小学数学竞赛:带余除法(一).学生版解题技巧 培优 易错 难

合集下载

小学六年级奥数 余数综合之余数问题解题技巧

小学六年级奥数 余数综合之余数问题解题技巧

【例6】 (★ ★) 今天是星期四,101000天之后将是星期几?
2
【例7】(★ ★ ★)
若2836,4582,5164,6522四个自然数都被同一个自然数相除, 所得余数相同且为两位数,除数和余数的和为_______。
【例8】 (★ ★ ★)
甲、乙、丙三数分别为603,939,393。某数A除甲数所得余数 是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余 数的2倍。求A等于多少?
二、本讲经典例题 例2,例3,例4,例6 3
余数综合之余数问题解题技巧
余数的性质 1. 余数小于除数 2. 带余除法:被除数=除数×商+余数 3. 余数的运算:
(1)和的余数等于余数的和 (2)积的余数等于余数的积
4. 同余 (1)若两个整数a、b被自然数m除有相同的余数, 那么称a、b关于m同余, 用式子表示为:a≡b (modm) (2)若两个数a,b除以同一个数m得到的余数相同, 则a,b的差一定能被m整除 用式子表示为:如果有a≡b(modm), 那么一定有a-b=mk,k是整数,即m|a-b
有两个自然数相除,商是17,余数是13,已知被除数、除数、商 与余数之和为2113,则被除数是多少?
1
【例3】 (★ ★ ★ )
一个三位数除以17和19都有余数,并且除以17后所得的商与余 数的和等于它除以19后所得到的商与余数的和。那么这样的三 位数中最大数是多少,最小数是多少?
【例4】 (★ ★ ★) 全国小学数学奥林匹克试题
5. ★)我爱数学少年数学夏令营试题
有48本书分给两组小朋友,已知第二组比第一组多5人。如果 把书全部分给第一组,那么每人4本,有剩余;每人5本,书不 够。如果把书全分给第二组,那么每人3本,有剩余;每人4本, 书不够。问:第二组有多少人?

小学数学有余数的除法知识归纳与易错总结,快为孩子收藏!

小学数学有余数的除法知识归纳与易错总结,快为孩子收藏!

一、知识点回顾1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

2、余数与除数的关系:在有余数的除法中,余数必须比除数小。

最大的余数小于除数1,最小的余数是1。

3、笔算除法的计算方法:(1)先写除号“厂”(2)被除数写在除号里,除数写在除号的左侧。

(3)试商,商写在被除数上面,并要对着被除数的个位。

(4)把商与除数的乘积写在被除数的下面,相同数位要对齐。

(5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

(1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

(2)乘:把除数和商相乘,将得数写在被除数下面。

(3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

(4)比:将余数与除数比一比,余数必须必除数小。

二、解决问题根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。

1.租船问题:运用有余数的除法解决租船问题时,商加1才是最后的结果。

2.周期问题:在实际生活中,有一些事物按照一定的规律循环出现,这样的问题,称为周期问题。

解决周期问题时,可以根据题中循环出现的规律列出除法算式,求出余数,再根据余数得出所求问题的答案。

在有余除法中,要记住:(1)余数<除数;(2)被除数=商×除数+余数精典例题例1:(1)()÷7=8……(),根据余数写出被除数最大是几?最小是几?(2)()÷()=()……6,除数最小是几?思路点拨(1)根据余数一定要比除数小的原理,余数可以取1,2,3,4,5,6。

最大的余数确定最大的被除数,最小的余数确定最小的被除数。

(2)根据余数一定要比除数小的原理,除数要大于6,而大于6的数有很多,其中最小的是。

模仿练习1.算式()÷()=8……()中,被除数最小是几?2.下题中被除数最大可填几,最小可填几?()÷8=3……()3.你能写出下面题中最大的被除数和最小的被除数吗?()÷4=7……()例2:算式28÷()=()……4中,除数和商各是多少?思路点拨根据“被除数=商×除数+余数”,商×除数=被除数-余数,即,商×除数=28-4=24。

带余除法1 PPT

带余除法1 PPT
带余除法
前面我们讲到除法中被除数和除数的整 除问题.除此之外,例如:16÷3=5…1,
即16=5×3+1.此时,被除数除以除数 出现了余数,我们称之为带余数的除法。
定义1 设a与b是两个整数,b > 0,则存在唯一 的两个整数q和r,使得
a bq r, 0 r b
(1)
定义2:(1)式通常写成
例 利用带余数除法,由a, b的值求q, r .
(1) a 14,b 3
14 3 4 ( 余 2 ), q 4, r 2
(2) a 14,b 3
14 3 5 ( 余 1 ),q 5, r 1
(3)a 14,b 3
14 (3) 14 3
注:一般地,要求a, q是整数,b, r是非负整数; 如果允许b取负值,则要求 0 r b .
解:∵被除数=除数×商+余数,
即被除数=除数×40+16。
由题意可知:被除数+除数=933-40-16=877,
∴(除数×40+16)+除数=877,
思考:是否就是关于除
∴除数×41=877-16,
数和减去余数的被除数 的和倍问题
除数=861÷41,
除数=21,
∴被除数=21×40+16=856。 答:被除数是856,除数是21。
例7 一个数除以3余2,除以5余3,除以7余4,求符合条件的最小自然数。

解:想:2+3×?之后能满足“5除余3”的条件?
2+3×2=8。
再想:8+[3,5]×?之后能满足“7除余4”的条件?
8+[3,5]×3=53。
∴符合条件的最小的自然数是53。
• 归纳以上两例题的解法为:逐步满足条件法.当找到满足某个条 •件的数后,为了再满足另一个条件,需做数的调整,调整时注意要 •加上已满足条件中除数的倍数。

小学奥数精讲:带余除法(同余式和同余方程)知识点及典型例题

小学奥数精讲:带余除法(同余式和同余方程)知识点及典型例题

小学奥数精讲:带余除法(同余式和同余方程)一、基本性质的复习1、带余数除法算式:a÷b=q……r(a、b、q、r 均为整数) 从中我们应该得到:(1)b>r 除数大于余数(2)a-r=b×q 被除数减去余数则会出现整除关系,则带余数问题就可以转化为整数问题。

2、余数的性质:(1)可加性:和的余数等于余数的和。

即:两数和除以m 的余数等于这两个数分别除以m 的余数和。

例:7÷3=2……1 5÷3=1……2,则(7+5)÷3 的余数就等于(1+2)÷3 的余数0。

(2)可减性:差的余数等于余数的差。

即:两数差除以m 的余数等于这两个数分别除以m 的余数差。

例:17÷3=5……2 5÷3=1……2,则(17-5)÷3 的余数就等于(2-2)÷3 的余数0。

(3)可乘性:积的余数等于余数的积。

即:两数积除以m 的余数等于这两个数分别除以m 的余数积。

例:64÷7=9……1 45÷7=6……3,则(64×45)÷3 的余数就等于(1×3)÷7 的余数3。

二、同余式在生活中,若两个自然数 a 和 b 都除以同一个除数m 时,余数相同该如何表示呢?在代数中我们称之为同余。

即:a 与b 同余于模m。

意思就是自然数a 和b 关于m 来说是余数相同的。

用同余式表达为:a≡b(modm).注:若a 与b 同余于模m,则a 与b 的差一定被m 整除。

(余数的可减性)三、例题。

例1、当2011 被正整数N 除时,余数为16,请问N 的所有可能值有多少个?例2、(1)求多位数1234567891011…20102011除以9的余数?(2)将1开始到103的连续奇数依次写成一个多位数:a=135791113…9799101103,则数a共有多少位?数a除以9 的余数为几?(3)一个多位数1234567……979899,问除以11 的余数是多少?例3、(1)用一个数除200 余5,除300 余1,除400 余10,求这个数?(2)甲、乙、丙、丁四个旅行团分别有游客69 人,85 人、93 人、97 人。

(小学奥数)带余除法(一)

(小学奥数)带余除法(一)

1. 能夠根據除法性質調整餘數進行解題2. 能夠利用餘數性質進行相應估算3. 學會多位數的除法計算4. 根據簡單操作進行找規律計算帶餘除法的定義及性質 1、定義:一般地,如果a 是整數,b 是整數(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我們稱上面的除法算式為一個帶餘除法算式。

這裏:(1)當0r =時:我們稱a 可以被b 整除,q 稱為a 除以b 的商或完全商(2)當0r ≠時:我們稱a 不可以被b 整除,q 稱為a 除以b 的商或不完全商 一個完美的帶餘除法講解模型:如圖這是一堆書,共有a 本,這個a 就可以理解為被除數,現在要求按照b 本一捆打包,那麼b 就是除數的角色,經過打包後共打包了c 捆,那麼這個c 就是商,最後還剩餘d 本,這個d 就是餘數。

這個圖能夠讓學生清晰的明白帶餘除法算式中4個量的關係。

並且可以看出知識點撥教學目標5-5-1.帶餘除法(一)2、餘數的性質⑴被除數=除數⨯商+餘數;除數=(被除數-餘數)÷商;商=(被除數-餘數)÷除數;⑵餘數小於除數.3、解題關鍵理解餘數性質時,要與整除性聯繫起來,從被除數中減掉餘數,那麼所得到的差就能夠被除數整除了.在一些題目中因為餘數的存在,不便於我們計算,去掉餘數,回到我們比較熟悉的整除性問題,那麼問題就會變得簡單了.例題精講除法公式的應用【例 1】某數被13除,商是9,餘數是8,則某數等於。

【例 2】一個三位數除以36,得餘數8,這樣的三位數中,最大的是__________。

【巩固】計算口÷△,結果是:商為10,餘數為▲。

如果▲的值是6,那麼△的最【例 3】除法算式□□=208中,被除數最小等於。

【例 4】71427和19的積被7除,餘數是幾?【例 5】1013除以一個兩位數,餘數是12.求出符合條件的所有的兩位數.【巩固】一個兩位數除310,餘數是37,求這樣的兩位數。

五年级奥数讲义必备专题第10讲.数论之带余除法.学生版

五年级奥数讲义必备专题第10讲.数论之带余除法.学生版

第十讲数论之带余除法教学目标余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。

许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。

知识点拨一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式。

这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

小学奥数题库《数论》余数问题带余除法1星题(含解析)全国通用版

小学奥数题库《数论》余数问题带余除法1星题(含解析)全国通用版

数论-余数问题-带余除法-1星题课程目标知识提要带余除法•定义一般的,如果a是整数,b是整数(b≠0),若有a÷b=q⋯⋯r,也就是说a=b×q+r,0≦r<b,我们称上面的除法算式为一个带余除法算式。

(1)当r=0时,我们称a可以被b整除,q称为a除以b的商或完全商;(2)当r≠0时,我们称a不可以被b整除,q称为a除以b的商或不完全商。

精选例题带余除法1. 有一个除法算式,被除数和除数的和是136,商是7,则除数是.【答案】17【分析】(1)被除数÷除数=7,因此我们能得到被除数是除数得7倍.(2)如果设除数是1份,那么被除数就是7份,它们的和是136.所以每份量为:136÷8=17.即除数是17.2. 在一个除法算式中,被除数是12,除数小于12,则可能出现的不同的余数之和是.【答案】15【分析】除数小于12且有不同余数,除数可能是11、10、9、8、7.余数分别是1、2、3、4、5.余数之和是1+2+3+4+5=15.3. 已知2008被一些自然数去除,得到的余数都是10.那么这些自然数共有个.【答案】11个【分析】2008−10=1998一定能被这些数整除,且这些数一定大于10,1998=2×3×3×3×37.1998的因数一共有:(1+1)×(3+1)×(1+1)=16个.其中小于10的有:1,2,3,6,9那么大于10的因数有16−5=11个.即这些自然数共有11个.4. 买一支水彩笔需要1元7角,用15元钱最多可以买这样的水彩笔支.【答案】8【分析】1元7角相当17角,15元相当于150角.可列出如下算式:150÷17=8⋯14.故最多可以买这样的水彩笔8支.5. 两数相除,商4余8,被除数、除数两数之和等于73,则被除数是.【答案】60【分析】被除数=4×除数+8,被除数减去8后是除数的4倍,所以根据和倍问题可知,除数为(73−8)÷(4+1)=13,所以,被除数为13×4+8=60.6. 有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是.【答案】1968【分析】设除数为a,被除数为17a+13,即可得到(17a+13)+a+17+13=2113,那么除数=115,被除数=115×17+13=1968.7. 在一个除法算式中,如果商是16,余数是8,那么被除数最小是.【答案】152【分析】根据余数小于除数,得到除数最小为9,那么被除数的最小值为16×9+8=152.8. 在一个除法算式中,如果商是16,余数是8,那么被除数与除数的和最小是.【答案】161【分析】由上题152+9=161.9. (1)34÷4=8⋯⋯2,则[34÷4]=,{34÷4}=;(2)已知a÷125=b⋯⋯10,[a÷125]=6,求{a÷125} = ;(3)已知a÷20=3⋯⋯b,{a÷20}=0.45,求[a÷20] = ,a = .【答案】(1)8,0.5;(2)0.08;(3)3,69【分析】(1)34÷4的整数部分就是商,因此为8,{34÷4}相当于余数除以4,因此为0.5.(2)如果a÷b=q⋯⋯r,[a÷b]=q,{a÷b}=r÷b方法1:b=6,a=6×125+10=760,{760÷125}=0.08;方法2:b=6,{a÷125}=10÷125=0.08.(3)如果a÷b=q⋯⋯r,[a÷b]=q,{a÷b}=r÷b,所以[a÷20]=3,b=0.45×20=9,a=3×20+9=69.10. 用一个自然数去除另一个自然数,商为5.被除数、除数的和是36,求这两个自然数各是多少?【答案】被除数为30,除数为6.【分析】被除数÷除数=5,所以根据和倍问题可知,除数为36÷(5+1)=6,所以被除数为5×6=30.11. 若a÷b=7⋯⋯9,则a的最小值是多少?【答案】79【分析】根据余数小于除数,得到除数最小为10,那么a的最小值为7×10+9=79.12. (1)25÷6=4⋯⋯1;34÷6=5⋯⋯4,那么(25+34)÷6=( )⋯⋯( ).(2)45÷7=6⋯⋯3;26÷7=3⋯⋯5,那么(45+26)÷7=( )⋯⋯( ).(3)a÷8⋯⋯5;b÷8⋯⋯6,那么(a+b)÷8⋯⋯( ).(4)a÷8⋯⋯5;b÷8⋯⋯6;c÷8⋯⋯7,那么(a+b+c)÷8⋯⋯( ).【答案】(1)(25+34)÷6=(9)⋯⋯(5);(2)(45+26)÷7=(10)⋯⋯(1).(3)(a+b)÷8⋯⋯(3).(4)(a+b+c)÷8⋯⋯(2).【分析】(1)(25+34)÷6=9⋯⋯5;(2)(45+26)÷7=10⋯⋯1.(3)所以余数的和为5+6=11,11÷8=1⋯⋯3,余数为3.(4)余数的和为5+6+7=18,18÷8=2⋯⋯2,余数为2.13. 请在下列括号中填上适当的数.(1)a÷8⋯⋯6;b÷8⋯⋯7,那么(a+b)÷8⋯⋯( ).(2)a÷10⋯⋯5;b÷10⋯⋯6;c÷10⋯⋯7,那么(2a+b+c)÷10⋯⋯( ).【答案】(1)5;(2)3【分析】(1)余数的和为6+7=13,13÷8=1⋯⋯5,余数为5.(2)2a+b+c=a+a+b+c,所以余数的和为5+5+6+7=23,23÷10=2⋯⋯3,余数为3.14. 1013除以一个两位数,余数是12.求出符合条件的所有的两位数.【答案】13,77,91【分析】1013−12=1001,1001=7×11×13,那么符合条件的所有的两位数有11,13,77,91,因为“余数小于除数”,所以舍去11,答案只有13,77,91.15. 1013除以一个两位数,余数是12.求出所有符合条件的两位数.【答案】13,77,91【分析】1013−12=1001,1001=7×11×13,那么符合条件的所有的两位数有11,13,77,91,因为“余数小于除数”,所以舍去11,答案只有13,77,91.16. 甲、乙两数的和是16,甲数除以乙数商是2余1,求甲数和乙数各是多少?【答案】乙=5,甲=11【分析】设乙数为a,即甲为2a+1,可得到(2a+1)+a=16,那么乙=5,甲=11.17. 2025除以一个两位数,余数是75,这个两位数是多少?【答案】78【分析】这个两位数是2025−75=1950的约数,其中比75大的只有78.18. 一个数除以另一个数,商是3,余数是3.如果除数和被除数都扩大10倍,那么被除数、除数、商、余数的和是263,求这2个自然数各是多少?【答案】5、18【分析】设除数为a,被除数为3a+3,即可得到10(3a+3)+10a+3+30=263,那么除数=5,被除数=5×3+3=18.19. 甲、乙两数的差是113,甲数除以乙数商7余5,则甲数和乙数各是多少?【答案】乙=18,甲=131【分析】设乙数为a,即甲为7a+5,可得到(7a+5)−a=113,那么乙=18,甲= 131.20. 两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【答案】324【分析】设被除数和除数分别为x,y,可以得到\[ \begin{cases} x = 4y + 8\hfill \\ x + y + 4 + 8= 415 \hfill \\ \end{cases} \]解方程组得\[ \left\{ \begin{gathered} x = 324 \hfill\\ y = 79 \hfill\\ \end{gathered} \right. \]即被除数为324.21. 78除以一个数得到的商是8,并且除数与余数的差是3,求除数和余数.【答案】除数为9,余数为6.【分析】78÷除数=8⋯⋯(余数−3),81÷除数=9⋯⋯0被除数加上除数与余数的差3的和刚好是除数的9倍,则除数为(78+3)÷9=9,余数为6.22. 用某自然数a去除1992,得到商是46,余数是r,求a和r.【答案】a=43,r=14【分析】由1992是a的46倍还多r,得到1992÷46=43......14,得1992=46×43+ 14,所以a=43,r=14.23. 甲、乙两个数,甲数除以乙数商2余17,乙数的10倍除以甲数商3余45.求甲、乙二数.【答案】乙=24,甲=65【分析】设乙数为a,即甲为2a+17,可得到10a÷(2a+17)=3⋯⋯45,整理为10a= 3(2a+17)+45,那么乙=24,甲=65.24. 一个三位数除以43,商是a余数是b,求a+b的最大值.【答案】64【分析】试除法:999÷43=23⋯⋯10;999−10−1=988;988÷43=22⋯⋯42.余数最大为42,所以a+b的最大值为42+22=64.25. (1)82÷6=13⋯⋯4;50÷6=8⋯⋯2,那么(82−50)÷6=( )⋯⋯( ).(2)74÷6=12⋯⋯2;22÷6=3⋯⋯4,那么(74−22)÷6=( )⋯⋯( ).(3)a÷6余5;b÷6余1,那么(a−b)÷6余几呢?(4)a÷6余3;b÷6余5,那么(a−b)÷6余几呢?【答案】(1)(82−50)÷6=(5)⋯⋯(2).(2)(74−22)÷6=(8)⋯⋯(4).(3)余4.(4)余4.【分析】(1)(82−50)÷6=5⋯⋯2.(2)(74−22)÷6=8⋯⋯4.(3)余数的差是4,所以余数是4.(4)余数不够减时借1当6用来减,3+6=9,9−5=4,所以余数是4.26. 用一个自然数去除另一个自然数,商为8,余数是3.被除数、除数的和是48,求这两个自然数各是多少?【答案】被除数为43,除数为5.【分析】因为被除数减去3后使除数的8倍,所以根据和倍问题可知,除数为(48−3)÷(8+1)=5,所以被除数为5×8+3=43.27. 50除以一个一位数,余数是2.求出符合条件的一位数.【答案】3,4,6,8【分析】50÷除数=商⋯⋯2,50−2=48,48=除数×商,48=1×48=2×24=3×16=4×12=6×8,因为“余数小于除数且除数是一位数“那么符合条件的所有的数有3,4,6,8.28. 一个两位数除310,余数是37,求这样的两位数.【答案】39;91【分析】本题为余数问题基础题型,需要学生明白一个重要知识点,就是把余数问题---即“不整除问题”转化为整除问题.方法为用被除数减去余数,即得到一个除数的倍数;或者是用被除数加上一个“除数与余数的差”,也可以得到一个除数的倍数.本题中310−37=273,说明273是所求余数的倍数,而273=3×7×13,所求的两位数约数还要满足比37大,符合条件的两位数有39,91.29. 一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【答案】83【分析】因为一个两位数除以13的商是6,所以这个两位数一定大于78,并且小于13×(6+1)=91;又因为这个两位数除以11余6,而78除以11余1,这个两位数为78+5=83.30. 43除以一个数得到的商是8,并且除数与余数的差是2,求除数和余数.【答案】除数为5,余数为3.【分析】43=8×除数+余数,被除数加上除数与余数的差2的和刚好是除数的9倍,则除数为(43+2)÷(8+1)=5,余数为3.31. 用一个自然数去除另一个自然数,商为7.被除数、除数的和是48,求这两个自然数各是多少?【答案】除数为6,被除数为42.【分析】被除数÷除数=7,所以根据和倍问题可知,除数为48÷(7+1)=6,所以被除数为6×7=42.32. 计算:(1)已知a÷25=b⋯⋯5,[a÷20]=4,求a=;(2)已知a÷10=7⋯⋯b,{a÷10}=0.5,求[a÷10]=,a=.【答案】(1)105;(2)7,75【分析】(1)b =4,a=4×25+5=105(2)a÷b=q⋯⋯r,[a÷b]=q,{a÷b}=r÷b,所以[a÷10]=7,b=0.5×10=5,a=7×10+5=75.33. 46除以一个一位数,余数是1.求出符合条件的一位数.【答案】3,5,9【分析】46÷除数=商⋯⋯1,46−1=45,45÷除数=商⋯⋯0,45=除数×商,45=3×15=5×9,因为“余数小于除数且除数是一位数”那么符合条件的所有的一位数有3,5,9.34. 博士要给小朋友们分糖,一共128块,如果每人分5块,最多可以分给几个小朋友?【答案】25【分析】128÷5=25⋯⋯3,最多分给25个小朋友,还剩3块.35. 128除以一个数得到的商是9,并且除数与余数的差是2,求除数和余数.【答案】除数为13,余数为11.【分析】128÷除数=9⋯⋯(余数−2),130÷除数=10⋯⋯0被除数加上除数与余数的差2的和刚好是除数的10倍,则除数为(128+2)÷10=13,余数为11.36. 有一个整数,39,51,147被它除所得的余数都是3,求这个数.【答案】4;6;12【分析】方法一:39−3=36,147−3=144,(36,144)=12,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12.方法二:由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.51−39=12,147−39=108,(12,108)=12,所以这个数是4,6,12.37. 一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是多少?【答案】46【分析】设除数为b,商和余数都是c,这个算式就可以表示为:47÷b=c⋯⋯c,即b×c+c=47;c×(b+1)=47,所以c一定是47的因数,47的因数只有1和47;c为47肯定不符合条件,所以c=1,即除数是46,余数是1.38. 已知2012被一些正整数去除,得到的余数为10,则这样的正整数共有多少个?【答案】13个【分析】2012−10=2002一定能被这些数整除,2002=2×7×11×13.因为2002中一共有(1+1)×(1+1)×(1+1)×(1+1)=16个,排除小于10的因数1、2、7,满足条件的正整数共有16−3=13个.39. 188+288+388+…+2088除以9、11的余数各是多少?【答案】8;11.【分析】根据等差数列求和列式:188+288+388+…+2088=22760,所以22760÷9⋯⋯8;22760÷11⋯1.40. 著名的斐波那契数列是这样的:1,1,2,3,5,8,13,21,⋯,这串数列当中第2008个数除以3所得的余数为多少?【答案】0【分析】斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将斐波那契数列转换为被3除所得余数的数列:1,1,2,0,2,2,1,0,1,1,2,0,⋯,第九项和第十项连续两个是1,与第一项和第二项的值相同且位置连续,所以斐波那契数列被3除的余数每8个一个周期循环出现,由于2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数为0.。

小学数学奥数知识点《有余数的除法》例题讲解

小学数学奥数知识点《有余数的除法》例题讲解

小学奥数《有余数的除法》例题讲解在有余数除法中,要记住:(1)余数<除数;(2)被除数=商×除数+余数例1(1)()÷7=8……(),根据余数写出被除数最大是几?最小是几?(2)()÷()=()……6,除数最小是几?【思路点拨】(1)根据余数一定要比除数小的原理,余数可以取1,2,3,4,5,6。

最大的余数确定最大的被除数,最小的余数确定最小的被除数。

(2)根据余数一定要比除数小的原理,除数要大于6,而大于6的数有很多,其中最小的是。

【模仿练习】1.算式()÷()=8……()中,被除数最小是几?2.下题中被除数最大可填几,最小可填几?()÷8=3……()3.你能写出下面题中最大的被除数和最小的被除数吗?()÷4=7……()例2算式28÷()=()……4中,除数和商各是多少?【思路点拨】根据“被除数=商×除数+余数”,商×除数=被除数-余数,即,商×除数=28-4=24。

而24=×=×=×=×,再根据除数>余数就可以确定对应的除数和商。

【模仿练习】下列算式中,除数和商各是几?(1)22÷()=() (4)(2)65÷()=() (2)(3)37÷()=() (7)(4)48÷()=() (6)例3算式()÷7=()……()中,商和余数相等,被除数可以是哪些数?【思路点拨】要求出被除数,必须确定商和余数,而商等于余数,所以可以先根据除数是7来确定余数的值,根据余数小于除数,所以得到余数可以取,,,,,,从而得到对应的商,然后再求出被除数。

例4算式()÷()=()……6,除数和商相等,被除数最小是几?【思路点拨】通过余数等于6可以确定除数应该大于6,大于6的数有无数个,但是要想使被除数最小,则除数应该尽量小,这样一来除数就只能取,再根据商和除数相等确定商,最后根据“被除数=商×除数+余数”求出最小的被除数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 能够根据除法性质调整余数进行解题
2. 能够利用余数性质进行相应估算
3. 学会多位数的除法计算
4.
根据简单操作进行找规律计算
带余除法的定义及性质
1、定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,
0≤r <b ;我们称上面的除法算式为一个带余除法算式。

这里:
(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商 (2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商 一个完美的带余除法讲解模型:如图
这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

2、余数的性质
⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑵ 余数小于除数. 3、解题关键
理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.
除法公式的应用
【例 1】 某数被13除,商是9,余数是8,则某数等于 。

例题精讲
知识点拨
教学目标
5-5-1.带余除法(一)
【巩固】 计算口÷△,结果是:商为10,余数为▲。

如果▲的值是6,那么△的最小值是_____。

【例 3】 除法算式 L L □□=208中,被除数最小等于 。

【例 4】 71427和19的积被7除,余数是几?
【例 5】 1013除以一个两位数,余数是12.求出符合条件的所有的两位数.
【巩固】 一个两位数除310,余数是37,求这样的两位数。

【巩固】 在下面的空格中填上适当的数。

3
1247
【例 7】大于35的所有数中,有多少个数除以7的余数和商相等?
【例 8】已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?
【巩固】写出全部除109后余数为4的两位数.
【例 9】甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数.
【例 10】用某自然数a去除1992,得到商是46,余数是r,求a和r.
【例 11】当1991和1769除以某个自然数n,余数分别为2和1.那么,n最小是多少?
【例 12】有三个自然数a,b,c,已知b除以a,得商3余3;c除以a,得商9余11。

则c除以b,得到的余数是。

【例 13】有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?
【巩固】两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.
【巩固】用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?
【例 14】有一个三位数,其中个位上的数是百位上的数的3倍。

且这个三位数除以5余4,除以11余3。

这个三位数是_
【例 15】一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________.
【例 16】盒子里放有编号1到10的十个球,小红先后三次从盒子中共取出九个球,如果从第二次起,每次取出的球的编号的和都比上一次的两倍还多一,那么剩下的球的编号为____。

【例 17】10个自然数,和为100,分别除以3。

若用去尾法,10个商的和为30;若用四舍五入法,l0个商的和为34.10个数中被3除余l的有________个.
【例 18】3782除以某个整数后所得的商恰好是余数的21倍,那么除数最小可能是。

【例 19】在大于2009的自然数中,被57除后,商与余数相等的数共有______个.
【例 20】用1、9、8、8这四个数字能排成几个被11除余8的四位数?
【例 21】。

相关文档
最新文档