________.
17.已知,
(1)如果对一切x∈R,f(x)>0恒成立,数a的取值围;
(2)如果对x∈[-3,1],f(x)>0恒成立,数a的取值围.
18.解下列关于x的不等式;
综合探究:
19.解关于x的不等式:.
20. 设集合A={x|x2-2x-8<0}, B={x|x2+2x-3>0}, C={x|x2-3ax+2a2<0},若C(A ∩B),数a的取值围.。

相关文档
最新文档