数学建模统计模型

合集下载

数学建模之统计模型

数学建模之统计模型

数学建模之统计模型主讲:张伟内容概要•统计模型概要•参数检验•非参数检验•方差分析一、统计模型(Statistical Model)1. 概念有些过程无法用理论分析方法导出其模型,但可通过试验或直接由工业过程测定数据,经过数理统计求得各变变量之间的函数关系,称为统计模型数学建模就是利用数学方法来解决实际问题。

常用模型:最大似然估计、回归分析、聚类分析、非参数估计等软件:SPSS统计软件2.建模背景案例1:眼科病床的合理安排(2009年B题)该医院眼科门诊每天开放,住院部共有病床79张。

该医院眼科手术主要分四大类:白内障、视网膜疾病、青光眼和外伤。

附录中给出了2008年7月13日至2008年9月11日这段时间里各类病人的情况。

案例2:葡萄酒的评价问题(2012年A题)二、参数检验(Parametric Tests)当总体分布已知(如总体为正态分布),根据样本数据对总体分布的统计参数进行推断。

主要目的(1)估计参数的取值,(2)对参数进行某种统计检验。

这类问题往往用参数检验来进行统计推断。

(单个或多个参数).某车间用一台包装机包装葡萄糖.包得的袋装糖当机器正常时,某日开工后为检验包装机是否正常,包装的糖9袋,称得净重为(公斤):0.497 0.506 0.518 0.524 0.4980.511 0.520 0.515 0.512问机器是否正常?案例3:重是一个随机变量X ,且),(~2σμN X 其均值为μ=0.5公斤,标准差σ=0.015公斤.随机地抽取它所(α=0.05)提出假设寻求统计量写出拒绝域进行检验解题思路:求解:SPSS软件或是Excel三、非参数检验(Nonparametric Tests)当总体分布未知,根据样本数据对总体分布的统计参数进行推断。

主要目的(1)估计参数的取值;(2)对参数进行某种统计检验。

这类问题往往用参数检验来进行统计推断。

(单个或多个参数).1.单样本检验(拟合性检验)样本观测值总体分布(1)卡方检验寻求方法拟合(2)二项分布检验(3)K-S检验注:主要服从分布:离散型分布,正态分布,指数分布等案例1中:病床的合理安排需要做数据分析,拟合以下两个重要的指标:(1)病人到达人数服从Poisson分布,分布检验,分布参数提取;(2)术后住院时间分布:正态分布or Г分布or 经验分布;案例2中问题1:首先,通过单样本K-S检验确定葡萄酒评分数据的概率分布;然后再做显著性检验。

数学建模中的概率统计模型1

数学建模中的概率统计模型1
x1 2,F1统计量和与χ y1 对应的概率p。 相关系数 R 回归系数 a , b 以及它们的置信区间 0 残差向量e=Y-Y 及它们的置信区间 X , Y 1 xn yn
残差及其置信区间可以用rcoplot(r,rint)画图。
3、将变量t、x、y的数据保存在文件data中。 save data t x y 4、进行统计分析时,调用数据文件data中的数 据。 load data 方法2 1、输入矩阵:
data=[78,79,80,81,82,83,84,85,86,87; 23.8,27.6,31.6,32.4,33.7,34.9,43.2,52.8,63.8,73.4; 41.4,51.8,61.7,67.9,68.7,77.5,95.9,137.4,155.0,175.0]
线性模型 (Y , X , I n ) 考虑的主要问题是: (1) 用试验值(样本值)对未知参数 和 2 作点估计和假设检验,从而建立 y 与
x1 , x 2 ,..., x k 之间的数量关系;
(2)在 x1 x01 , x2 x02 ,..., xk x0 k , 处对 y 的值作预测与控制,即对 y 作区间估计.
1 ( x0 x ) 2 ˆ 1 d n t (n 2) n Lxx 2
Q ˆ n2
2
设y在某个区间(y1, y2)取值时, 应如何控制x 的取值范围, 这样的问题称为控制问题。
可线性化的一元非线性回归 需要配曲线,配曲线的一般方法是: • 先对两个变量x和y 作n次试验观察得画出 散点图。 • 根据散点图确定须配曲线的类型。 • 由n对试验数据确定每一类曲线的未知参数 a和b采用的方法是通过变量代换把非线性 回归化成线性回归,即采用非线性回归线 性化的方法。

数学建模+建立统计模型进行预测课件-2024-2025学年高二下学期数学人教A版(2019)

数学建模+建立统计模型进行预测课件-2024-2025学年高二下学期数学人教A版(2019)

年个人消费支出总额x/万元
1
1.5
2
2.5
3
恩格尔系数y
0.9
0.7
0.5
0.3
0.1
若y与x之间有线性相关关系,某人年个人消费支出总额为2.6万元,据此估
计其恩格尔系数为
.
5
5
=1
i=1
参考数据: ∑ xiyi=4, ∑ 2 =22.5.
^
参考公式:对于一组数据(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其经验回归直线 =
现年宣传费x(单位:万元)和年销售量y(单位:t)具有线性相关关系,并对数据作了
初步处理,得到下面的一些统计量的值.
x/万元
y/t
2
2.5
4
4
5
4.5
3
3
6
6
(1)根据表中数据建立年销售量y关于年宣传费x的经验回归方程;
(2)已知这种产品的年利润z与x,y的关系为z=y-0.05x2-1.85,根据(1)中的结果回答
5
=
则样本点的中心坐标为
19.65+m
,
5
19.65+m
4,
5
,
19.65+
代入y=1.03x+1.13,得 5 =1.03×4+1.13,
^
解得 m=6.6.故选 B.
答案:B
2.(多选题)下列说法正确的是(
)
附:χ2独立性检验中常用的小概率值和相应的临界值
α

0.1
2.706
0.05
3.841
直线附近,并且在逐步上升,
所以可用线性回归模型拟合y与x的关系.

数学建模-多元统计模型专题(最新版)

数学建模-多元统计模型专题(最新版)
多元统计模型——数模竞赛辅导专题
河南科技大学数学与统计学院 (2010-07-23) 武新乾
一、前言
24 年前(1986 年) ,美国出现了大学生数学建模竞赛。随着改革开放的进程,数模竞赛 逐渐传入我国。1992 年,开始国内第一届大学生数学建模比赛。数模竞赛一经传入,便受 到了全国高校的普遍关注,引起了大学生的广泛兴趣。特别是近年来,虽然试题难度不断增 大,但是,参赛的学生规模空前膨胀,获奖的组队也日益增加,论文质量不断提高。 综观 18 年的竞赛试题,问题广泛,解决方案多种多样,其中基于统计分析的问题屡见 不鲜。比如:1992 年 A 题(简单记为 1992A,下同) “施肥方案对作物、蔬菜的影响” ,采 用多元二次回归、全回归、逐步回归和二次响应面回归;1993A“非线性交调的频率设计” , 采用最小二乘方法(简单记为 LS) ;1998A“资产投资收益与风险模型”和 2000A“DNA 序 列的分类” ,都采用多元分析方法;2001A“血管管道的三维重建”和“血管切片的三维重 建” ,分别采用 LS 方法和非线性拟合;2001B“公交车调度的规划数学模型” ,采用聚类分 析、 平滑方法和随机过程的有关知识; 2003A “SARS 传播的数学原理及预测与控制” 和 “SARS 传播的研究” ,均考虑了时间序列的应用;2003A“SARS 传播预测的数学模型” ,采用非线 性拟合,建立了指数模型;2004A“ MS 网点的合理布局”采用了聚类分析, “基于利润最大 化的实运商业网点分布微观经济模型”采用多元统计分析方法,另外, “临时超市网点的规 划模型研究”考虑了经验分布的应用;2004B“电力市场的输电阻塞优化管理(指导教师: 肖华勇) ”和“电力市场输电阻塞管理模型” ,均使用了多元线性回归;2005A“长江水质的 评价和预测” 、 “长江水质的评价预测模型” (二元线性回归预测) 、 “基于回归分析的长江水 质预测与控制” ,均考虑了回归分析,此外, “长江水质评价和预测的研究” 、 “水质的评价和 预测模型” ,均考虑了时间序列分析方法和多元线性回归模型;2005B“DVD 在线租赁系统 的优化设计”应用了抽样统计和随机服务模型, “DVD 在线租赁问题”和“DVD 租赁优化 方案(指导教师:孙浩) ”考虑了二项分布和随机模拟;2005B“DVD 在线租赁问题研究” 和 2005C“雨量预报方法的评价模型”考虑了均值的应用;2006B“艾滋病疗法评价及疗效 预测模型”使用了二次曲线和多元方差分析, “艾滋病疗法评价及疗效的预测模型”使用了 逐步回归方法, “艾滋病疗法的评价及疗效的预测模型”应用了假设检验和方差分析, “艾滋 病疗法的评价及疗效的预测”使用了线性拟合、二次和三次曲线拟合与非线性回归, “基于 数据统计分析的艾滋病疗效评价方法”采用了 F-检验和二次多项式回归;2007A“中国人口 区域结构向量模型”采用了倒数曲线模型拟合, “基于 Les lie 模型的中国人口预测及蒙特卡 罗仿真(指导教师:梅长林) ”应用了概率方法;2008A“数码相机定位”应用了多元线性 回归分析;2008B“高等教育学费标准探讨(华南农业大学,编号 1910) ”应用了因子分析、 主成分分析和聚类分析, “高等教育学费标准的探讨(华南农业大学,编号 1920) ”采用了 多元回归分析、数据挖掘和模拟退火算法, “关于高等教育学费标准的评价及建议(编号 cumcm0849) ”和“高校学费合理性研究(编号 cumcm0860) ”分别考虑了回归分析和曲线 拟合。 由是可知, 多元统计分析是常见的解决数模竞赛的主要工具之一, 务必给以充分的重视 和加强训练指导。

数学建模统计模型教学教案

数学建模统计模型教学教案

数学建模统计模型教学教案一、教学内容本节课的教学内容选自人教版高中数学选修23第二章第四节“回归分析”和第三章第三节“独立性检验”。

具体内容包括:1. 回归直线方程的求法及应用;2. 相关系数的概念及其应用;3. 独立性检验的方法及其应用。

二、教学目标1. 理解回归直线方程、相关系数的概念,学会求回归直线方程和计算相关系数;2. 掌握独立性检验的方法,并能运用独立性检验解决实际问题;3. 培养学生的数据分析能力、数学建模能力和解决实际问题的能力。

三、教学难点与重点1. 教学难点:回归直线方程的求法、相关系数的计算、独立性检验的方法及应用;2. 教学重点:回归直线方程的求法、相关系数的计算、独立性检验的方法。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔;2. 学具:教材、笔记本、计算器。

五、教学过程1. 实践情景引入:以“调查某班级学生的身高和体重关系”为例,引导学生思考如何利用数学模型描述身高和体重之间的关系;2. 讲解回归直线方程的求法:通过示例,讲解最小二乘法求回归直线方程的步骤,让学生掌握求回归直线方程的方法;3. 讲解相关系数的概念及计算方法:解释相关系数的概念,演示如何利用计算器计算相关系数,让学生理解相关系数的作用;4. 应用练习:让学生运用回归直线方程和相关系数解决实际问题,如预测某学生的体重;5. 讲解独立性检验的方法:通过示例,讲解独立性检验的步骤,让学生掌握独立性检验的方法;6. 应用练习:让学生运用独立性检验解决实际问题,如判断“性别与购买意愿是否独立”;六、板书设计1. 回归直线方程的求法;2. 相关系数的概念及其计算方法;3. 独立性检验的方法。

七、作业设计1. 求下列数据的回归直线方程:身高(x):165, 170, 172, 175, 180体重(y):60, 62, 64, 66, 682. 计算下列数据的相关系数:身高(x):165, 170, 172, 175, 180体重(y):60, 62, 64, 66, 683. 某班级有男生20人,女生15人,男生中有12人购买了某商品,女生中有8人购买了该商品。

统计模型在数学建模的应用

统计模型在数学建模的应用

对因变量的影响是否显著.
• 模型改进, 如增添二次项、交互项等. • 对因变量进行预测.
2 软件开发人员的薪金
建立模型研究薪金与资历、管理责任、教育程度的关系 . 分析人事策略的合理性,作为新聘用人员薪金的参考. 46名软件开发人员的档案资料
编 号 01 02 03 04 薪金 13876 11608 18701 11283 资 历 1 1 1 1 管 理 1 0 1 0 教 育 1 3 3 2 编 号 42 43 44 45 46 薪金 27837 18838 17483 19207 19346 资 历 16 16 16 17 20 管 理 1 0 0 0 0 教 育 2 2 1 2 1
销售 周期 1 2
29 30
3.80 3.70
3.85 4.25
5.80 6.80
0.05 0.55
7.93 9.26
基本模型
y ~公司牙膏销售量 x1~其他厂家与本公司价格差 x2~公司广告费用
y 10
9.5 9 8.5 8 7.5 7 -0.2 0 0.2 0.4 0.6
e 与资历x1的关系
2000 1000
2000 1000 0 -1000
0
-1000
-2000
0
5
10
15
20
-2000
1
2
3
4
5
6
残差大概分成3个水平, 6种管理—教育组合混在 一起,未正确反映.
残差全为正,或全为负,管 理—教育组合处理不当. 应在模型中增加管理x2与 教育x3, x4的交互项 .
1 牙膏的销售量
问 题
建立牙膏销售量与价格、广告投入之间的模型; 预测在不同价格和广告费用下的牙膏销售量. 收集了30个销售周期本公司牙膏销售量、价格、 广告费用,及同期其他厂家同类牙膏的平均售价 .

数学建模 2统计模型

数学建模 2统计模型

数学建模论文题目:一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物试验,给患有同种疾病的病人使用这种新止痛剂的以下4个剂量中的某一个:2 g,5 g,7 g和10 g,并记录每个病人病痛明显减轻的时间(以分钟计). 为了解新药的疗效与病人性别和血压有什么关系,试验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试. 通过比较每个病人血压的历史数据,从低到高分成3组,分别记作0.25,0.50和0.75. 实验结束后,公司的记录结果见下表(性别以0表示女,1表示男).请你为该公司建立一个数学模型,根据病人用药的剂量、性别和血压组别,预测出服药后病痛明显减轻的时间.病人序号病痛减轻时间/min用药剂量/g性别血压组别1 352 0 0.252 43 2 0 0.503 55 2 0 0.754 47 2 1 0.255 43 2 1 0.506 57 2 1 0.757 26 5 0 0.258 27 5 0 0.509 28 5 0 0.7510 29 5 1 0.2511 22 5 1 0.5012 29 5 1 0.7513 19 7 0 0.2514 11 7 0 0.5015 14 7 0 0.7516 23 7 1 0.2517 20 7 1 0.5018 22 7 1 0.7519 13 10 0 0.2520 8 10 0 0.5021 3 10 0 0.7522 27 10 1 0.2523 26 10 1 0.5024 5 10 1 0.75一、摘要在农某医药公司为了掌握一种新止痛药的疗效,设计了一个药物实验,通过观测病人性别、血压和用药剂量与病痛时间的关系,预测服药后病痛明显减轻的时间。

我们运用数学统计工具m i n i t a b软件,对用药剂量,性别和血压组别与病痛减轻时间之间的数据进行深层次地处理并加以讨论概率值P (是否<0.05)和拟合度R -S q 的值是否更大(越大,说明模型越好)。

数学建模之统计回归模型

数学建模之统计回归模型

数学建模大作业摘要某公司想用全行业的销售额作为自变量来预测公司的销售额,题目给出了1977—1981此公司的销售额和行业销售额的分季度数据表格。

通过对所给数据的简单分析,我们可以看出:此公司的销售额有随着行业销售额的增加而增加的趋势,为了更加精确的分析题目所给的数据,得出科学的结论,从而达到合理预测的目的。

我们使用时间序列分析法,参照课本统计回归模型例4,做出了如下的统计回归模型。

在问题一中,我们使用MATLB数学软件,画出了数据的散点图,通过观察散点图,发现公司的销售额和行业销售额之间有很强的线性关系,于是我们用线性回归模型去拟合,发现有很好的拟合性。

但是这种情况下,并没有考虑到数据的自相关性,所以我们做了下面几个问题的分析来对这个数学模型进行优化。

在问题二中,通过建立了公司销售额对全行业销售额的回归模型,并使用DW检测诊断随机误差项的自相关性。

通过计算和查DW表比较后发现随即误差存在正自相关,也就是说前面的模型有一定的局限性,预测结果存在一定的偏差,还有需要改进的地方。

在问题三中,因为在问题二中得出随即误差存在正自相关,为了消除随机误差的自相关性,我们建立了一个加入自相关后的回归模型。

并对其作出了分析和验证,我们发现加入自相关后的回归模型更加合理。

通过使用我们建立的模型对公司的销售额进行预测,发现和实际的销售额很接近,也就是说模型效果还不错。

关键词:销售额、回归模型、自相关性一、问题提出某公司想用全行业的销售额作为自变量来预测公司的销售额,下表给出了1977-1981年公司销售额和行业销售额的分季度数据(单位:百万元).(1)画出数据的散点图,观察用线性回归模型拟合是否合适。

(2)监理公司销售额对全行业销售额的回归模型,并用DW检验诊断随机误差项的自相关性。

二、基本假设假设一:模型中ε(对时间t )相互独立。

三、符号说明公司销售额:y (百万)行业销售额:x (百万) 概念介绍:1.自相关:自相关(auto correlation ),又称序列相关(serial correlation )是指总体回归模型的随机误差项之间存在的相关关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模论文题目:一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物试验,给患有同种疾病的病人使用这种新止痛剂的以下4个剂量中的某一个:2 g,5 g,7 g和10 g,并记录每个病人病痛明显减轻的时间(以分钟计). 为了解新药的疗效与病人性别和血压有什么关系,试验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试. 通过比较每个病人血压的历史数据,从低到高分成3组,分别记作,和. 实验结束后,公司的记录结果见下表(性别以0表示女,1表示男).请你为该公司建立一个数学模型,根据病人用药的剂量、性别和血压组别,预测出服药后病痛明显减轻的时间.一、摘要在农某医药公司为了掌握一种新止痛药的疗效,设计了一个药物实验,通过观测病人性别、血压和用药剂量与病痛时间的关系,预测服药后病痛明显减轻的时间。

我们运用数学统计工具m i n i t a b软件,对用药剂量,性别和血压组别与病痛减轻时间之间的数据进行深层次地处理并加以讨论概率值P (是否<)和拟合度R-S q的值是否更大(越大,说明模型越好)。

首先,假设用药剂量、性别和血压组别与病痛减轻时间之间具有线性关系,我们建立了模型Ⅰ。

对模型Ⅰ用m i n i t a b软件进行回归分析,结果偏差较大,说明不是单纯的线性关系,然后对不同性别分开讨论,增加血压和用药剂量的交叉项,我们在模型Ⅰ的基础上建立了模型Ⅱ,用m i n i t a b软件进行回归分析后,用药剂量对病痛减轻时间不显着,于是我们有引进了用药剂量的平方项,改进模型Ⅱ建立了模型Ⅲ,用m i n i t a b软件进行回归分析后,结果合理。

最终确定了女性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型:Y=1x 3x1x3x21x对模型Ⅱ和模型Ⅲ关于男性病人用m i n i t a b软件进行回归分析,结果偏差依然较大,于是改进模型Ⅲ建立了模型Ⅳ,用m i n i t a b软件进行回归分析后,结果合理。

最终确定了男性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型:Y=1x1x 3x21x关键词止痛剂药剂量性别病痛减轻时间二、问题的提出一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物实验,给患有同种病痛的病人使用这种新止痛剂的一下4个剂量中的某一个:2g,5g,7g和10g,并记录每个病人病痛明显减轻的时间(以分钟计)。

为了了解新药的疗效与病人性别和血压有什么关系,实验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试。

通过比较给个病人血压的历史数据,从低到高分成三组,分别记作,和.实验结束后,公司的记录结果附录1-1表(性别以0表示,1表示男)。

现在为公司建立一个模型,根据病人用药的剂量、性别和血组别,预测出服药后病痛明显减轻的时间。

三、问题的分析假定每个患该种病的程度相差不大,即病情基本相同,根据现实,用药量与病痛减轻时间会有一定的关系,一般,药用量越高,病痛减轻时间变得越快;而更一般,男性身体素质相对于女性来说比较强壮,病痛减轻的时间也会跟性别有关系,正常而言,身体素质越好,病痛减轻时间越快;另一个,一个人的血压组别的高地也会影响到他的病痛减轻时间的快慢。

对1-1表格中的数据进行相关分析如下:相关分析:用药剂量(g),血压组别,知用药剂量(g)和血压组别的P e a r s o n相关系数=P值=;由此,可以看出用药剂量与血压组别没有关系,如图1-1所示1-1图相关分析:用药剂量(g),性别,知用药剂量(g)和性别的P e a r s o n相关系数=P值=;由此可以看出用药剂量与性别相互独立。

如1-2图所示1-2图根据所给数据可分别作出病痛减轻时间与用药剂血压组别的散点图量,性别及如下: 图 图图四、模型假设与符号假设假设病痛减轻时间只与用药剂量、性别和血压组别有关,不受其他因素的影响,由以上散点图(图图)可以作出如下模型假设 模型Ⅰ:εββββ++++=3322110x x x Y符号说明1、Y 为病痛减轻时间量,单位(m i n );2、1x 表示用药剂量 单位(g );3、2x 表示性别 ;4、3x 表示血压组别;5、 S 表示标准差;6、 R -S q 表示线性拟合度。

五、模型的建立下面用m i n i t a b 软件对分别对残差对用药剂量、残差对性别和残差对血压组别进行绘图,到出对应的图、图和图,并对这些图进行分析,分别可以看出残差对用药剂量是正常的、残差对性别是正常的、残差对血压组别正常的。

图 图 图由~图分析,可以用药剂量和血压组别的乘积表示对病痛减轻时间的交互式影响,性别对病疼减轻时间有显着影响,因此可以对男性和女性分开讨论,得到如下模型:模型Ⅱ εββββ++++=31433110x x x x Y(1)对女性的进行分析如下:回归分析:病痛减轻时间(m i n)与用药剂量(g),血压组别,用药剂量及血压组别回归方程为病痛减轻时间(m i n)=+用药剂量(g)+血压组别-用药剂量及血压组别交叉项即Y=+1x+3x1x3x自变量系数系数标准误 T P常量用药剂量(g)血压组别用药剂量及血压组别S = R-Sq = % R-Sq(调整) = %方差分析来源自由度 SS MS F P 回归 3残差误差 8合计 11来源自由度 Seq SS用药剂量(g) 1血压组别 1用药剂量及血压组别 1异常观测值用药剂病痛减轻时拟合值标准化观测值量(g)间(min)拟合值标准误残差残差8R表示此观测值含有大的标准化残差因为用药剂量p值为,所以对病痛减轻时间影响不显着,不妨引进用药剂量的平方项加以讨论,因此模型进一步改进为:模型Ⅲ回归分析:病痛减轻时间(m i n)与用药剂量(g),血压组别,用药剂量及血压组别,用药剂量的平方回归方程为:病痛减轻时间(min) = - 用药剂量(g) + 血压组别- 用药剂量及血压组别 + 用药剂量的平方即 Y=1x3x31x x21x自变量系数系数标准误 T P常量用药剂量(g)血压组别用药剂量及血压组别用药剂量的平方S = R-Sq = % R-Sq(调整) = %方差分析来源自由度 SS MS F P回归 4合计 11来源自由度 Seq SS用药剂量(g) 1血压组别 1用药剂量及血压组别 1用药剂量的平方 1由拟合值R-S q=%可以确定,该模型比较合理。

(2)、对男性用模型Ⅱ进行分析,分析结果如下:回归分析:病痛减轻时间(m i n)与用药剂量(g),血压组别,用药剂量及血压组别回归方程为:病痛减轻时间(min) = + 用药剂量(g) + 血压组别- 用药剂量及血压组别即 Y=+1x+3x31x x系数标自变量系数准误 T P常量用药剂量(g)血压组别用药剂量及血压组别S = R-Sq = % R-Sq(调整) = %方差分析来源自由度 SS MS F P回归 3合计 11来源 自由度 Seq SS 用药剂量(g ) 1 血压组别 1 用药剂量及血压组别 1因为用药剂量p 值为,所以对病痛减轻时间影响不显着, 不妨引进用药剂量的平方项加以讨论,因此可以利用模型Ⅲ进行分析: 回归分析: 病痛减轻时间(m i n ) 与 用药剂量(g ), 血压组别, 用药剂量及血压组别, 用药剂量的平方 回归方程为:病痛减轻时间(min ) = - 用药剂量(g ) + 血压组别- 用药剂量及血压组别 + 用药剂量的平方即 Y=1x 3x 31x x 21x 自变量 系数 系数标准误 T P常量 用药剂量(g ) 血压组别 用药剂量及血压组别 用药剂量的平方 S = R-Sq = % R-Sq (调整) = % 方差分析来源 自由度 SS MS F P 回归 4 残差误差 7来源自由度 Seq SS用药剂量(g) 1血压组别 1用药剂量及血压组别 1用药剂量的平方 1由此,可以看出,在男性方面血压组别的P=,对病痛减轻时间不显着,不妨取消血压组别这个单变量,将模型进一步改进。

模型Ⅳ回归分析:病痛减轻时间(m i n)与用药剂量(g),性别,用药剂量及血压组别,用药剂量的平方*性别(实质上)是常量*性别已从方程中删除。

回归方程为:病痛减轻时间(min) = - 用药剂量(g) + 用药剂量及血压组别 + 用药剂量的平方Y=1x31x x21x自变量系数系数标准误 T P常量用药剂量(g)用药剂量及血压组别用药剂量的平方S = R-Sq = % R-Sq(调整) = %方差分析来源自由度 SS MS F P回归 3残差误差 8来源自由度 Seq SS用药剂量(g) 1用药剂量及血压组别 1用药剂量的平方 1异常观测值用药剂病痛减轻时拟合值标准化观测值量(g)间(min)拟合值标准误残差残差12R表示此观测值含有大的标准化残差*注*列中的所有值相同。

用药剂量及血压组别的P=,但是R-S q=%R-S q(调整)=%,说明这个模型改进更加合理。

六、模型的优缺点与改进方向通过回归模型的建立及不断改进过程当中,得知该公司的新药的疗效对于男性和女性的作用程度不一样。

该模型是针对该公司的新药进行建模,不具有普遍性。

七、参考文献1、姜启源,谢金星,叶俊.数学模型(第三版).高等教育出版社,(2012重印)2、马林,何桢.六西格玛管理(第二版).中国人民大学出版社,(重印)3、吴翊,李永乐,胡庆军.应用数理统计.国防科技大学出版社,(重印)八、附录部分。

相关文档
最新文档