1.2 不等式的基本性质及答案

合集下载

第1章1.2 基本不等式

第1章1.2 基本不等式
1
第一章 不等式的基本性质和证明的基
本方法
1.2 基本不等式
栏目导航
2
学习目标:1.理解两个正数的基本不等式.2.了解三个正数和一般 形式的基本不等式.3.会用基本不等式求一些函数的最值及实际应用 题.
栏目导航
3
自主预习 探新知
栏目导航
4
教材整理 基本定理(重要不等式及基本不等式) 1.定理 1
42
栏目导航
2.下列函数中最小值为 4 的是( ) A.y=x+4x B.y=sin x+sin4 x(0<x<π) C.y=3x+4×3-x D.y=lg x+4logx10
43
栏目导航
44
[解析] A 项,当 x<0 时,y=x+4x<0,故 A 项错误;B 项,当 0
<x<π 时,sin x>0,∴y=sin x+sin4 x≥2
栏目导航
22
[自主解答] (1)依题意得 m=0 时,x=1,代入 x=3-m+k 1,得 k=2,即 x=3-m+2 1.
年成本为 8+16x=8+163-m+2 1(万元), 所以 y=(1.5-1)8+163-m+2 1-m =28-m-m1+6 1(m≥0).
栏目导航
23
(2)由(1)得 y=29-m+1+m1+6 1≤ 29-2 m+1·m1+6 1=21. 当且仅当 m+1=m1+6 1,即 m=3 时,厂家的年利润最大,为 21 万元.
栏目导航
31
(2)已知 x,y∈(0,+∞),如果和 x+y 是定值 S,那么当 x=y 时,积 xy 有最大值14S2.
以上两条可简记作:和一定,相等时,积最大;积一定,相等时, 和最小.条件满足:“一正、二定、三相等”.

9[1].1.2不等式的性质(3)

9[1].1.2不等式的性质(3)

答:……
初中数学资源网
用炸药爆破时,如果导火索燃烧的速度 是0.8 cm/s,人跑开的速度是每秒4 m,为了 使点导火索的战士在爆破时能够跑到100 m 以外的安全区域,这个导火索的长度应大于 多少厘米?
解:设导火索的长度是x cm .根据题意,得
x 0 .8
×4≥100.
V+3×5×3≤3×5×10
解得 V≤105 又由于新注入水的体积不能是负数,因此, V的取值范围是 V≥0并且V≤105 在数轴上表示V的取值范围如图
0
初中数学资源网
105
例4:某次“人与自然”的知识竟赛中共 有20道题。对于每一道题,答对了得10 分,答错了或不答扣5分,至少要答对几 道题,其得分不少于80分? 解:设答对的题数是x,则答对或不答的 题数为20-x,根据题意,得 10x – 5(20 – x) ≥ 80 解这个不等式,得: x ≥ 12

b
a
如果a>b,c<0 那么ac<bc(或 c c )就是说 不等式的两边都乘以(或除以)同一个负数, 不等号的方向改变。

b
课堂检测:
1、若a>b,用“<”或“>”填空。
(1)a+1 (3) -3a
b+1; (2) a-5 -3b; (4) 6-a
b-5; 6-b;
初中数学资源网
解得: x≥20 答:导火索的长度应大于20 cm. 初中数学资源网
初生牛犊不畏虎
小颖种了一株树苗,开始时树苗高为40 厘米. 栽种后每周树苗长高约15厘米, 几周后树苗高超过1米?
>1m
40cm
初中数学2题
m为何值时,方程 5 x 3 m m 5 的解是非正数. 4 2 4

不等式的基本性质与解法

不等式的基本性质与解法

不等式的基本性质与解法不等式在数学中起着重要的作用,它描述了数值之间的大小关系。

解不等式是解决问题、推导结论的常用方法之一。

本文将介绍不等式的基本性质与解法,帮助读者更好地理解和应用不等式。

一、不等式的基本性质1.1 传递性:若a>b,b>c,则a>c。

这个性质说明了不等式在数值之间的传递性,即如果一个数大于另一个数,而后者又大于第三个数,则第一个数一定大于第三个数。

1.2 加法性:若a>b,则a+c>b+c。

这个性质说明了不等式在两边同时加上一个相同的数时,不等号的方向不变。

1.3 减法性:若a>b,则a-c>b-c。

与加法性类似,减法性说明了不等式在两边同时减去一个相同的数时,不等号的方向不变。

1.4 乘法性:若a>b且c>0,则ac>bc;若a>b且c<0,则ac<bc。

乘法性说明了不等式在两边同时乘以一个正数或负数时,不等号的方向会发生变化。

1.5 除法性:若a>b且c>0,则a/c>b/c;若a>b且c<0,则a/c<b/c。

除法性说明了不等式在两边同时除以一个正数或负数时,不等号的方向会发生变化。

二、不等式的解法2.1 图解法:对于一元一次不等式,可以通过图像来解决。

首先将不等式转换为等式,画出等式对应的直线,然后根据不等号的方向确定直线上的某一边的解集。

这种方法适用于简单的线性不等式。

2.2 求解法:对于更复杂的不等式,通常需要应用一些不等式性质和运算法则。

例如,可以通过加、减、乘、除等操作将不等式化简为简单的形式,再求解。

2.3 分类讨论法:对于一元高次不等式,可以将不等式中的变量分别取不同的值,然后根据不等式的性质进行分类讨论。

通过逐个排除不符合条件的情况,最终得到解集。

2.4 绝对值法:对于含有绝对值的不等式,可以通过拆分绝对值的定义,建立不等式的多种情况,然后分别求解。

不等式的基本性质及答案

不等式的基本性质及答案

不等式的基本性质知识导引不等式和方程一样,也是代数里的一种重要模型,在概念方面,它与方程很类似,尤其重要的是不等式具有一系列基本性质,而且数学的基本结果往往是一些不等式而不是等式. 本讲的主要知识点:1、不等号有“≠”,“>”,“<”,“≥”,“≤”。

“≥”表示大于或等于;“≤”表示小于或等于.2、一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,即不等式的解集.3、不等式性质1:不等式两边同时加上或减去一个相同的数,不等号方向不变;不等式性质2:不等式两边同时乘以或除以同一个正数,不等号方向不变;不等式性质3:不等式两边同时乘以或除以同一个负数,不等号方向改变;4、在数轴上表示解集,必须注意空心圈与实心点表示的不同含义.5、不等式解集口诀:大大取大,小小取小,小大大小连起写,大大小小题无解.6、解决与不等式相关的问题,常用到分类讨论、数形结合等相关概念和方法.典例精析例1:下列四个命题中,正确的有( )①若a >b ,则a +1>b +1;②若a >b ,则a -1>b -1;③若a >b ,则-2a <-2b ;④若a >b ,则2a <2b .A 、1个B 、2个C 、3个D 、4个例1—1:已知a ,b ,c 是有理数,且a >b >c ,则下列式子中正确的是( )A 、ab >bcB 、a +b >b +cC 、a -b >b -cD 、c b c a > 例2:若实数a >1,则实数a M =,32+=a N ,312+=a P 的大小关系为( ) A 、P >N >M B 、M >N >P C 、N >P >M D 、M >P >N例3:解不等式5456110312-≥+--x x x ,并把它的解集在数轴上表示出来.例3—1:请你写出一个满足不等式2x -1<6的正整数x 的值: .例3—2:若关于x 的不等式3m -2x <5的解集是x >2,则实数m 的值为 .例4:某童装加工企业今年五月份,工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%,为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革,改革后每位工人的工资分两部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人每月的工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元,工人小张争取六月份工资不少于1200元,则小张在六月份至少应加工多少套童装?探究活动例:三边均不相等的△ABC 的两条高的长度分别为4和12,若第三条高的长也是整数,试求它的长.学力训练A 组 务实基础1、若a >b ,c 为有理数,则下列各式一定成立的是( )A 、ac >bcB 、ac <bcC 、22bc ac >D 、22bc ac ≥2、不等式121>-x 的解集是( ) A 、21->x B 、2->x C 、2-<x D 、21-<x3、四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图所示,则他们体重的大小关系是( )A 、P >R >S >QB 、Q >S >P >RC 、S >P >Q >RD 、S >P >R >Q4、如果不等式(a -1)x >a -1的解为x <1,则a 必须满足( )A 、a <1B 、a >1C 、a >0D 、a <05、已知三角形的两边分别是2,6,第三边长也是偶数,则三角形的周长是 .6、关于x 的方程2(x +a )=a +x -2的解是非负数,在a 的取值范围是 .7、如果x ≥-5的最小值是a ,x ≤5的最大值是b ,则a +b = .8、规定一种新运算:a △b =ab -a -b +1,如3△4=12-3-4+1,请比较:(-3)△4 4△(-3)(填“>”、“<”或“=”).9、已知关于x 的方程3(x -2a )+2=x -1的解适合不等式2(x -5)≥8a ,求a 的取值范围.10、关于x 的不等式64141a x x ->-+的解都是不等式2214x x -<-的解,求a 的取值范围.B 组 瞄准中考1、(邵阳中考)如图,数轴上表示的关于x 的一元一次不等式的解集为( )A 、x ≤1 B、x ≥1 C、x <1 D 、x >12、(烟台中考)不等式4-3x≥2x-6的非负整数解有( )A 、1个B 、2个C 、3个D 、4个3、(深圳中考)已知a 、b 、c 均为实数,若a >b ,c ≠0,下列结论不一定正确的是( )A 、a +c >b +cB 、c -a <c -bC 、22cb c a > D 、22b ab a >> 4、(凉山中考)下列不等式变形正确的是( )A 、由a >b ,得ac >bcB 、由a >b ,得-2a <-2bC 、由a >b ,得-a >-bD 、由a >b ,得a -2<b -25、(乐山中考)下列不等式变形正确的是( )A 、由a >b ,得a -2<b -2B 、由a >b ,得-2a <-2bC 、由a >b ,得b a >D 、由a >b ,得22b a > 6、解不等式x x 329721-≤-,得其解的范围为( ) A 、61≥x B 、61≤x C 、23≥x D 、23≤x 7、(永州中考)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费0.2元,以后每分钟收费0.1元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为0.5元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费0.4元.如果你想给某同学打市话,准备通话10分钟,则你所需的电话费至少为( )A 、0.6元B 、0.7元C 、0.8元D 、0.9元8、(临沂中考)有3人携带会议材料乘坐电梯,这三人的体重共210kg ,每捆材料重20kg ,电梯的最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载 捆材料.9、(重庆中考)解不等式3132+<-x x ,并把解集在数轴上表示出来.10、(苏州中考)解不等式:1)1(23<--x .11、(广州中考)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.一直小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算:所购买商品的价格在什么范围内时,采用方案一更合算?C 组 冲击金牌1、⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++52154154354324321321a x x x a x x x a x x x a x x x a x x x ,其中1a ,2a ,3a ,4a ,5a 是常数,且1a >2a >3a >4a >5a ,则1x ,2x ,3x ,4x ,5x 的大小顺序是( )A 、1x >2x >3x >4x >5xB 、4x >2x >1x >3x >5xC 、3x >1x >4x >2x >5xD 、5x >3x >1x >4x >2x2、不等式100<+y x 有 组整数解.3、已知121219991998++=M ,121220001999++=N ,那么M ,N 的大小关系是 . 4、已知x <0,-1<y <0,将x ,xy ,2xy 按从小到大的顺序排列.5、实数a ,b 满足不等式b a a b a a +-<+-)(,试判定a ,b 的符号.6、解不等式:1325<+--x x .7、已知:正有理数1a 是3的一个近似值,设12112++=a a ,求证:3介于1a 和2a 之间.8、某地区举办初中数学联赛,有A、B、C、D四所中学参加.选手中,A,B两校共16名,B,C脸两校共20名,C,D两校共34名,并且各校选手人数的多少是按A、B、C、D中学的顺序选派的,试求各中学的选手人数.不等式的基本性质参考答案典例精析1、C 1—1、B2、D3、x ≤2,数轴上表示略 3—1、1或2或33—2、3 4、(1)设企业每套奖励x 元,由题意得:200+60%×150x ≥450,解得x ≥2.78,因此,该企业每套至少应奖励2.78元.(2)设小张在六月份加工y 套,由题意得:200+5y ≥1200,解得y ≥200.因此,小张在六月份至少应加工200套童装.探究活动解:设长度为4和12的高所对的边为a 、b ,又设第三边及其边上的高为c 、h ,则4a =12b =ch .a :b =3:1=3h :h ,b :c =h :12,∴a :b :c =3h :h :12,可设三边长为3hk ,hk ,12k (k 为正整数),∵3hk >hk ,∴3hk +hk >12k ,hk +12k >3hk ,即3<h <6,又∵h 是整数,∴h =4(舍去),5,∴h =5.学力训练A 组1、D2、C3、D4、A5、146、a ≤-27、08、=9、a ≤-6.5 10、a ≤14.5B 组1、D2、C3、D4、B5、B6、A7、B8、429、解集为x <2,数轴上表示略. 10、x >2 11、(1)120×0.95=114(元),所以实际应支付114元.(2)设购买商品的价格为x 元,由题意得:0.8x +168<0.95x ,解得x >1120,所以当购买商品的价格超过1120元时,采用方案一更合算.C 组1、C2、197023、m >n4、∵x -xy =x (1-y ),且x <0,-1<y <0,所以x(1-y )<0,即x <xy ,∵0)1(2<-=-y xy xy xy ,∴xy xy <2,因为)1)(1(2y y x xy x =+=-<0,∴2xy x <,综上所述,x <2xy <xy .5、a 为负,b 为正6、x <-7或31>x 7、略 8、A 校7人,B 校9人,C 校11人,D 校23人.。

专题1.2 一元一次不等式与不等式组章末重难点题型(举一反三)(沪科版)(解析版)

专题1.2  一元一次不等式与不等式组章末重难点题型(举一反三)(沪科版)(解析版)

专题1.2 一元一次不等式与不等式组章末重难点题型【沪科版】【考点1 不等式的基本性质】【方法点拨】不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

【例1】(2019春•南平期中)下列四个不等式:(1)ac>bc;(2)﹣ma<mb;(3)ac2>bc2;(4)>1,一定能推出a>b的有()A.1个B.2个C.3个D.4个【分析】根据不等式的性质逐个判断即可求得答案.【答案】解:在(1)中,当c<0时,则有a<b,故不能推出a>b,在(2)中,当m>0时,则有﹣a<b,即a>﹣b,故不能推出a>b,在(3)中,由于c2>0,则有a>b,故能推出a>b,在(4)中,当b<0时,则有a<b,故不能推出a>b,综上可知一定能推出a>b的只有(3),故选:A.【点睛】本题主要考查不等式的性质,掌握不等式的性质是解题的关键,特别是在不等式的两边同时乘或除以一个不为0的数或因式时,需要确定该数或因式的正负.【变式1-1】(2018春•江汉区期末)若a>b,则下列结论:①a+x>b+x;②>;③ax2>bx2;④ab<b2;⑤﹣|a|<﹣|b|.其中一定成立的个数是()A.1 B.2 C.3 D.4【分析】根据不等式的基本性质逐项判断即可.【答案】解:①∵a>b,∴根据不等式的基本性质1可得:a+x>b+x;所以,正确的个数为1个;②当x<0时,>不成立;③ax2>bx2;④当b>0时,ab<b2不成立;⑤当0>a>b时,﹣|a|<﹣|b|不成立.故选:A.【点睛】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【变式1-2】(2019春•冠县期末)下列式子正确的是()A.若<,则x<y B.若bx>by,则x>yC.若=,则x=y D.若mx=my,则x=y【分析】根据不等式的基本性质,以及等式的性质,逐项判断即可.【答案】解:∵若<,则a>0时,x<y,a<0时,x>y,∴选项A不符合题意;∵若bx>by,则b>0时,x>y,b<0时,x<y,∴选项B不符合题意;∵若=,则x=y,∴选项C符合题意;∵若mx=my,且m=0,则x=y或x≠y,∴选项D不符合题意.故选:C.【点睛】此题主要考查了不等式的基本性质,以及等式的性质,要熟练掌握,解答此题的关键是要明确:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变【变式1-3】(2019春•宜宾县校级期中)若ab<0,且a<b,下列解不等式正确的是()A.由ax<b,得x<B.由(a﹣b)x>2,得x>C.由bx<a,得x>D.由(b﹣a)x<2,得x<【分析】先求出a,b的大小关系,再运用不等式的基本性质判定.【答案】解:∵ab<0,且a<b,∴a<0<b.A、由ax<b,得x>,故A选项错误;B、由(a﹣b)x>2,得x<,故B选项错误;C、由bx<a,得x<),故C选项错误;D、由(b﹣a)x<2,得x<,故D选项正确.故选:D.【点睛】本题主要考查了不等式的基本性质,解题的关键是确定x系数的正负值.【考点2 由实际问题抽象出一元一次不等式】【方法点拨】由实际问题抽象出一元一次不等式组,关键是正确理解题意,找出题目中的不等关系.【例2】(2019春•湘桥区期末)某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打()A.6折B.7折C.8折D.9折【分析】设该商品打x折销售,根据利润=销售价格﹣进价结合利润率不低于5%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【答案】解:设该商品打x折销售,依题意,得:900×﹣600≥600×5%,解得:x≥7.故选:B.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.【变式2-1】(2019春•威远县校级期中)将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A.8(x﹣1)<5x+12<8 B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8 D.8x<5x+12<8【分析】设有x人,由于每位小朋友分5个苹果,则还剩12个苹果,则苹果有(5x+12)个;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果,就是苹果数﹣8(x﹣1)大于0,并且小于8,根据不等关系就可以列出不等式【答案】解:设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选:C.【点睛】此题主要考查由实际问题抽象出一元一次不等式组,关键是正确理解题意,找出题目中的不等关系.【变式2-2】(2019春•肥城市期中)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2016﹣2017赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(32﹣x)≥48 B.2x﹣(32﹣x)≥48C.2x+(32﹣x)≤48 D.2x≥48【分析】根据题意表示出胜与负所得总分数大于等于48,进而得出不等关系.【答案】解:这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是:2x+(32﹣x)≥48.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确得出不等关系是解题关键.【变式2-3】(2019•江北区一模)某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A.3×5+3×0.8x≤27 B.3×5+3×0.8x≥27C.3×5+3×0.8(x﹣5)≤27 D.3×5+3×0.8(x﹣5)≥27【分析】设小聪可以购买该种商品x件,根据总价=3×5+3×0.8×超出5件的部分结合总价不超过27元,即可得出关于x的一元一次不等式,此题得解.【答案】解:设小聪可以购买该种商品x件,根据题意得:3×5+3×0.8(x﹣5)≤27.故选:C.【点睛】本题考查了由实际问题抽象出一元一次不等式,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.【考点3 解一元一次不等式】【方法点拨】解一元一次不等式组的步骤:(1)求出每个不等式的解集;(2)求出每个不等式的解集的公共部分;(一般利用数轴)(3)用代数符号语言来表示公共部分。

不等式的基本性质 同步练习(含答案)

不等式的基本性质 同步练习(含答案)

8.1.2不等式的基本性质1.2x ﹣4≥0的解集在数轴上表示正确的是( )A 、B 、C 、D 、2.在下列表示的不等式的解集中,不包括-5的是 ( )A.x ≤ 4B.x ≥ -5 C .x ≤ -6 D .x ≥ -73.不等式 -21x > 1 的解集是 ( ) A.x >-21 B .x >-2 C.x <-2 D.x < -21 4.已知x <y ,下列不等式成立的有 ( )①x -3<y -3 ②-5x < -6y ③-3x +2 <-3y +2 ④-3x +2 > -3y +2A.①②B.①③C.①④D.②③5.若不等式(m -2)x > n 的解集为x > 1,则m ,n 满足的条件是 ( )A.m = n -2 且 m >2B. m = n - 2 且 m < 2C.n = m -2 且 m >2D. n = m -2且 m < 26.在二元一次方程12x +y = 8中,当 y <0 时,x 的取值范围是 ( )A. x < 32B. x >- 32C. x > 32D. x <- 32 7.不等式5(x – 1)< 3x + 1 的解集是8.若关于x 的方程kx – 1 = 2x 的解为正实数,则k 的取值范围是9.已知关于x 的不等式x – m <1的解集为x <3,则m 的值为10.解下列不等式:(1)21-x < 354-x (2)- 31+x > 3(3)2 -24+x ≥ 31x - (4)1- 23-y > 3 + 4y(5)21-x - 312+x < 6x (6)25+x - 1 < 223+x11.已知不等式5x -2 < 6x +1的最小正整数解是方程 3x - 23ax = 6的解,求 a 的值。

1.2 不等式的基本性质(1)

1.2 不等式的基本性质(1)
1.2 不等式的基本性质(1)
(导学案的使用研讨课)
罗万
王勇
一、学前准备:
等式基本性质1:
等式的两边都加上(或减去)同一个数或 (整式),等式仍旧成立.
等式基本性质2:
等式的两边都乘以(或除以)同一个不为0 的数,等式仍旧成立.
不等式与等式只有 一字之差,那么它 们的性质是否也有 相似之处呢?
二、课堂导学:
【探究问题三】: (4)-2<3, (-2)×(-6)
>
3×(-6),
6>2,
6×(-5) < 2×(-5);
不等式的基本性质3,不等式的两边都乘以(或除 以)同一个负数,不等号的方向改变。
观察(4),类比等式的性质,你发现了什么规律?
a b 如果a>b,c<0 ,那么ac<b c, c c
2、在上节课中,我们用方法一(作差法)知道周长
b ,那么 a c < b c
【探究问题二】:
(3) 6>2,
-2<3,
6 ×5
(-2)×6
> <
2×5,
3×6,
观察(3),类比等式的性质,你发现了什么规律?
不等式的基本性质2,不等式的两边都乘以(或除 以)同一个正数,不等号的方向不变。
a b 如果a>b,c>0 ,那么ac>b c, c c
【探究问题一】: 1、做一做:用“>”、 “<” 填空:
(1)5>3 ,
(2)-1<3, 规律?
> 3+2, 5-2 > 3-2; -1+2 < 3+2, -1-3 < 3-3;

专题-不等式基本性质(解析版)

专题-不等式基本性质(解析版)

专题10不等式基本性质1.设{}2560,A x x x x R =--=∈,{}260,B x mx x x R =-+=∈,且A B B ⋂=,则m 的取值范围为 . 【难度】★★【答案】1024m m >=或2.设集合{}{}2135,322,A x a x a B x x A B =+≤≤-=≤≤⊆恒成立,则实数a 的取值范围为 . 【难度】★★ 【答案】(,9]-∞3.设全集{}R y x y x U ∈=,|),(,⎭⎬⎫⎩⎨⎧∈=--=,,,123|),(R y x x y y x A ,{}R y x x y y x B ∈+==,,1|),(,则UC AB =.热身练习【难度】★★ 【答案】(){}2,3⎧⎪⎪⎨⎪⎪⎩基本性质比较大小不等式基本性质不等式范围问题不等式综合1.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇔a >c ;(3)可加性:a >b ⇔a +c >b +c ,a >b ,c >d ⇔a +c >b +d ;知识梳理模块一:(4)可乘性:a>b,c>0⇔ac>bc;a>b,c<0⇔ac<bc;a>b>0,c>d>0⇔ac>bd;(5)可乘方:a>b>0⇔a n>b n(n⇔N,n≥2);(6)可开方:a>b>0⇔na>nb(n⇔N,n≥2);(7) a>b,ab>0⇔11a b<;a>b>0,0<c<d⇔a b c d>.【例1】判断下列命题的真假。

(1)若a>b,那么ac>2bc2。

()(2)若ac>2bc2,那么a>b。

()(3)若a>b,c>d,那么a-c>b-d。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档