最新版湖南省邵阳市中考数学试卷
(中考精品卷)湖南省邵阳市中考数学真题(解析版)

2022年邵阳市初中学业水平考试试题卷数 学温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上; (3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. -2022的绝对值是( ) A. 12022 B. 12022- C. -2022 D. 2022【答案】D【解析】【分析】直接利用绝对值定义判断即可.【详解】解:-2022的绝对值是2022,故选:D .【点睛】本题考查了绝对值的定义,明确负数的绝对值等于它的相反数是解题关键. 2. 下列四种图形中,对称轴条数最多的是( )A. 等边三角形B. 圆C. 长方形D. 正方形【答案】B【解析】【分析】分别求出各个图形的对称轴的条数,再进行比较即可.【详解】解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B .【点睛】此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.3. 5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为1210a ⨯,则a 的值是( )A. 0.11B. 1.1C. 11D. 11000 【答案】B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,整数位数减1即可.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:因1亿=108,所以11000亿用科学记数法表示为1.1×104×108=1.1×1012. 故选:B .【点睛】此题考查了科学记数法表示绝对值大于1的数.解题的关键是关键知道1亿=108,要正确确定a 的值以及n 的值.4. 下列四个图形中,圆柱体的俯视图是( )A. B. C. D.【答案】D【解析】【分析】根据俯视图是从上面看到的视图进而得出答案即可.【详解】解:竖直放置的圆柱体,从上面看是圆,所以俯视图是圆.故选∶D .【点睛】此题考查了简单几何体的三视图,解题的关键是熟练掌握圆柱体的三视图. 5. 假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(正,正)的概率是( )A. 1B. 34C. 12D. 14【答案】D【解析】【分析】由列举法可得:掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,其中出现(正,正)的情况有1种,然后利用概率公式求解即可求得答案.为【详解】∵掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,其中出现(正,正)的情况有1种,∴P(正,正)=14.故选∶D.【点睛】此题考查了列举法求概率,解题关键是知道概率=所求情况数与总情况数之比.6. 下列长度的三条线段能首尾相接构成三角形的是()A. 1cm,2cm,3cmB. 3cm,4cm,5cmC. 4cm,5cm,10cmD. 6cm,9cm,2cm【答案】B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故选项错误,不符合题意;B、3+4>5,能够组成三角形,故选项正确,符合题意;C、5+4<10,不能组成三角形,故选项错误,不符合题意;D、2+6<9,不能组成三角形,故选项错误,不符合题意;故选:B.【点睛】此题考查了三角形的三边关系.解题的关键是看较小的两个数的和是否大于第三个数.7. 如图是反比例函数y=1x的图象,点A(x,y)是反比例函数图象上任意一点,过点A作AB⊥x轴于点B,连接OA,则△AOB的面积是()A. 1B. 12C. 2 D.32的【答案】B【解析】【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是12. 【详解】解:设A (x ,y )则OB =x ,AB =y , ∵A 为反比例函数y =1x 图象上一点, ∴xy =1,∴S △ABO =12AB •OB =12xy =12×1=12, 故选:B .【点睛】本题考查反比例函数的几何意义,即k 的绝对值,等于△AOB 的面积的2倍,数形结合比较直观.8. 在直角坐标系中,已知点3,2A m ⎛⎫ ⎪⎝⎭,点B n ⎫⎪⎪⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是( )A. m n <B. m n >C. m n ≥D. m n ≤【答案】A【解析】【分析】因为直线()0y kx b k =+<,所以随着自变量的增大,函数值会减小,根据这点即可得到问题解答.【详解】解:∵因为直线()0y kx b k =+<,∴y 随着x 的增大而减小,∵32>2,∴32> ∴m <n ,故选:A .【点睛】此题考查了一次函数的图象和性质,解题的关键是正确判断一次函数的增减性并灵活运用.9. 如图,⊙O 是等边△ABC 的外接圆,若AB =3,则⊙O 的半径是( )A. 32 D. 52【答案】C【解析】【分析】作直径AD ,连接CD ,如图,利用等边三角形的性质得到∠B =60°,关键圆周角定理得到∠ACD =90°,∠D =∠B =60°,然后利用含30度的直角三角形三边的关系求解.【详解】解:作直径AD ,连接CD ,如图,∵△ABC 为等边三角形,∴∠B =60°,∵AD 为直径,∴∠ACD =90°,∵∠D =∠B =60°,则∠DAC =30°,∴CD =12AD , ∵AD 2=CD 2+AC 2,即AD 2=(12AD )2+32,∴AD ,∴OA =OB =12AD . 故选:C . 【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质、圆周角定理和含30度的直角三角形三边的关系.10. 关于x 的不等式组()1233111222x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩有且只有三个整数解,则a 的最大值是( )A. 3B. 4C. 5D. 6 【答案】C【解析】【分析】分别对两个不等式进行求解,得到不等式组的解集为1x a <<,根据不等式组有且只有三个整数解的条件计算出a 的最大值. 【详解】解不等式1233x x ->-, 1233x x -+>, ∴2233x >, ∴1x >, 解不等式111(2)22x a -<-, 得11(2)122x a <-+, ∴x a <, ∴1233111(2)22x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩的解集为1x a <<, ∵不等式组有且只有三个整数解,∴不等式组的整数解应为:2,3,4,∴a 的最大值应为5故选:C .【点睛】本题考查不等式组的整数解,解题的关键是熟练掌握不等式组的相关知识.二、填空题(本大题有8个小题,每小题3分,共24分)11. 因式分解:224a b -=_____.【答案】()()22a b a b +-【解析】【分析】本题利用平方差公式进行因式分解即可.【详解】解:原式=(a+2b)(a-2b) .12. 有意义,则x的取值范围是_________.【答案】x>2##2<x【解析】【分析】根据二次根式有意义的条件:被开方数是非负数和分式有意义的条件:分母不为0即可求出结论.【详解】解:由题意可得x-2>0,解得:x>2,故答案为:x>2.【点睛】本题考查的是分式及二次根式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0解题的关键.13. 某班50名同学的身高(单位:cm)如下表所示:【答案】160【解析】【分析】根据众数的定义求解.【详解】在这一组数据中160出现了10次,次数最多,故众数是160.故答案为:160.【点睛】此题考查了众数,解题的关键是掌握众数的定义.14. 分式方程532x x-=-的根为_____【答案】x=-3 【解析】【详解】解:532x x-=-,去分母得:5x-3(x-2)=0,解得:x =-3,检验:当x =-3时,x (x -3)≠0,所以,原分式方程的解为x =-3,故答案是:x =-3.15. 已知矩形的一边长为6cm ,一条对角线的长为10cm ,则矩形的面积为_________2cm .【答案】48【解析】【分析】如图,先根据勾股定理求出8cm AB ==,再由ABCD S AB BC=⨯矩形求解即可.【详解】解:在矩形ABCD 中,6cm BC =,10cm AC =,∴Rt ABC △中,8AB ==(cm),∴28648(cm )ABCD S AB BC =⨯=⨯=矩形.故答案为:48.【点睛】此题考查了矩形的性质,勾股定理,解题的关键是熟知上述知识.16. 已知2310x x -+=,则2395x x -+=_________.【答案】2【解析】【分析】将2395x x -+变形为23(31)+2x x -+即可计算出答案.【详解】22239539323(31)+2x x x x x x -+=-++=-+∵2310x x -+=∴23950+2=2x x -+=故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识. 17. 如图,在等腰ABC 中,120A ∠=︒,顶点B 在ODEF 的边DE 上,已知140∠=︒,则2∠=_________.在【答案】110º【解析】【分析】先根据等腰三角形的性质求出∠ABC 的度数;再根据平行四边形对边平行和两直线平行同旁内角互补的性质,得出∠2+∠ABE =180º,代入求解即可.【详解】解:∵ABC 是等腰三角形,∠A =120º,∴∠ABC =∠C =(180º-∠A )÷2=30º,∵四边形ODEF 是平行四边形,∴OF ∥DE ,∴∠2+∠ABE =180º,即∠2+30º+40º=180º,∴∠2=110º.故答案为:110º.【点睛】此题考查了等腰三角形的性质和平行四边形的性质,解题的关键是数形结合,熟练运用上述知识求解.18. 如图,在ABC 中,点D 在AB 边上,点E 在AC 边上,请添加一个条件_________,使ADE ABC △△∽.【答案】∠ADE =∠B (答案不唯一).【解析】【分析】已知有一个公共角,则可以再添加一个角从而利用有两组角对应相等的两个三角形相似来判定或添加夹此角的两边对应成比例也可以判定.【详解】解∶∵∠A =∠A ,∴根据两角相等的两个三角形相似,可添加条件∠ADE =∠B 或∠AED =∠C 证ADE ABC △△∽相似; 根据两边对应成比例且夹角相等,可添加条件AD AE AB AC=证ADE ABC △△∽相似. 故答案为∶∠ADE =∠B (答案不唯一).【点睛】此题考查了本题考查了相似三角形的判定,解题的关键是掌握相似三角形的判定方法. 三、解答题(本大题有8个小题,第19~25题每题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程)19. 计算:201(2)2sin 602π-⎛⎫-+-- ⎪⎝⎭︒. 【答案】【解析】【分析】先计算零指数幂、负指数幂、锐角三角函数值,再计算二次根式的乘法和加减法. 【详解】解:201(2)2sin 602π-⎛⎫-+-- ⎪⎝⎭︒数幂、负指数幂、锐角三角函数值的计算法则.20. 先化简,再从-1,0,1x 值代入求值.211111x x x x ⎛⎫+÷ ⎪+--⎝⎭. 【答案】11x +【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把合适的x 的值代入计算即可求出值. 【详解】解:211111x x x x ⎛⎫+÷ ⎪+--⎝⎭ 11(1)(1)(1)(1)1x x x x x x x ⎡⎤-=+÷⎢⎥+-+--⎣⎦ 的1(1)(1)x x x x x -=⋅+- =11x +, ∵x +1≠0,x -1≠0,x ≠0,∴x ≠±1,x ≠0当x 时,原式==【点睛】本题主要考查了分式的化简求值,分母有理化,解题的关键是掌握分式混合运算顺序和运算法则.21. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 在对角线BD 上,且BE DF =,OE OA =.求证:四边形AECF 是正方形.【答案】证明过程见解析【解析】【分析】菱形的两条对角线相互垂直且平分,再根据两条对角线相互垂直平分且相等的四边形是正方形即可证明四边形AECF 是正方形.【详解】证明:∵ 四边形ABCD 是菱形∴ OA =OC ,OB =OD 且AC ⊥BD ,又∵ BE =DF∴ OB -BE =OD -DF即OE =OF∵OE =OA∴OA =OC =OE =OF 且AC =EF又∵AC ⊥EF∴ 四边形DEBF 是正方形.【点睛】此题考查了菱形的性质和正方形的判定,解题的关键是掌握上述知识.22. 2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团(假设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,并绘制成如图(1)、图(2)所示的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题.(1)求抽取参加调查的学生人数.(2)将以上两幅不完整的统计图补充完整.(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.【答案】(1)抽取参加调查的学生人数为40人(2)统计图见解析(3)估计该校报兴趣类社团的学生人数有200人【解析】【分析】(1)从两个统计图中可知,报兴趣类社团有5人,占调查人数的12.5%,可求出抽取参加调查的学生人数;(2)求出报体育类社团的人数即可补全条形统计图,求出文艺类和阅读类所占百分比可补全扇形统计图;(3)用1600去乘报兴趣类社团的学生所占的比例即可.【小问1详解】解:5÷12.5%=40(人)答:抽取参加调查的学生人数为40人.【小问2详解】解:40×25%=10(人),补全条形统计图如图所示:15100%40⨯=37.5%,10100%25%40⨯=,补全扇形统计图如图所示: 【小问3详解】解:1600×12.5%=200(人)答:估计该校报兴趣类社团的学生人数有200人.【点睛】此题考查了条形统计图、扇形统计图的意义和制作方法以及用样本估计总体,解题的关键是从两个统计图中获取数量和数量关系式.23. 2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?【答案】(1)购进“冰墩墩”摆件80件,“冰墩墩”挂件的100件;(2)购进的“冰墩墩”挂件不能超过70个.【解析】【分析】(1)设购进“冰墩墩”摆件x 件,“冰墩墩”挂件的y 件,利用总价=单价×数量,结合购买“冰墩墩”摆件和“冰墩墩”挂件共180个且共花费11400元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买“冰墩墩”挂件m 个,则购买“冰墩墩”摆件(180-m )个,利用总价=单价×数量,结合至少盈利2900元,即可得出关于m 不等式,解之即可得出结论.【小问1详解】解:设购进“冰墩墩”摆件x 件,“冰墩墩”挂件的y 件,依题意得:180805011400x y x y +=⎧⎨+=⎩, 解得:80100x y =⎧⎨=⎩, 答:购进“冰墩墩”摆件80件,“冰墩墩”挂件的100件;【小问2详解】解:设购买“冰墩墩”挂件m 个,则购买“冰墩墩”摆件(180-m )个,依题意得:(100-80)(180-m )+(60-50)m ≥2900,解得:m ≤70,答:购进的“冰墩墩”挂件不能超过70个.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24. 如图,已知DC 是O 的直径,点B 为CD 延长线上一点,AB 是O 的切线,点A 为切点,且AB AC =.(1)求ACB ∠的度数;(2)若O 的半径为3,求圆弧 AC 的长.【答案】(1)30︒(2)2π【解析】【分析】(1)证明ADO ∆是等边三角形,得到60ADO ︒∠=,从而计算出ACB ∠的度数;(2)计算出圆弧 AC 的圆心角,根据圆弧弧长公式计算出最终的答案.【小问1详解】如下图,连接AO的∵AB 是O 的切线∴OA AB ⊥∴90OAB ︒∠=∵90DAC ︒∠=∴DAC OAB ∠=∠∵AB AC =∴B C ∠=∠∴ABO ACD ∆∆≌∴AD AO DO ==∴ADO ∆是等边三角形∴60ADO ︒∠=∵90DAC ︒∠=∴30ACB ︒∠=【小问2详解】∵60AOD ︒∠=∴120AOC ︒∠=圆弧 AC 的长为:12032180ππ︒︒⨯⨯= ∴圆弧 AC 的长为2π.【点睛】本题考查全等三角形、等腰三角形、等边三角形和圆的性质,解题的关键是熟练掌握全等三角形、等腰三角形、等边三角形和圆的相关知识.25. 如图,一艘轮船从点A 处以30km/h 的速度向正东方向航行,在A 处测得灯塔C 在北偏东60︒方向上,继续航行1h 到达B 处,这时测得灯塔C 在北偏东45︒方向上,已知在灯塔C 的四周40km 内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由. 1.414≈ 1.732≈)【答案】这艘轮船继续向正东方向航行是安全的,理由见解析【解析】【分析】如图,过C 作CD ⊥AB 于点D ,根据方向角的定义及余角的性质求出∠BAC =30°,∠CBD =45°,解Rt △ACD 和Rt △BCD ,求出CD 即可.【详解】解:过点C 作CD ⊥AB ,垂足为D .如图所示:根据题意可知∠BAC =90°−60°=30°,∠DBC =90°-45°=45°,AB =30×1=30(km ), 在Rt △BCD 中,∠CDB =90°,∠DBC =45°,tan ∠DBC =CD BD ,即CD BD =1 ∴CD =BD设BD =CD =x km ,在Rt △ACD 中,∠CDA =90°,∠DAC =30°,∴tan ∠DAC =CD AD ,即30x x =+解得x ,∵40.98km>40km∴这艘船继续向东航行安全.【点睛】此题考查了解直角三角形的应用;解题的关键是熟练掌握锐角三角函数定义. 26. 如图,已知直线y =2x +2与抛物线y =ax 2+bx +c 相交于A ,B 两点,点A 在x 轴上,点B 在y 轴上,点C (3,0)在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ 所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.【答案】(1)该抛物线的表达式为y=23-x2+43x+2;(2)点P的坐标为(1,0)或(2,0);(3)线段CD'长度的最小值为1.【解析】【分析】(1)先求得点A(-1,0),点B(0,2),利用待定系数法即可求解;(2)分两种情况讨论:△AOB≌△DPC和△AOB≌△CPD,利用全等三角形的性质求解即可;(3)按照(2)的结论,分两种情况讨论,当P、D'、C三点共线时,线段CD'长度取得最小值,据此求解即可.【小问1详解】解:令x=0,则y=2x+2=2,令y=0,则0=2x+2,解得x=-1,点A(-1,0),点B(0,2),把A(-1,0),B(0,2),C(3,0)代入y=ax2+bx+c,得9302a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得23432abc⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴该抛物线的表达式为y=23-x2+43x+2;【小问2详解】解:若△AOB和△DPC全等,且∠AOB=∠DPC=90°,分两种情况:①△AOB≌△DPC,则AO=PD=1,OB=PC=2,∵OC=3,∴OP=3-2=1,∴点P的坐标为(1,0);②△AOB≌△CPD,则OB=PD=2,∴正方形OPDE的边长为2,∴点P的坐标为(2,0);综上,点P的坐标为(1,0)或(2,0);【小问3详解】解:①点P的坐标为(1,0)时,∵△PQD'与△PQD关于PQ对称,∴PD'=PD,∴点D'在以点P为圆心,1为半径的圆上运动,当P、D'、C三点共线时,线段CD'长度取得最小值,最小值为2-1=1;②点P的坐标为(2,0)时,∵△PQD'与△PQD关于PQ对称,∴PD'=PD,∴点D'在以点P为圆心,2为半径的圆上运动,当P、C、D'三点共线时,线段CD'长度取得最小值,最小值为2-1=1;综上,线段CD'长度的最小值为1.【点睛】此题主要考查了二次函数的综合应用,全等三角形的判定与性质以及待定系数法求二次函数解析式,正方形的性质的应用,点和圆的位置关系,解题的关键是正确进行分类讨论。
初中毕业升学考试(湖南邵阳卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(湖南邵阳卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】的相反数是()A. B. C. D.﹣2【答案】A.【解析】试题分析:的相反数是.故选A.考点:实数的性质.【题文】下面四个手机应用图标中是轴对称图形的是()A. B. C. D.【答案】D【解析】A.既不是轴对称图形,也不是中心对称图形,故本选项错误;B.是中心对称图形,故本选项错误;C.既不是轴对称图形,也不是中心对称图形,故本选项错误;D.是轴对称图形,故本选项正确.故选D.【题文】如图所示,直线AB、CD被直线EF所截,若AB∥CD,∠1=100°,则∠2的大小是()A.10° B.50° C.80° D.100°【答案】C.评卷人得分【解析】试题分析:∵AB∥C D,∠3=∠1=100°,∴∠2=180°﹣∠3=80°,故选C.考点:平行线的性质.【题文】在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A.95 B.90 C.85 D.80【答案】B.【解析】试题分析:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故选B.考点:众数;折线统计图.【题文】一次函数y=﹣x+2的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】C.【解析】试题分析:∵一次函数y=﹣x+2中k=﹣1<0,b=2>0,∴该函数图象经过第一、二、四象限.故选C.考点:一次函数的图象;一次函数图象与系数的关系.【题文】分式方程的解是()A.x=﹣1 B.x=1 C.x=2 D.x=3【答案】D.【解析】试题分析:两边都乘以x(x+1)得:3(x+1)=4x,去括号,得:3x+3=4x,移项、合并,得:x=3,经检验x=3是原分式方程的解,故选D.考点:分式方程的解.【题文】一元二次方程的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【答案】B.【解析】试题分析:∵△==9﹣4×2×1=1>0,∴该方程有两个不相等的实数根.故选B.考点:根的判别式.【题文】如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC.C.∠A>∠ABC D.∠A=∠ABC【答案】A.【解析】试题分析:∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.故选A.考点:等腰三角形的性质.【题文】如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15° B.30° C.60° D.75°【答案】D.【解析】试题分析:连接OD,∵CA,CD是⊙O的切线,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°﹣∠C﹣∠OA C﹣∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=∠AOD=75°.故选D.考点:切线的性质;圆周角定理.【题文】如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n之间的关系是()A. B. C. D.【答案】B.【解析】试题分析:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴.故选B.考点:规律型:数字的变化类.【题文】将多项式因式分解的结果是.【答案】m(m+n)(m﹣n).【解析】试题分析:原式==m(m+n)(m﹣n).故答案为:m(m+n)(m﹣n).考点:提公因式法与公式法的综合运用.【题文】学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:请你根据上表中的数据选一人参加比赛,最适合的人选是.【答案】乙.【解析】试题分析:因为=0.035>=0.015,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为:乙.考点:方差;算术平均数.【题文】将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是.【答案】120°.【解析】试题分析:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA’=180°,∠B’CA’=60°,∴∠ACB’=60°,∴∠α=60°+60°=120°,故答案为:120°.考点:旋转的性质;等边三角形的性质.【题文】已知反比例函数(k≠0)的图象如图所示,则k的值可能是(写一个即可).【答案】答案不唯一,只要k<0即可,如k=-1.【解析】试题分析:∵双曲线的两支分别位于第二、第四象限,∴k<0,∴k可取﹣1.故答案为:答案不唯一,只要k<0即可,如k=-1.考点:反比例函数的性质;开放型.【题文】不等式组的解集是.【答案】﹣2<x≤1.【解析】试题分析:,由①得,x≤1,由②得,x>﹣2,故不等式组的解集为:﹣2<x≤1.故答案为:﹣2<x≤1.考点:解一元一次不等式组.【题文】2015年7月,第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a×10n的形式,则n的值是.【答案】16.【解析】试题分析:3386×1013=3.386×1016,则n=16.故答案为:16.考点:科学记数法—表示较大的数.【题文】如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件(写一个即可),使四边形ABCD是平行四边形.【答案】答案不唯一,如:AD∥BC.【解析】试题分析:可以添加:AD∥BC(答案不唯一).故答案为:答案不唯一,如:AD∥BC.考点:平行四边形的判定.【题文】如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.【答案】.【解析】试题分析:∵每个小方格都是边长为1的正方形,∴OA=OB==,∴S扇形OAB===.故答案为:.考点:扇形面积的计算.【题文】计算:.【答案】4.【解析】试题分析:原式利用乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.试题解析:原式=4+2×﹣1=4+1﹣1=4.考点:实数的运算;零指数幂;特殊角的三角函数值.【题文】先化简,再求值:,其中m=,n=.【答案】,2.【解析】试题分析:原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把m与n 的值代入计算即可求出值.试题解析:原式==当n=时,原式=2.考点:整式的混合运算—化简求值.【题文】如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.【答案】证明见解析.【解析】试题分析:根据平行四边形的性质可得AD∥BC,AD=BC,根据平行线的性质可得∠EDA=∠FBC,再加上条件ED=BF可利用SAS判定△AED≌△CFB,进而可得AE=CF.试题解析:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EDA=∠FBC,在△AED和△CFB中,∵AD=BC ,∠ADE=∠CBF,BF=DE,∴△AED≌△CFB(SAS),∴AE=CF.考点:平行四边形的性质;全等三角形的判定与性质.【题文】如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM 为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,≈1.73).【答案】67.3.【解析】试题分析:根据sin75°=,求出OC的长,根据tan30°=,再求出BC的长,即可求解.试题解析:在直角三角形ACO中,sin75°=≈0.97,解得OC≈38.8,在直角三角形BCO中,tan30°==≈,解得BC≈67.3.答:该台灯照亮水平面的宽度BC大约是67.3cm.考点:解直角三角形的应用.【题文】为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.【答案】(1)一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)1900.【解析】试题分析:(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列出方程组并解答;(2)把(1)中的数据代入求值即可.试题解析:(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,依题意得:,解得:.答:一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)依题意得:20×90+2×100=1900(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1900元.考点:二元一次方程组的应用.【题文】为了解市民对全市创文工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.【答案】(1)50;(2)18;(3).【解析】试题分析:(1)由满意的有20人,占40%,即可求得此次调查中接受调查的人数.(2)由(1),即可求得此次调查中结果为非常满意的人数.(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择的市民均来自甲区的情况,再利用概率公式即可求得答案.试题解析:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人);(2)此次调查中结果为非常满意的人数为:50﹣4﹣8﹣20=18(人);(3)画树状图得:∵共有12种等可能的结果,选择的市民均来自甲区的有2种情况,∴选择的市民均来自甲区的概率为:=.考点:列表法与树状图法;扇形统计图;条形统计图.【题文】尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P ,设BC=a,AC=b,AB=c.求证:.该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m ,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证.(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求的值.【答案】(1)证明见解析;(2)5.【解析】试题分析:(1)设PF=m,PE=n,连结EF,如图1,根据三角形中位线性质得EF∥AB,EF=c,则可判断△EFP∽△BPA,利用相似比得到PB=2n,PA=2m,接着根据勾股定理得到,,则,而,所以;(2)利用(1)的结论得==45,再利用△AEG∽△CEB可计算出AG=1,同理可得DH=1,则GH=1,然后利用GH∥BC,根据平行线分线段长比例定理得到MB=3GM,MC=3MH,然后等量代换后可得=5.试题解析:(1)设PF=m,PE=n,连结EF,如图1,∵AF,BE是△ABC的中线,∴EF为△ABC的中位线,AE=b ,BF=a,∴EF∥AB,EF=c,∴△EFP∽△BPA,∴,即=,∴PB=2n,PA=2m ,在Rt△AEP中,∵,∴①,在Rt△AEP中,∵,∴②,①+②得,在Rt△EFP中,∵,∴,∴,∴;(2)∵四边形ABCD为菱形,∴BD⊥AC,∵E,F分别为线段AO,DO的中点,由(1)的结论得==45,∵AG∥BC ,∴△AEG∽△CEB,∴,∴AG=1,同理可得DH=1,∴GH=1,∴GH∥BC,∴,∴MB=3GM,MC=3MH,∴,∴=5.考点:相似三角形的判定;三角形中位线定理;综合题.【题文】已知抛物线(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.(1)求抛物线的解析式.(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为?若存在,求点M的坐标;若不存在,请说明理由.②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.【答案】(1);(2)①存在,M(3,);②M(,)或(,)时,|m|+|n|的最大值为.【解析】试题分析:(1)先求出A、B两点坐标,然后过点P作PC⊥x轴于点C,根据∠PBA=120°,PB=AB,分别求出BC和PC的长度即可得出点P的坐标,最后将点P的坐标代入二次函数解析式即;(2)①过点M作ME⊥x轴于点E,交AP于点D,分别用含m的式子表示点D、M的坐标,然后代入△APM的面积公式DM•AC,根据题意列出方程求出m的值;②根据题意可知:n<0,然后对m的值进行分类讨论,当﹣2≤m≤0时,|m|=﹣m;当0<m≤2时,|m|=m ,列出函数关系式即可求得|m|+|n|的最大值.试题解析:(1)如图1,令y=0代入,∴,∵a>0,∴,∴x=±2,∴A(﹣2,0),B(2,0),∴AB=4,过点P作PC⊥x轴于点C,∴∠PBC=180°﹣∠PBA=60°,∵PB=AB=4,∴cos∠PBC=,∴BC=2,由勾股定理可求得:PC=,∵OC=OC+BC=4,∴P(4,),把P(4,)代入,∴=16a﹣4a,∴a=,∴抛物线解析式为:;(2)∵点M在抛物线上,∴,∴M的坐标为(m,);①当点M在曲线PB之间(含端点)移动时,∴2≤m≤4,如图2,过点M作ME⊥x轴于点E,交AP于点D ,设直线AP的解析式为y=kx+b,把A(﹣2,0)与P(4,)代入y=kx+b,得:,解得:,∴直线AP的解析式为:,令x=m代入,∴,∴D的坐标为(m,),∴DM==,∴S△APM=DM•AE+DM•CE=DM(AE+CE)=DM•AC=,当S△APM=时,∴=,∴解得m=3或m=﹣1,∵2≤m≤4,∴m=3,此时,M的坐标为(3,);②当点M在曲线BA之间(含端点)移动时,∴﹣2≤m≤2,n<0,当﹣2≤m≤0时,∴|m|+|n|=﹣m﹣n==,当m=时,∴|m|+|n|可取得最大值,最大值为,此时,M的坐标为(,),当0<m≤2时,∴|m|+|n|=m﹣n==,当m=时,∴|m|+|n|可取得最大值,最大值为,此时,M的坐标为(,),综上所述,当点M在曲线BA之间(含端点)移动时,M的坐标为(,)或(,)时,|m|+|n|的最大值为.考点:二次函数综合题;最值问题;二次函数的最值;分类讨论;动点型.。
湖南省邵阳市中考数学试卷含答案解析(word版)

湖南省邵阳市中考数学试卷一.选择题(本大题有10个小题,每小题3分,共30分。
在每小题给出四个选项中只有一项是符合题目要求)1.(3分)用计算器依次按键,得到结果最接近是()A.1.5B.1.6C.1.7D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC大小为()A.20°B.60°C.70°D.160°3.(3分)将多项式x﹣x3因式分解正确是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形是()A. B. C. D.5.(3分)据《经济日报》·2018·5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9mB.2.8×10﹣8mC.28×109mD.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O内接四边形,∠BCD=120°,则∠BOD 大小是()A.80°B.120°C.100°D.90°7.(3分)小明参加100m短跑训练,·2018·1~4月训练成绩如下表所示:月份1234成绩(s)15.615.415.215体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8sB.3.8sC.3sD.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x 轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形,得到△COD,则CD长度是()A.2B.1C.4D.29.(3分)根据李飞与刘亮射击训练成绩绘制了如图所示折线统计图.根据图所提供信息,若要推荐一位成绩较稳定选手去参赛,应推荐()A.李飞或刘亮B.李飞C.刘亮D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成《直指算法统宗》是东方古代数学名著,详述了传统珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大.小和尚各有多少人,下列求解结果正确是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大.小和尚各100人二.填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上位置如图所示,则点A表示数相反数是.12.(3分)如图所示,点E是平行四边形ABCD边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x方程x2+3x﹣m=0一个解为﹣3,则它另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它一个外角∠ADE=60°,则∠B大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生评价结果作为样本进行分析,绘制了如图所示统计图.已知图中从左到右五个长方形高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”学生约为人.16.(3分)如图所示,一次函数y=ax+b图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x方程ax+b=0解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB面积为2,则k值是.三.解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。
2022年湖南省邵阳市中考数学试题及答案解析

2022年湖南省邵阳市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−2022的绝对值是( )A. 12022B. −12022C. −2022D. 20222.下列四种图形中,对称轴条数最多的是( )A. 等边三角形B. 圆C. 长方形D. 正方形3.5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为a×1012,则a的值是( )A. 0.11B. 1.1C. 11D. 110004.下列四个图形中,圆柱体的俯视图是( )A.B.C.D.5.假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(正,正)的概率是( )A. 1B. 34C. 12D. 146.下列长度的三条线段能首尾相接构成三角形的是( )A. 1cm ,2cm ,3cmB. 3cm ,4cm ,5cmC. 4cm ,5cm ,10cmD. 6cm ,9cm ,2cm 7. 如图是反比例函数y =1x 的图象,点A(x,y)是反比例函数图象上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A. 1B. 12C. 2D. 32 8. 在直角坐标系中,已知点A(32,m),点B(√72,n)是直线y =kx +b(k <0)上的两点,则m ,n 的大小关系是( )A. m <nB. m >nC. m ≥nD. m ≤n9. 如图,⊙O 是等边△ABC 的外接圆,若AB =3,则⊙O 的半径是( )A. 32B. √32 C. √3D. 5210. 关于x 的不等式组{−13x >23−x,12x −1<12(a −2)有且只有三个整数解,则a 的最大值是( ) A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共24.0分)11. 因式分解:x 2−4y 2=______.12. 使1√x−2有意义的x 的取值范围为______ .13. 某班50名同学的身高(单位:cm)如下表所示:身高155156157158159160161162163164165166167168人数351221043126812则该班同学的身高的众数为______.14.方程5x−2−3x=0的解为______.15.已知矩形的一边长为6cm,一条对角线的长为10cm,则矩形的面积为______cm2.16.已知x2−3x+1=0,则3x2−9x+5=______.17.如图,在等腰△ABC中,∠A=120°,顶点B在▱ODEF的边DE上,已知∠1=40°,则∠2=______.18.如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件______,使△ADE∽△ABC.三、解答题(本大题共8小题,共66.0分)19.计算:(π−2)0+(−12)−2−2sin60°.20.先化简,再从−1,0,1,√3中选择一个合适的x值代入求值.(1 x+1+1x2−1)÷xx−1.21.如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.求证:四边形AECF是正方形.22.2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团(假设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,并绘制成如图1、图2所示的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题.(1)求抽取参加调查的学生人数.(2)将以上两幅不完整的统计图补充完整.(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.23.2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?24.如图,已知DC是⊙O的直径,点B为CD延长线上一点,AB是⊙O的切线,点A为切点,且AB=AC.(1)求∠ACB的度数;(2)若⊙O的半径为3,求圆弧AC⏜的长.25.如图,一艘轮船从点A处以30km/ℎ的速度向正东方向航行,在A处测得灯塔C在北偏东60°方向上,继续航行1ℎ到达B处,这时测得灯塔C在北偏东45°方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:√2≈1.414,√3≈1.732)26.如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A在x轴上,点B在y轴上,点C(3,0)在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD′,连接CD′,求线段CD′长度的最小值.答案和解析1.【答案】D【解析】解:−2022的绝对值是2022.故选:D.直接利用绝对值的性质分析得出答案.此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.2.【答案】B【解析】解:A.等边三角形是轴对称图形,它有3条对称轴;B.圆是轴对称图形,有无数条条对称轴;C.长方形是轴对称图形,有2条对称轴;D.正方形是轴对称图形,有4条对称轴;故对称轴条数最多的图形是圆.故选:B.根据轴对称图形的意义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此分析各图形的对称轴条数即可求解.此题考查轴对称图形的知识,关键是掌握轴对称图形的意义及对称轴的描述.3.【答案】B【解析】解:11000亿=1100000000000=1.1×1012,∴a=1.1,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.4.【答案】D【解析】解:从圆柱体的上面看到是视图是圆,则圆柱体的俯视图是圆,故选:D.根据俯视图是从物体的上面看得到的视图解答.本题考查的是几何体的三视图,掌握俯视图是从物体的上面看得到的视图是解题的关键.5.【答案】D【解析】解:画树状图如下:共有4种等可能的结果,其中出现(正,正)的结果有1种,∴出现(正,正)的概率为1,4故选:D.画树状图,共有4种等可能的结果,其中出现(正,正)的结果有1种,再由概率公式求解即可.此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.6.【答案】B【解析】解:根据三角形的三边关系,得:A、1+2=3,不能构成三角形;B、3+4>5,能构成三角形;C、4+5<10,不能构成三角形;D、2+6<9,不能构成三角形.故选:B.根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.本题主要考查了三角形三边关系定理:三角形任意两边之和大于第三边.7.【答案】B【解析】解:∵A(x,y),∴OB=x,AB=y,∵A为反比例函数y=1x图象上一点,∴xy=1,∴S△ABO=12AB⋅OB=12xy=12×1=12,故选:B.由反比例函数的几何意义可知,k=1,也就是△AOB的面积的2倍是1,求出△AOB的面积是12.考查反比例函数的几何意义,反比例函数的图象,反比例函数图象上点的坐标特征,解决本题的关键是掌握k的绝对值,等于△AOB的面积的2倍.8.【答案】A【解析】解:点A(32,m),点B(√72,n)是直线y=kx+b上的两点,且k<0,∴一次函数y随着x增大而减小,∵32>√72,∴m<n,故选:A.根据k>0可知函数y随着x增大而减小,再根32>√72即可比较m和n的大小.本题考查了一次函数图象上点的坐标特征,熟练掌握一次函数的增减性是解题的关键.9.【答案】C【解析】解:连接OB,过点O作OE⊥BC,∵⊙O是等边△ABC的外接圆,∴OB平分∠ABC,∴∠OBE=30°,又∵OE ⊥BC ,∴BE =12BC =12AB =32, 在Rt △OBE 中,cos30°=BE OB ,∴32OB =√32, 解得:OB =√3,故选:C .连接OB ,过点O 作OE ⊥BC ,结合三角形外心和垂径定理分析求解.本题考查三角形的外接圆与外心,掌握等边三角形的性质,应用垂径定理和特殊角的三角函数值解题是关键.10.【答案】C【解析】解:{−13x >23−x①12x −1<12(a −2)②, 由①得:x >1,由②得:x <a ,解得:1<x <a ,∵不等式组有且仅有三个整数解,即2,3,4,∴4<a ≤5,∴a 的最大值是5,故选:C .分别求出不等式组中两不等式的解集,找出两解集的公共部分表示出不等式组的解集,根据解集有且只有三个整数解,确定出a 的范围即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键.11.【答案】(x +2y)(x −2y)【解析】解:x 2−4y 2=(x +2y)(x −2y).直接运用平方差公式进行因式分解.本题考查了平方差公式分解因式,熟记公式结构是解题的关键.平方差公式:a 2−b 2=(a +b)(a −b).12.【答案】x >2【解析】解:∵有意义,√x−2∴{x−2≥0x−2≠0,解得x>0.故答案为:x>2.先根据二次根式及分式有意义的条件列出x的不等式组,求出x的取值范围即可.本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.13.【答案】160cm【解析】解:身高160的人数最多,故该班同学的身高的众数为160cm.故答案为:160cm.一组数据中出现次数最多的数据叫做众数,结合表格信息即可得出答案.本题考查了众数的知识,掌握众数的定义是解题的关键.14.【答案】x=−3【解析】解:去分母,得:5x−3(x−2)=0,整理,得:2x+6=0,解得:x=−3,经检验:x=−3是原分式方程的解,故答案为:x=−3.依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.本题主要考查解分式方程能力,熟练掌握解分式方程的步骤是关键.15.【答案】48【解析】解:∵长方形的一条对角线的长为10cm,一边长为6cm,∴另一边长=√102−62=8cm,∴它的面积为8×6=48cm2.故答案为:48.利用勾股定理列式求出另一边长,然后根据矩形的面积公式列式进行计算即可得解.本题考查矩形的性质,勾股定理等知识,利用勾股定理列式求出另一边长是解题的关键.16.【答案】2【解析】解:∵x2−3x+1=0,∴x2−3x=−1,则原式=3(x2−3x)+5=−3+5=2.故答案为:2.原式前两项提取3变形后,把已知等式变形代入计算即可求出值.此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.17.【答案】110°【解析】解:∵等腰△ABC中,∠A=120°,∴∠ABC=30°,∵∠1=40°,∴∠ABE=∠1+∠ABC=70°,∵四边形ODEF是平行四边形,∴OF//DE,∴∠2=180°−∠ABE=180°−70°=110°,故答案为:110°.根据等腰三角形的性质和平行四边形的性质解答即可.本题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.18.【答案】∠ADE=∠B或∠AED=∠C或ADAB =AEAC(答案不唯一)【解析】解:∵∠A=∠A,∴当∠ADE=∠B或∠AED=∠C或ADAB =AEAC时,△ADE∽△ABC,故答案为:∠ADE=∠B或∠AED=∠C或ADAB =AEAC(答案不唯一).要使两三角形相似,已知一组角相等,则再添加一组角或公共角的两边对应成比例即可.此题考查了相似三角形的判定的理解及运用,熟练应用相似三角形的判定是解题关键.19.【答案】解:原式=1+4−2×√32=1+4−√3=5−√3.【解析】直接利用特殊角的三角函数值以及零指数幂的性质、负整数指数幂的性质分别化简,进而得出答案.此题主要考查了实数的运算,正确化简各数是解题关键.20.【答案】解:原式= x−1+1(x+1)(x−1)⋅x−1x=1x+1,又∵x≠−1,∴x可以取0,此时原式=1;x可以取1,此时原式=12;x可以取√3,此时原式=√3+1=√3−12.【解析】先计算分式的混合运算进行化简,先算小括号里面的,然后算括号外面的,最后根据分式成立的条件确定x的取值,代入求值即可.本题考查分式的混合运算,分式成立的条件及二次根式的运算,掌握运算顺序和计算法则准确计算是解题关键.21.【答案】证明:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是菱形;∵OE=OA=OF,∠AOE=∠AOF=90°,∴△AOE≌△AOF(SAS),∴AE=AF,∴菱形AECF是正方形.【解析】证明AC与EF互相垂直平分便可根据菱形的判定定理得出结论本题主要考查了菱形的性质与判定,全等三角形的性质与判定,正方形的性质与判定,掌握相关定理是解题基础.22.【答案】解:(1)5÷12.5%=40 (人),答:此次共调查了40人;(2)体育类有40×25%=10(人),文艺类社团的人数所占百分比:15÷40×100%=37.5%,阅读类社团的人数所占百分比:10÷40×100%=25%,将条形统计图补充完整如下:(3)1600×12.5%=200(人),答:估计喜欢兴趣类社团的学生有200人.【解析】(1)根据兴趣类的人数和所占的百分比,可以求得此次调查的人数;(2)根据(1)中的计算和扇形统计图中的数据,可以计算出体育类的人数,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出喜欢兴趣类社团的学生有多少人.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】解:(1)设购进“冰墩墩”摆件x 个,“冰墩墩”挂件y 个,依题意得:{x +y =18080x +50y =11400, 解得:{x =80y =100. 答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m 个,则购进“冰墩墩”摆件(180−m)个,依题意得:(60−50)m +(100−80)(180−m)≥2900,解得:m≤70.答:购进的“冰墩墩”挂件不能超过70个.【解析】(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,利用进货总价=进货单价×进货数量,结合购进“冰墩墩”摆件和挂件共100个且共花费了11400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180−m)个,利用总利润=每个的销售利润×销售数量(购进数量),即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.【答案】解:(1)连接OA,∵AB是⊙O的切线,点A为切点,∴∠BAO=90°,又∵AB=AC,OA=OC,∴∠B=∠ACB=∠OAC,设∠ACB=x°,则在△ABC中,x°+x°+x°+90°=180°,解得:x=30,∴∠ACB的度数为30°;(2)∵∠ACB=∠OAC=30°,∴∠AOC=120°,∴lAC⏜=120π×3180=2π.【解析】(1)连接OA,利用切线的性质可得∠BAO=90°,利用等腰三角形的性质可得∠B=∠ACB=∠OAC,根据三角形内角和定理列方程求解;(2)先求得∠AOC的度数,然后根据弧长公式代入求解.本题考查切线的性质、等腰三角形的性质,掌握切线的性质和弧长公式(l=nπr180)是解题关键.25.【答案】解:安全,理由如下:过点C作CD垂直AB,由题意可得,∠CAD=90°−60°=30°,∠CBD=90°−45°=45°,AB=30×1=30km,在Rt△CBD中,设CD=BD=x km,则AD=(x+30)km,在Rt△ACD中,tan30°=CDAD,∴CDAD =√33,∴xx+30=√33,解得:x=15√3+15≈40.98>40,所以,这艘轮船继续向正东方向航行是安全的.【解析】过点C作CD垂直AB,利用特殊角的三角函数值求得CD的长度,从而根据无理数的估算作出判断.本题考查解直角三角形的应用,通过添加辅助线构建直角三角形,熟记特殊角的三角函数值是解题关键.26.【答案】解:在直线y=2x+2中,当x=2时,y=2,当y=0时,x=−1,∴点A的坐标为(−1,0),点B的坐标为(0,2),把点A(−1,0),点B(0,2),点C(3,0)代入y=ax2+bx+c,{a−b+c=0c=29a+3b+c=0,解得{a =−23b =43c =2,∴抛物线的解析式为y =−23x 2+43x +2;(2)①当△AOB≌△DPC 时,AO =DP ,又∵四边形OPDE 为正方形,∴DP =OP =AO =1,此时点P 的坐标为(1,0),②当△AOB≌△CPD 时,OB =DP ,又∵四边形OPDE 为正方形,∴DP =OP =OB =2,此时点P 的坐标为(2,0),综上,点P 的坐标为(1,0)或(2,0);(3)如图,点D′在以点P 为圆心,DP 为半径的圆上运动,∴当点D′′,点P ,点C 三点共线时,CD′′有最小值,由(2)可得点P 的坐标为(1,0)或(2,0),且C 点坐标为(3,0),∴CD′′的最小值为1.【解析】(1)先分别求得点A ,点B 的坐标,从而利用待定系数法求函数解析式;(2)分△AOB≌△DPC 和△AOB≌△CPD 两种情况,结合全等三角形的性质分析求解;(3)根据点D′的运动轨迹,求得当点P ,D′,C 三点共线时求得CD′的最小值.本题考查二次函数的应用,全等三角形的判定和性质,折叠的性质,掌握待定系数法求函数解析式,注意数形结合思想和分类讨论思想解题是关键.。
2023年湖南省邵阳市中考数学试卷(含答案)010101

2023年湖南省邵阳市中考数学试卷试卷考试总分:118 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 的倒数是( )A.B.C.D.2. 下列图形是中心对称图形的是( )A.B.C.D.3. 声音在空气中传播每小时约通过,将用科学记数法表示为 A.B.C.D.4. 若式子有意义,则一次函数的图象可能是()A.−33−13−3131200000m 1200000()12×1061.2×1061.2×1071.2×108+(2−k k −2−−−−√)∘y =(2−k)x+k −2B. C. D.5. 如图,已知,直角三角板的直角顶点在直线上,若,则下列结论错误的是( )A.B.C.D.6. 下列不等式组的解集,在数轴上表示为如图所示的是( )A.B.C.D.7. 的正约数的个数是( )A.B.a//b b ∠1=60∘∠2=60∘∠3=60∘∠4=120∘∠5=40∘{x−1>0,x+2≤0{x+1>0,x+2≤0{x+1>0,x−2≤0{x−1≤0,x+2<0200134C.D.8. 如图,在平面直角坐标系中,正方形的顶点的坐标为,点在轴负半轴上,点在第四象限的双曲线上,过点作轴交双曲线于点,则的长为 A.B.C.D.9. 在四边形中:①;②;③;④.从以上选择两个条件使四边形为平行四边形的选法共有( )A.种B.种C.种D.种10. 若点,,都在二次函数的图象上,则,,的大小关系是 A.B.C.D.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11. 的算术平方根是________. 12. 因式分解:=________.13. 方程的解为________. 14. 某校女子排球队队员的年龄分布如下表:年龄人数则该校女子排球队队员的平均年龄是________岁.68ABCD A (1,1)B x D y =−8xC CE//x E CE ()2353.5585ABCD AB//CD AD//BC AB =CD AD =BC ABCD 3456(−3,)y 1(1,)y 2(3,)y 3y =(x+1+k )2y 1y 2y 3()<<y 1y 2y 3=>y 1y 3y 2=<y 1y 2y 3=>y 1y 2y 3164−−−√3−2x +12xm−18xm 2=1x−152x+113141547415. 如图,是的直径,与相切于点,交于点,若,则________.16. 圆锥的母线长为,侧面积为,则圆锥的底面圆半径________.17. 某药品经过两次降价,每瓶零售价由元降为元,已知两次降价的百分率相同,设每次降价的百分率为,根据题意列方程为________.18. 如图,矩形纸片,,,如果点在边上,将纸片沿折叠,使点落在点处,连结,当是直角三角形时,的长为________.三、 解答题 (本题共计 8 小题 ,每题 8 分 ,共计64分 ) 19. 计算题:(1)().(2).20. 化简求值: ,其中 .21. 已知中为边上高,为上一点,,的延长线与延长线交于点,求证: .22. 年月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进、两种类型的便携式风扇到地摊一条街出售.已知台型风扇和台型风扇进价共元,台型风扇和台型风扇进价共元.求型风扇、型风扇进货的单价各是多少元?小丹准备购进这两种风扇共台,根据市场调查发现,型风扇销售情况比型风扇好,小丹准备多购进型风扇,但数量不超过型风扇数量的倍,购进、两种风扇的总金额不超过元.根据以上信息,小丹共有哪几种进货方案?哪种进货方案费用最低?最低费用为多少?23. 某保险的基本保费为(单位:元),继续购买该保险的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关系如下:AB ⊙O BC ⊙O B AC ⊙O D ∠ACB =50∘∠BOD =7cm 21πcm 2r =cm 168108x ABCD AD =4AB =3E BC AE B F FC △EFC BE −+22−2cos +60∘−12cos −tan −30∘45∘2x(2x−1)+4x(+x−1)−4(1+2)x 2x 2x =−2△ABC CE AB D AC DG ⊥BC GD BA H GF ⋅GH =GB ⋅GC 20205A B 2A 5B 1003A 2B 62(1)A B (2)100A B A B 3A B 1170a上年度出险次数保费该保险个续保人一年内出险次数的统计情况如下:一年内出险次数人数求一续保人本年度的保费高于基本保费的概率;求续保人本年度的平均保费与基本保费的比值.24. 如图,为了绘制学校平面图,某校数学社团的同学们利用无人机测量学校校园的南北宽度.当无人机飞行高度米时,在点测得学校最南端点的俯角为,继续水平飞行米到达处时,测得学校最北端点的俯角为,求学校校园的南北宽度(结果精确到米)(参考数据:,,,,)25. 如图,正方形的边长为,,上各有一点,,若的周长为.将绕点逆时针方向旋转交的延长线于点,画出相应的图形;猜想________,并写出证明过程;求的度数.26. 如图,在平面直角坐标系中,已知抛物线过,,三点,点的坐标是,点的坐标是.求此抛物线的函数解析式.点是抛物线上的一个动点,设点的横坐标为.①是否存在点,使得是以为直角边的直角三角形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由;②过动点作轴于点,交直线于点,过点作轴于点.连接.当线段的长度最短时,请求出点的坐标.01234≥50.85a a 1.25a 1.5a 1.75a 2a10001234≥530152020105(1)(2)88A P 78∘100B Q 30∘0.1sin ≈0.9878∘cos ≈0.2178∘tan ≈4.7078∘≈1.733–√≈1.412–√ABCD 1AB AD P Q △APQ 2(1)CQ C 90∘AB M (2)AM +AQ =(3)∠PCM y =+bx+c x 2A B C A (3,0)C (0,−3)(1)(2)P P m P △ACP AC P P PE ⊥y E AC D D DF ⊥x F EF EF P参考答案与试题解析2023年湖南省邵阳市中考数学试卷试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】B【考点】倒数【解析】此题暂无解析【解答】此题暂无解答2.【答案】B【考点】中心对称图形【解析】根据中心对称图形的概念求解.【解答】解:,是轴对称图形,不是中心对称图形,故错误;,是中心对称图形,故正确;,是轴对称图形,不是中心对称图形,故错误;,是轴对称图形,不是中心对称图形,故错误.故选.3.【答案】B【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】解:将用科学记数法表示为:.故选.A AB BC CD D B a ×10n 1≤|a |<10n n a n >1n <1n 1200000 1.2×106B4.【答案】C【考点】一次函数的图象二次根式有意义的条件零指数幂【解析】本题考查了二次根式,零指数幂有意义的条件,一次函数的图像,熟练掌握二次根式,零指数幂有意义的条件,一次函数的图像是解题关键,先根据二次根式,零指数幂有意义的条件求得值范围,再结合一次函数的图像得到答案.【解答】解:式子有意义,,解得:,,一次函数的图象位于一、二、四象限.故选.5.【答案】D【考点】邻补角平行线的性质对顶角【解析】根据平行线的性质:两直线平行,同位角相等,以及对顶角相等等知识分别求出,,,的度数,然后选出错误的选项.【解答】解:∵,,∴,,,∵三角板为直角三角板,∴.故选6.【答案】C【考点】在数轴上表示不等式的解集解一元一次不等式组k ∵+k −2−−−−√(2−k)0∴k −2≥0,2−k ≠0k >2∴2−k <0,k −2>0∴y =(2−k)x+k −2C ∠2∠3∠4∠5a//b ∠1=60∘∠3=∠1=60∘∠2=∠1=60∘∠4=−∠3=180∘−=180∘60∘120∘∠5=−∠3=90∘−=90∘60∘30∘D.【解析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再进行比较可得到答案.【解答】解:解得:则不等式组无解;解得:则不等式组无解;解得:则不等式组解集为:;解得:则不等式组解集为:.结合数轴,可知正确.故选.7.【答案】B【考点】约数与倍数【解析】先分解质因数,然后根据约数个数定理来解答.【解答】解:∵,∴的约数应为个:,,,,,,,.故选.8.【答案】A【考点】全等三角形的性质与判定正方形的性质反比例函数综合题待定系数法求反比例函数解析式【解析】{x−1>0,x+2≤0,{x >1,x ≤−2,{x+1>0,x+2≤0,{x >−1,x ≤−2,{x+1>0,x−2≤0,{x >−1,x ≤2,−1<x ≤2{x−1≤0,x+2<0,{x ≤1,x <−2,x <−2C C 2001=3×23×292001=3×23×29200181323293×233×2923×292001B此题暂无解析【解答】解:过作轴的平行线,过点作于,过作于,设,∵四边形是正方形,∴,,易得,∴,∴,∴,解得,∴,.∵,∴点的纵坐标为,当时,,∴,∴,∴.故选.9.【答案】B【考点】平行四边形的判定【解析】根据平行四边形的判定方法中,①②、②④、①③、③④均可判定是平行四边形.【解答】解:根据平行四边形的判定,符合条件的有种,分别是:①②、②④、①③、③④.故选.10.【答案】C【考点】二次函数的性质二次函数图象上点的坐标特征【解析】D DH ⊥x CE A AG ⊥GH G B BM ⊥HC M D(x,−)8x ABCD AD =CD =BC ∠ADC =∠DCB =90∘△AGD ≅△DHC ≅△CMB AG =DH =x−1DG =BM 1+=x−1+8x 8x x =2D(2,−4)CH =DG =BM =1+=582AG =DH =x−1=1E −5y =−5x =85E(,−5)85EH =2−=8525CE =CH−HE =5−=25235A 4B分别计算函数值,然后比较大小即可.【解答】解:当时,;当时,;当时,,所以.故选.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11.【答案】【考点】算术平方根立方根【解析】【解答】解:,的算术平方根是.故答案为:.12.【答案】【考点】提公因式法与公式法的综合运用【解析】首先提公因式,再利用完全平方进行二次分解即可.【解答】原式==.13.【答案】=【考点】解分式方程【解析】方程两边都乘以最简公分母把分式方程化为整式方程,求解后进行检验.x =−3=(−3+1+k =4+ky 1)2x =1=(1+1+k =4+k y 2)2x =3=(3+1+k =16+k y 3)2=<y 1y 2y 3C 12=164−−−√314141212−2x(m−3)2−2x −2x(−6m+9)m 2−2x(m−3)2x 2(x−1)(2x+1)【解答】方程两边都乘以得,=,解得=,检验:当=时,==,所以,原方程的解是=.14.【答案】【考点】加权平均数【解析】根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.【解答】根据题意得:=(岁),15.【答案】【考点】圆周角定理切线的性质【解析】根据是圆的切线,可得,再求得,由圆周角定理可得,即可求得答案.【解答】解:是圆的切线,,∵,,由圆周角定理可得:.故答案为:.16.【答案】【考点】扇形面积的计算圆锥的计算【解析】由于圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式(x−1)(2x+1)2x+15(x−1)x 2x 2(x−1)(2x+1)(2−1)×(2×2+1)5≠0x 214(13×4+14×7+15×4)÷151480∘BC ∠ABC =90∘∠A ∠BOD =2∠A ∵BC ∴∠ABC =90∘∠ACB =50∘∴∠A =−∠ACB 90∘=−90∘50∘=40∘∠BOD =2∠A=2×40∘=80∘80∘32π×r ×7=21π1得到,然后解方程即可.【解答】解:根据题意得,即得,所以圆锥的底面圆半径为.故答案为:.17.【答案】【考点】由实际问题抽象出一元二次方程【解析】设每次降价的百分率为,根据降价后的价格=降价前的价格(降价的百分率),则第一次降价后的价格是,第二次后的价格是,据此即可列方程求解.【解答】解:因为某药品经过两次降价,每瓶零售价由元降为元,根据题意得:.故答案为:.18.【答案】或【考点】矩形的性质翻折变换(折叠问题)【解析】分两种情况:①当=时,先判断出点在对角线上,利用勾股定理列式求出,设=,表示出,根据翻折变换的性质可得=,=,然后在中,利用勾股定理列出方程求解即可;②当=时,判断出四边形是正方形,根据正方形的四条边都相等可得=.【解答】解:分两种情况:①当时,如图:∵,,∴点、、共线,∵矩形的边,∴,在中,,设,则,×2π×r ×7=21π12×2π×r ×7=21π12r =3r 3cm 3168(1−x =108)2x 1−168(1−x)168(1−x)2168108168(1−x =108)2168(1−x =108)21.53∠EFC 90∘F AC AC BE x CE AF AB EF BE Rt △CEF ∠CEF 90∘ABEF BE AB ∠EFC =90∘∠AFE =∠B =90∘∠EFC =90∘A F C ABCD AD =4BC =AD =4Rt △ABC AC ===5A +B B 2C 2−−−−−−−−−−√+3242−−−−−−√BE =x CE =BC −BE =4−x由翻折的性质得,,,∴,在中,,即,解得,即;②当时,如图:由翻折的性质得,,∴四边形是正方形,∴,综上所述,的长为或.三、 解答题 (本题共计 8 小题 ,每题 8 分 ,共计64分 )19.【答案】()===;=(==.【考点】特殊角的三角函数值负整数指数幂实数的运算【解析】(1)直接利用特殊角的三角函数值以及负整数指数幂的性质分别化简得出答案;(2)直接利用特殊角的三角函数值分别化简得出答案.【解答】()===;=(==.AF =AB =3EF =BE =x CF =AC −AF =5−3=2Rt △CEF E +C =F 2F 2CE 2+=x 222(4−x)2x =1.5BE =1.5∠CEF =90∘∠AEB =∠AEF =×=1290∘45∘ABEF BE =AB =3BE 1.53−+22−2cos +60∘−1−4+3−2×+3−4+3−1+312cos −tan −30∘45∘2×−1−−1)−1−+10−+22−2cos +60∘−1−4+3−2×+3−4+3−1+312cos −tan −30∘45∘2×−1−−1)−1−+120.【答案】解:原式 ,当 时,原式 .【考点】整式的混合运算——化简求值【解析】此题暂无解析【解答】解:原式 ,当 时,原式 .21.【答案】证明:∵为高,∴,又∵,∴,∴,而,∴,∴,即 .【考点】相似三角形的判定与性质【解析】∵为高,∴,又∵,∴,∴,而,∴,∴,即 .【解答】证明:∵为高,∴,又∵,∴,∴,而,∴,∴,即 .22.【答案】解:设型风扇进货的单价是元,型风扇进货的单价是元,=4−2x+4+4−4x−4−8x 2x 3x 2x 2=4−6x−4x 3x =−2=4×(−2−6×(−2)−4=−24)3=4−2x+4+4−4x−4−8x 2x 3x 2x 2=4−6x−4x 3x =−2=4×(−2−6×(−2)−4=−24)3CE ∠FCG =−∠ABC 90∘HG ⊥BC ∠H =−∠ABC 90∘∠FCG =∠H ∠BGH =∠FGC =90∘△BGH ∼△FGC GF ∶GB =GC ∶GH GF ⋅GH =GB ⋅GC CE ∠FCG =−∠ABC 90∘HG ⊥BC ∠H =−∠ABC 90∘∠FCG =∠H ∠BGH =∠FGC =90∘△BGH ∼△FGC CF ∶GB =GC ∶CH GF ⋅GH =GB ⋅GC CE ∠FCG =−∠ABC 90∘HG ⊥BC ∠H =−∠ABC 90∘∠FCG =∠H ∠BGH =∠FGC =90∘△BGH ∼△FGC GF ∶GB =GC ∶GH GF ⋅GH =GB ⋅GC (1)A x B y依题意,得:解得:答:型风扇进货的单价是元,型风扇进货的单价是元.设购进型风扇台,则购进型风扇台,依题意,得: 解得: .又∵为正整数,∴可以取、、、,∴小丹共有种进货方案,方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台.∵型风扇进货的单价大于型风扇进货的单价,∴方案:购进型风扇台,型风扇台的费用最低,最低费用为(元).【考点】二元一次方程组的应用——销售问题一元一次不等式组的应用【解析】(1)设型风扇进货的单价是元,型风扇进货的单价是元,根据“台型风扇和台型风扇进价共元,台型风扇和台型风扇进价共元”,即可得出关于,的二元一次方程组,解之即可得出结论;(2)设购进型风扇台,则购进型风扇台,根据“购进型风扇不超过型风扇数量的倍,购进、两种风扇的总金额不超过元”,即可得出关于的一元一次不等式组,解之即可得出的取值范围,再结合为正整数即可得出各进货方案.【解答】解:设型风扇进货的单价是元,型风扇进货的单价是元,依题意,得:解得:答:型风扇进货的单价是元,型风扇进货的单价是元.设购进型风扇台,则购进型风扇台,依题意,得: 解得: .又∵为正整数,∴可以取、、、,∴小丹共有种进货方案,方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台.∵型风扇进货的单价大于型风扇进货的单价,∴方案:购进型风扇台,型风扇台的费用最低,最低费用为(元).23.【答案】解:设表示事件:“一续保人本年度的保费高于基本保费”,则;续保人本年度的平均保费为,所以续保人本年度的平均保费与基本保费的比值为.【考点】{2x+5y =100,3x+2y =62,{x =10,y =16.A 10B 16(2)A m B (100−m){m≤3(100−m),10m+16(100−m)≤1170,71≤m≤7523m m 7273747541A 72B 282A 73B 273A 74B 264A 75B 25B A 4A 75B 2575×10+25×16=1150A x B y 2A 5B 1003A 2B 62x y A m B (100−m)A B 3A B 1170m m m (1)A x B y {2x+5y =100,3x+2y =62,{x =10,y =16.A 10B 16(2)A m B (100−m){m≤3(100−m),10m+16(100−m)≤1170,71≤m≤7523m m 7273747541A 72B 282A 73B 273A 74B 264A 75B 25B A 4A 75B 2575×10+25×16=1150(1)A P(A)==0.5520+20+10+5100(2)(0.85a ×30+a ×15+1.25a ×20+1.5a 1100×20+1.75a ×10+2a ×5)=1.23a 1.23概率公式加权平均数频数(率)分布表【解析】(1)根据各频数之和为进行计算,即可得到的值;(2)根据本年度保险费不高于基本保险费的频数除以,即可得到本年度保险费不高于基本保险费的概率;(3)根据人数与保费乘积的和除以总续保人数,可得本年度的平均保费估计值.【解答】解:设表示事件:“一续保人本年度的保费高于基本保费”,则;续保人本年度的平均保费为,所以续保人本年度的平均保费与基本保费的比值为24.【答案】解:作于,如图,在中,,(米).在中,,(米).(米).答:学校校园的南北宽度约为米.【考点】解直角三角形的应用-仰角俯角问题【解析】左侧图片未给出解析.【解答】解:作于,如图,100m 100(1)A P(A)==0.5520+20+10+5100(2)(0.85a ×30+a ×15+1.25a ×20+1.5a 1100×20+1.75a ×10+2a ×5)=1.23a1.23BM ⊥CQ M Rt △ACP tan ∠APC =AC CP∴CP =≈≈18.72AC tan ∠APC 884.70Rt △BMQ tan ∠BQM =BM QM ∴QM ==88≈152.24BMtan ∠BQM 3–√∴PQ =CM +MQ −CP =100+152.24−18.72=233.52≈233.5233.5BM ⊥CQ M ∠APC =AC在中,,(米).在中,,(米).(米).答:学校校园的南北宽度约为米.25.【答案】解:画图如图所示,∵的周长为,∴.∵,∴.∵,,∴ ,.【考点】全等三角形的性质与判定作图-旋转变换旋转的性质正方形的性质【解析】(2)解∵四边形是正方形∴,将绕着点跑时针旋转得到∴∴∴∴∵∴【解答】解:画图如图所示,∵四边形是正方形,∴,.将绕着点逆时针旋转得到,Rt △ACP tan ∠APC =AC CP ∴CP =≈≈18.72AC tan ∠APC 884.70Rt △BMQ tan ∠BQM =BM QM ∴QM ==88≈152.24BM tan ∠BQM3–√∴PQ =CM +MQ −CP =100+152.24−18.72=233.52≈233.5233.5(1)2(3)△APQ 2AP +AQ +PQ =2AQ +AP +PM =2PQ =PM CQ =CM CP =CP △CPQ ≅△CPM(SSS)∠PCQ =∠PCM =∠QCM =1245∘ABCD CD =CB CQ C 90∘CMCO =CM ∠QCM =∠DCB =90∘∠QCD =∠BCM △CDQ ≅△CBMDQ =BMAD+AB =2AM +AO =2(1)(2)ABCD CD =CB ∠DCB =90∘CQ C 90∘CM∴,,,∴ ,∴,∴.∵,∴.故答案为:.∵的周长为,∴.∵,∴.∵,,∴ ,.26.【答案】解:点的坐标是,则,将点代入中,得.解得.∴抛物线的解析式为.①由点,的坐标,得直线的函数表达式为,如图,当时,则直线的函数表达式为,联立解得,(与点重合,舍去),故点.如图,当时,设直线的函数表达式为,将,代中,得,则直线的函数表达式为,联立解得,与点重合,舍去),故点.综上所述,存在点或,使得是以为直角边的直角三角形.②如图,易得四边形为矩形,则.设点,则点,则,故当时,取得最小值,即点,将点的坐标代入,解得,故点或.【考点】二次函数综合题CQ =CM ∠QCM =∠DCB =90∘∠QCD =∠BCM △CDQ ≅△CBM DQ =BM AD+AB =2AM +AQ =AB+BM +AQ =AB+DQ +AQ=AB+AD =22(3)△APQ 2AP +AQ +PQ =2AQ +AP +PM =2PQ =PM CQ =CM CP =CP △CPQ ≅△CPM(SSS)∠PCQ =∠PCM =∠QCM =1245∘(1)C (0,−3)c =−3A(3,0)y =+bx−3x 20=+3b −332b =−2y =−2x−3x 2(2)A C AC y =x−3∠ACP =90∘CP y =−x−3{y =−2x−3,x 2y =−x−3,=1x 1=0x 2C P(1,−4)∠AC =P ′90∘AP ′y =−x+b x =3y =0y =−x+b b =3AP ′y =−x+3{y =−2x−3,x 2y =−x+3,=−2x 1=3(x 2A (−2,5)P ′P(1,−4)(−2,5)△ACP AC OEDF EF =OD D(n,n−3)P(m,n−3)E =O =+(n−3=2−6n+9=2(n−+F 2D 2n 2)2n 232)292n =32EF P(m,−)32P y =−2x−3x 2m=2±10−−√2P(,−)2+10−−√232(,−)2−10−−√222【解析】此题暂无解析【解答】解:点的坐标是,则,将点代入中,得.解得.∴抛物线的解析式为.①由点,的坐标,得直线的函数表达式为,如图,当时,则直线的函数表达式为,联立解得,(与点重合,舍去),故点.如图,当时,设直线的函数表达式为,将,代中,得,则直线的函数表达式为,联立解得,与点重合,舍去),故点.综上所述,存在点或,使得是以为直角边的直角三角形.②如图,易得四边形为矩形,则.设点,则点,则,故当时,取得最小值,即点,将点的坐标代入,解得,故点或.(1)C (0,−3)c =−3A(3,0)y =+bx−3x 20=+3b −332b =−2y =−2x−3x 2(2)A C AC y =x−3∠ACP =90∘CP y =−x−3{y =−2x−3,x 2y =−x−3,=1x 1=0x 2C P(1,−4)∠AC =P ′90∘AP ′y =−x+b x =3y =0y =−x+b b =3AP ′y =−x+3{y =−2x−3,x 2y =−x+3,=−2x 1=3(x 2A (−2,5)P ′P(1,−4)(−2,5)△ACP AC OEDF EF =OD D(n,n−3)P(m,n−3)E =O =+(n−3=2−6n+9=2(n−+F 2D 2n 2)2n 232)292n =32EF P(m,−)32P y =−2x−3x 2m=2±10−−√2P(,−)2+10−−√232(,−)2−10−−√222。
湖南省邵阳市中考数学试卷含解析版

---2021 年湖南省邵阳市中考数学试卷一、选择题〔本大题共10小题,每题3分,共30分〕1.〔3分〕25的算术平方根是〔〕A.5B.±5C.﹣5D.252.〔3分〕如下图,AB∥CD,以下结论正确的选项是〔〕A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠43.〔3分〕3﹣π的绝对值是〔〕A.3﹣πB.π﹣3C.3D.π4.〔3分〕以下立体图形中,主视图是圆的是〔〕A.B.C.D.5.〔3分〕函数y=√x-5中,自变量x的取值范围在数轴上表示正确的选项是〔〕A.B.C.D.6.〔3分〕如下图,要在一条公路的两侧铺设平行管道,一侧铺设的角度为120°,为使管道对接,另一侧铺设-------的角度大小应为〔〕A.120°B.100° C.80°D.60°7.〔3分〕如下图,边长为a的正方形中阴影局部的面积为〔〕A.a2﹣π〔a〕2B.a2﹣πa2C.a2﹣πaD.a2﹣2πa28.〔3分〕“救死扶伤〞是我国的传统美德,某媒体就“老人摔倒该不该扶〞进行了调查,将得到的数据经统计分析后绘制成如下图的扇形统计图,根据统计图判断以下说法,其中错误的一项为哪一项〔〕A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%-------D.认为该扶的占92%9.〔3分〕如下图的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,表示小徐离他家的距离.读图可知菜地离小徐家的距离为〔〕A.1.1千米B.2千米C.15千米D.37千米10.〔3分〕如下图,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为〔﹣1,1〕,〔﹣3,1〕,〔﹣1,﹣1〕,30秒后,飞机P飞到P′〔4,3〕位置,那么飞机Q,R的位置Q′,R′分别为〔〕A.Q′〔2,3〕,R′〔4,1〕B.Q′〔2,3〕,R′〔2,1〕C.Q′〔2,2〕,R′〔4,1〕D.Q′〔3,3〕,R′-------3,1〕二、填空题〔本大题共8小题,每题3分,共24分〕11.〔3 分〕将多项式mn2+2mn+m 因式分解的结果是.12.〔3分〕2021年,我国又有1240 万人辞别贫困,为世界脱贫工作作出了卓越奉献,将1240 万用科学记数法表示为a×10n的形式,那么a的值为.13.〔3分〕假设抛物线 y=ax2+bx+c的开口向下,那么a的值可能是.〔写一个即可〕14.〔3分〕我国南宋著名数学家秦九韶在他的著作?数书九章?一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,那么该三角1[a2b2-( a2+b2-c2)2],现△ABC形的面积为S=√4 2 的三边长分别为1,2,√5,那么△ABC的面积为.-------15.〔3分〕如下图的正六边形ABCDEF ,连结FD ,那么∠FDC 的大小为.16.〔3分〕如下图,∠ AOB=40°,现按照以下步骤作图:①在OA ,OB 上分别截取线段OD ,OE ,使OD=OE ;②分别以D ,E 为圆心,以大于12DE 的长为半径画弧,在∠AOB 内两弧交于点C ;③作射线OC .那么∠AOC 的大小为.17.〔3分〕掷一枚硬币两次,可能出现的结果有四种,我-------们可以利用如下图的树状图来分析有可能出现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是.18.〔3分〕如下图,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面 R处的雷达测得AR的距离是40km,仰角是 30°,n秒后,火箭到达B点,此时仰角是45°,那么火箭在这n秒中上升的高度是km.三、解答题〔本大题共8小题,共66 分〕1〕﹣1﹣√12.19 .〔8分〕计算:4sin60°﹣〔220 .〔8分〕如下图,平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.1〕求证:平行四边形ABCD是矩形;(2〕请添加一个条件使矩形ABCD为正方形.-------21 .〔8 分〕先化简,再在﹣ 3,﹣1,0,√2,2 中选择一个适宜的 x 值代入求值.x2x 2-9xx+3?x 2-2x+x-2.22 .〔8 分〕为提高节水意识,小申随机统计了自己家7天 的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如下图的统计图.〔单位:升〕1〕求这7天内小申家每天用水量的平均数和中位数;2〕求第3天小申家洗衣服的水占这一天总用水量的百分比;3〕请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月〔按30天计算〕的节约用水量.23.〔8分〕某校方案组织师生共300人参加一次大型公益-------活动,如果租用6辆大客车和5辆小客车恰好全部坐满,每辆大客车的乘客座位数比小客车多17个.1〕求每辆大客车和每辆小客车的乘客座位数;2〕由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.24.〔8分〕如下图,直线DP和圆O相切于点C,交直线AE 的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.1〕求证:DA=DC;2〕求∠P及∠AEB的大小.25.〔8分〕如图1所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.-------【问题引入】1〕假设点O 是AC 的中点,AM BM =13,求BN CN的值;温馨提示:过点A 作MN 的平行线交BN 的延长线于点G .【探索研究】2〕假设点O 是AC 上任意一点〔不与A ,C 重合〕,求证:AMBNCOMB ?NC ?OA=1 ;【拓展应用】〔3〕如图2所示,点P 是△ABC 内任意一点,射线 AP , BP ,CP 分别交BC ,AC ,AB 于点D ,E ,F ,假设AF= 1 ,BD = 1 ,BF 3 CD 2求AE CE的值.26.〔10分〕如下图,顶点为〔1,﹣9〕的抛物线y=ax 2+bx+c 24过点M 〔2,0〕.1〕求抛物线的解析式;2〕点A 是抛物线与x 轴的交点〔不与点M 重合〕,点B是抛物线与 y 轴的交点,点C 是直线y=x+1上一点〔处于x-------轴下方〕,点D是反比例函数y=kx〔k>0〕图象上一点,假设以点A,B,C,D为顶点的四边形是菱形,求k的值.-------2021年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题〔本大题共10小题,每题3分,共30分〕1.〔3分〕〔2021?邵阳〕25的算术平方根是〔〕A.5B.±5 C.﹣5D.25【考点】22:算术平方根.菁优网版权所有【分析】依据算术平方根的定义求解即可.【解答】解:∵52=25,25的算术平方根是5.应选:A.【点评】此题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.2.〔3分〕〔2021?邵阳〕如下图,AB∥CD,以下结论正确的选项是〔〕A.∠1=∠2 B.∠2=∠3 C.∠1=∠4D.∠3=∠4 -------【考点】JA:平行线的性质.菁优网版权所有【分析】根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠4,应选C.【点评】此题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3.〔3分〕〔2021?邵阳〕3﹣π的绝对值是〔〕A.3﹣πB.π﹣3C.3D.π【考点】28:实数的性质;15:绝对值.菁优网版权所有【分析】直接利用绝对值的定义分析得出答案.【解答】解:∵3﹣π<0,|3﹣π|=π﹣3.应选B.【点评】此题主要考查了绝对值,正确把握定义是解题关键.4.〔3分〕〔2021?邵阳〕以下立体图形中,主视图是圆的是〔〕-------A.B.C.D.【考点】U1:简单几何体的三视图.菁优网版权所有【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、的主视图是圆,故A符合题意;B、的主视图是矩形,故B不符合题意;C、的主视图是三角形,故C不符合题意;D、的主视图是正方形,故D不符合题意;应选:A.【点评】此题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.5.〔3分〕〔2021?邵阳〕函数y=√x-5中,自变量x的取值范围在数轴上表示正确的选项是〔〕A.B.C.D.【考点】C4:在数轴上表示不等式的解集;E4:函数自变量的取值范围.菁优网版权所有【分析】根据被开方数大于等于0列式计算即可得解,然后在数轴上表示即可.【解答】解:由题意得,x﹣5≥0,-------解得x≥5.在数轴上表示如下:应选B.【点评】此题考查了函数自变量的范围及在数轴上表示不等式的解集,解题的关键是从三个方面考虑:1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数非负.6.〔3分〕〔2021?邵阳〕如下图,要在一条公路的两侧铺设平行管道,一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为〔〕A.120°B.100° C.80°D.60°【考点】JA:平行线的性质.菁优网版权所有【分析】根据两直线平行,同旁内角互补解答.【解答】解:∵铺设的是平行管道,∴另一侧的角度为180°﹣120°=60°〔两直线平行,同-------旁内角互补〕.应选D .【点评】此题考查了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.7.〔3分〕〔2021?邵阳〕如下图,边长为a 的正方形中阴影局部的面积为〔〕A .a 2﹣π〔a 〕2B .a 2﹣πa 2C .a 2﹣πaD .a 2﹣2πa2【考点】32:列代数式.菁优网版权所有【分析】根据图形可知阴影局部的面积是正方形的面积减去直径为a 的圆的面积,此题得以解决.【解答】解:由图可得,阴影局部的面积为:a 2﹣π?(a )2,2应选A .【点评】此题考查列代数式,解答此题的关键是明确题意,列出相应的代数式.-------8.〔3分〕〔2021?邵阳〕“救死扶伤〞是我国的传统美德,某媒体就“老人摔倒该不该扶〞进行了调查,将得到的数据经统计分析后绘制成如下图的扇形统计图,根据统计图判断以下说法,其中错误的一项为哪一项〔〕A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【考点】VB:扇形统计图.菁优网版权所有【分析】根据百分比和圆心角的计算方法计算即可.【解答】解:认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1﹣27%﹣65%=8%,故C正确;认为该扶的占65%,故D错误;应选D.-------【点评】此题考查了扇形统计图,掌握百分比和圆心角的计算方法是解题的关键.9〔.3分〕〔2021?邵阳〕如下图的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为〔〕A.千米B.2千米C.15千米D.37千米【考点】E6:函数的图象.菁优网版权所有【分析】小徐第一个到达的地方应是菜地,也应是第一次路程不再增加的开始,所对应的时间为15分,路程为千米.【解答】解:由图象可以看出菜地离小徐家千米,应选:A.【点评】此题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义是解题关键.-------10.〔3分〕〔2021?邵阳〕如下图,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为〔﹣1,1〕,〔﹣3,1〕,〔﹣1,﹣1〕,30秒后,飞机P飞到P′〔4,3〕位置,那么飞机Q,R的位置Q′,R′分别为〔〕A.Q′〔2,3〕,R′〔4,1〕B.Q′〔2,3〕,R′〔2,1〕C.Q′〔2,2〕,R′〔4,1〕D.Q′〔3,3〕,R′3,1〕【考点】D3:坐标确定位置.菁优网版权所有【分析】由点P〔﹣1,1〕到P′〔4,3〕知,编队需向右平移5个单位、向上平移2个单位,据此可得.【解答】解:由点P〔﹣1,1〕到P′〔4,3〕知,编队需向右平移5个单位、向上平移2个单位,∴点Q〔﹣3,1〕的对应点Q′坐标为〔2,3〕,点R〔﹣1,﹣1〕的对应点R′〔4,1〕,应选:A.-------【点评】此题考查了坐标确定位置,熟练掌握在平面直角坐标系确定点的坐标是解题的关键.二、填空题〔本大题共8小题,每题3分,共24分〕11.〔3分〕〔2021?邵阳〕将多项式mn2+2mn+m因式分解的结果是m〔n+1〕2.【考点】55:提公因式法与公式法的综合运用.菁优网版权所有【分析】根据提公因式法、公式法,可得答案.【解答】解:原式=m〔n2+2n+1〕=m〔n+1〕2,故答案为:m〔n+1〕2.【点评】此题考查了因式分解,利用提公因式、完全平方公式是解题关键.12.〔3分〕〔2021?邵阳〕2021年,我国又有1240万人辞别贫困,为世界脱贫工作作出了卓越奉献,将1240万用科学记数法表示为a×10n的形式,那么a的值为.-------【考点】1I:科学记数法—表示较大的数.菁优网版权所有【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1240万有8位,所以可以确定n=8﹣1=7.【解答】解:1240万×107,.故答案为:.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.13.〔3分〕〔2021?邵阳〕假设抛物线y=ax2+bx+c的开口向下,那么a的值可能是﹣1.〔写一个即可〕【考点】H3:二次函数的性质.菁优网版权所有【分析】根据二次项系数小于0,二次函数图象开口向下解答.【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,a的值可能是﹣1,故答案为:﹣1.-------【点评】此题考查了二次函数的性质,是根底题,需熟记.14.〔3分〕〔2021?邵阳〕我国南宋著名数学家秦九韶在他的著作?数书九章?一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,1[a2b2-( a2+b2-c2)2],现c,那么该三角形的面积为S=√4 2△ABC的三边长分别为1,2,√5,那么△ABC的面积为1.【考点】7B:二次根式的应用.菁优网版权所有【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,√5的面积,从而可以解答此题.1[a2b2-( a2+b2-c2)2],【解答】解:∵S=√4 2∴△ABC的三边长分别为1,2,√5,那么△ABC的面积为:1[12×22-( 12+22-(√5)2)2]=1,S=√4 2故答案为:1.【点评】此题考查二次根式的应用,解答此题的关键是明确-------题意,利用题目中的面积公式解答.15.〔3分〕〔2021?邵阳〕如下图的正六边形ABCDEF,连结FD,那么∠FDC的大小为90°.【考点】L3:多边形内角与外角.菁优网版权所有【分析】首先求得正六边形的内角的度数,根据等腰三角形的性质即可得到结论.【解答】解:∵在正六边形ABCDEF中,∠E=∠EDC=120°,EF=DE,∴∠EDF=∠EFD=30°,∴∠FDC=90°,故答案为:90°【点评】此题考查了正多边形和圆.等腰三角形的性质,此题难度不大,注意数形结合思想的应用.16.〔3分〕〔2021?邵阳〕如下图,∠AOB=40°,-------现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆1DE的长为半径画弧,在∠心,以大于2AOB内两弧交于点C;③作射线OC.那么∠AOC的大小为20°.【考点】N2:作图—根本作图.菁优网版权所有【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,1∠AOB=20°.∴∠AOC=2故答案为:20°.【点评】此题考查的是作图﹣根本作图,熟知角平分线的作法是解答此题的关键.17.〔3分〕〔2021?邵阳〕掷一枚硬币两次,可能出现的结果有四种,我们可以利用如下图的树状图来分析有可能出-------现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是3.4 【考点】X6:列表法与树状图法.菁优网版权所有【专题】11:计算题.【分析】画树状图展示所有4种等可能的结果数,再找出掷一枚硬币两次,至少有一次出现正面的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中掷一枚硬币两次,至少有一次出现正面的结果数为3,所以掷一枚硬币两次,至少有一次出现正面的概率=3. 4故答案为34.【点评】此题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件 A 或B的结果数目 m ,然后利用概率公式计算事件A 或事件B 的-------概率.18.〔3分〕〔2021?邵阳〕如下图,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面 R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,那么火箭在这 n秒中上升的高度是〔20√3﹣20〕km.【考点】TA:解直角三角形的应用﹣仰角俯角问题.菁优网版权所有【分析】分别在Rt△ALR,Rt△BLR中,求出AL、BL即可解决问题.【解答】解:在Rt△ARL中,在LR=AR?cos30°=40×√23=20√3〔km〕,AL=AR?sin30°=20〔km〕,Rt△BLR中,∵∠BRL=45°,∴RL=LB=20√3,-------AB=LB﹣AL=〔20√3﹣20〕km,故答案为〔20√3﹣20〕km.【点评】此题考查的是解直角三角形的应用﹣仰角俯角问题,锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的概念解决问题.三、解答题〔本大题共8小题,共66分〕19.〔8分〕〔2021?邵阳〕计算:4sin60°﹣〔1〕﹣1﹣√12.2【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.菁优网版权所有【分析】依据特殊锐角三角函数值、负整数指数幂的性质、二次根式的性质进行解答即可.【解答】解:原式=4×√23﹣2﹣2√3=2√3﹣2﹣2√3=﹣2.【点评】此题主要考查的是实数的运算,熟练掌握特殊锐角-------三角函数值、负整数指数幂的性质、二次根式的性质是解题的关键.20.〔8分〕〔2021?邵阳〕如下图,平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.1〕求证:平行四边形ABCD是矩形;2〕请添加一个条件使矩形ABCD为正方形.【考点】LF:正方形的判定;L5:平行四边形的性质;LD:矩形的判定与性质.菁优网版权所有【专题】14:证明题.【分析】〔1〕根据平行四边形对角线互相平分可得OA=OC,OB=OD,根据等角对等边可得OB=OC,然后求出AC=BD,再根据对角线相等的平行四边形是矩形证明;〔2〕根据正方形的判定方法添加即可.【解答】〔1〕证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,-------OB=OC,AC=BD,∴平行四边形ABCD是矩形;2〕解:AB=AD〔或AC⊥BD答案不唯一〕.理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.【点评】此题考查了正方形的判断,平行四边形的性质,矩形的判定,熟练掌握特殊四边形的判定方法与性质是解题的关键.21.〔8分〕〔2021?邵阳〕先化简,再在﹣3,﹣1,0,√2,2中选择一个适宜的x值代入求值.-------x 2x2-9 xx+3?x2-2x+x-2 .【考点】6D:分式的化简求值.菁优网版权所有【分析】根据分式的乘法和加法可以化简题目中的式子,然后在﹣3,﹣1,0,√2,2中选择一个使得原分式有意义的的值代入即可解答此题.x 2x2-9 x【解答】解:x+3?x2-2x+x-2x 2(x+3)(x-3) x= x+3?x(x-2)+x-2x(x-3)+xx-2x-2x 2-3x+x=x-2x(x-2)x-2=x,x=﹣1时,原式=﹣1.【点评】此题考查分式的化简求值,解答此题的关键是明确分式的化简求值的方法.22.〔8分〕〔2021?邵阳〕为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如下图的统计图.〔单位:-------升〕1〕求这7天内小申家每天用水量的平均数和中位数;2〕求第3天小申家洗衣服的水占这一天总用水量的百分比;3〕请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月〔按30天计算〕的节约用水量.【考点】VC:条形统计图;V5:用样本估计总体;VD:折线统计图;W2:加权平均数;W4:中位数.菁优网版权所有【分析】〔1〕根据平均数和中位数的定义求解可得;2〕用洗衣服的水量除以第3天的用水总量即可得;3〕根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.【解答】解:〔1〕这7天内小申家每天用水量的平均数为815+780+800+785+790+825+8057=800〔升〕,-------将这7天的用水量从小到大重新排列为:780、785、790、、805、815、825,100×100%=12.5%,(∴用水量的中位数为800升;2〕800答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;3〕小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.【点评】此题主要考查了统计图、平均数、中位数,关键是看懂统计表,从统计表中获取必要的信息,熟练掌握平均数,中位数与众数的计算方法.23.〔8分〕〔2021?邵阳〕某校方案组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满,每辆大客车的乘客座位数比小客车多17个.-------1〕求每辆大客车和每辆小客车的乘客座位数;2〕由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【考点】C9:一元一次不等式的应用; 9A :二元一次方程组的应用.菁优网版权所有【分析】〔1〕根据题意结合每辆大客车的乘客座位数比小客 车多17个以及师生共300 人参加一次大型公益活动, 分别得出等式求出答案;〔2〕根据〔1〕中所求,进而利用总人数为300+30 ,进而得出不等式求出答案.【解答】解:〔1〕设每辆小客车的乘客座位数是 x 个,大客车的乘客座位数是y 个,根据题意可得:{y-x=17 ,6y+5x=300解得:{x y ==1835,答:每辆小客车的乘客座位数是18个,大客车的乘客座位数是35个;-------2〕设租用a辆小客车才能将所有参加活动的师生装载完成,那么18a+35〔11﹣a〕≥300+30,解得:a≤34,17符合条件的a最大整数为3,答:租用小客车数量的最大值为3.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出不等关系是解题关键.24.〔8分〕〔2021?邵阳〕如下图,直线DP和圆O相切于点C,交直线AE的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.1〕求证:DA=DC;(2〕求∠P及∠AEB的大小.-------【考点】MC:切线的性质;L5:平行四边形的性质.菁优网版权所有【分析】〔1〕欲证明DA=DC,只要证明Rt△DAO≌△RtDCO即可;〔2〕想方法证明∠P=30°即可解决问题;【解答】〔1〕证明:在平行四边形ABCD中,AD∥BC,CB⊥AE,∴AD⊥AE,∴∠DAO=90°,DP与⊙O相切于点C,∴DC⊥OC,∴∠DCO=90°,在Rt△DAO和Rt△DCO中,{DO=DO,AO=CO Rt△DAO≌△Rt△DCO,DA=DC.1BC,∴〔2〕∵CB⊥AE,AE是直径,CF=FB=2----1AD,∴---∵四边形ABCD是平行四边形,AD=BC,CF=2CF∥DA,∴△PCF∽△PDA,PC=CF=1,PDDA2PC=12PD,DC=12PD,DA=DC,1 DA=2PD,Rt△DAP中,∠P=30°,∵DP∥AB,∴∠FAB=∠P=30°,∵AE是⊙O的直径,∴∠ABE=90°,∴∠AEB=60°.【点评】此题考查切线的性质、平行四边形的性质、相似三-------角形的判定和性质、直角三角形中30度角的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考常考题型.25.〔8分〕〔2021?邵阳〕如图1所示,在△ABC 中,点O 是AC 上一点,过点O 的直线与AB ,BC 的延长线分别相交于点M ,N .【问题引入】AM 1CN〔1〕假设点O 是AC 的中点,BM =3,求BN 的值;温馨提示:过点A 作MN 的平行线交 BN 的延长线于点G .【探索研究】〔2 〕假设点O 是AC 上任意一点〔不与 A ,C 重合〕,求证:AM BNCOMB ?NC ?OA =1; 【拓展应用】〔3 〕如图2所示,点P 是△ABC 内任意一点,射线 AP ,BP ,CP 分别交BC ,AC ,AB 于点D ,E ,F ,假设AF= 1,BD = 1,BF 3 CD 2求AECE 的值.-------【考点】SO :相似形综合题.菁优网版权所有【分析】〔1〕作AG ∥MN 交BN 延长线于点G ,证△ABGBG ABNG AM∽△MBN 得BN =MB ,即BN =MB ,同理由△ACG ∽△OCN 得NG CN =AOCO ,结合AO=CO 得NG=CN ,从而由CN BN =NG BN =AMBM 可得答案;( 2〕由NG BN =AM MB 、AO CO =NG CN 知AM MB ?BN NC ?CO OA =NG BN ?BN NC ?CN NG =1;3〕由〔2〕知,在△ABD 中有AF ?BC ?DP=1、在△ACD 中BFCDPAAE CB DPAF BC DP AE CB DPAE AF BC有EC ?BD ?PA =1,从而BF ?CD ?PA =EC ?BD ?PA,据此知EC =BF ?CD ?BD CB =AF FB ?BD CD =16.【解答】解:〔1〕过点A 作AG ∥MN交BN 延长线于点G ,∴∠G=∠BNM ,又∠B=∠B ,∴△ABG ∽△MBN ,BNBG =MB AB, ∴ BNBG ﹣1=MB AB﹣1,-------BG-BNAB-MBNGAM∴BN =MB ,即BN =MB,同理,在△ACG 和△OCN 中,NG CN =AOCO ,CO =CN ,AONG O 为AC 中点,∴AO=CO ,NG=CN ,CN =NG =AM =1;BN BN BM 3〔2〕由〔1〕知,NG =AM 、CO =CN,BNMBAONGAM BN CO NG BN CNMB ?NC ?OA =BN ?NC ?NG=1;〔3〕在△ABD 中,点P 是AD 上的一点,过点P 的直线与AC 、BD 的延长线相交于点C ,AF BCDP由〔2〕得BF ?CD ?PA =1,在△ACD 中,点P 是AD 上一点,过点P 是AD 上一点,过点P 的直线与 AC 、AD 的延长线分别相交于点E 、B ,AE CB DP由〔2〕得EC ?BD ?PA =1,AF ?BC ?DP =AE ?CB ?DP ,BFCDPAECBDPA-------AEAF BC BD AF BD 111EC =BF ?CD ?CB =FB ?CD =3×2=6.【点评】此题主要考查相似三角形的综合问题,熟练掌握相似三角形的判定与性质及比例式的根本性质是解题的关键.26.〔10 分〕〔2021 ?邵阳〕如下图,顶点为〔21,﹣49〕的抛物线 y=ax 2+bx+c 过点M 〔2,0〕.1〕求抛物线的解析式;2〕点A 是抛物线与x 轴的交点〔不与点M 重合〕,点B是抛物线与 y 轴的交点,点C 是直线y=x+1上一点〔处于x轴下方〕,点D 是反比例函数y=kx 〔k >0〕图象上一点,假设以点A ,B ,C ,D 为顶点的四边形是菱形,求k 的值.【考点】HF :二次函数综合题.菁优网版权所有【分析】〔1〕设抛物线方程为顶点式y=a 〔x ﹣ 1〕2﹣9,将24点M 的坐标代入求 a 的值即可;〔2〕设直线y=x+1与y 轴交于点G ,易求G 〔0,1〕.那么-------直角△AOG是等腰直角三角形∠AGO=45°.点C是直线y=x+1上一点〔处于x轴下方〕,而k>0,所以反比例函数y=k x〔k>0〕图象位于点一、三象限.故点D只能在第一、三象限,因此符合条件的菱形只能有如下2种情况:①此菱形以AB为边且AC也为边,②此菱形以AB为对角线,利用点的坐标与图形的性质,勾股定理,菱形的性质和反比例函数图象上点的坐标特征求得k的值即可.【解答】解:〔1〕依题意可设抛物线方程为顶点式y=a〔x﹣1〕2﹣9〔a≠0〕,24将点M〔2,0〕代入可得:a〔2﹣12〕2﹣94=0,解得a=1.故抛物线的解析式为:y=〔x﹣1〕2﹣9;242〕由〔1〕知,抛物线的解析式为:y=〔x﹣12〕2﹣94.那么对称轴为x=12,∴点A与点M〔2,0〕关于直线x=1对称,2∴A〔1,0〕.x=0,那么y=﹣2,∴B〔0,﹣2〕.-------在直角△OAB 中,OA=1,OB=2,那么AB=√5.设直线y=x+1与y 轴交于点G ,易求G 〔0,1〕.∴直角△AOG 是等腰直角三角形,∴∠AGO=45°.∵点C 是直线y=x+1上一点〔处于x 轴下方〕,而k >0,所以反比例函数y=k〔k >0〕图象位于点一、三象限.x 故点D 只能在第一、三象限,因此符合条件的菱形只能有如下2种情况:①此菱形以AB 为边且AC 也为边,如图1所示,过点D 作DN ⊥y 轴于点N ,在直角△BDN 中,∵∠DBN=∠AGO=45°,DN=BN=√52=√210,√∴D 〔﹣√210,﹣√102﹣2〕,∵点D 在反比例函数y=k 〔k >0〕图象上, x k=﹣√210×〔﹣√102﹣2〕=52+√10;②此菱形以AB 为对角线,如图2,作AB 的垂直平分线CD 交直线y=x+1于点C ,交反比例函数y=kx 〔k >0〕的图象于点D .再分别过点 D 、B 作DE ⊥x 轴于点F ,BE ⊥y 轴,DE 与-------BE 相较于点E .在直角△BDE 中,同①可证∠AGO=∠DBO=∠BDE=45°,BE=DE .可设点D 的坐标为〔x ,x ﹣2〕.BE 2+DE 2=BD 2,BD=√2BE=√2x .∵四边形ABCD 是菱形,AD=BD=√2x .∴在直角△ADF 中,AD 2=AF 2+DF 2,即〔√2x 〕=〔x+1〕2+〔x ﹣2〕2,解得x=52,∴点D 的坐标是〔52,12〕.∵点D 在反比例函数 y=k〔k >0〕图象上,x∴k=5 ×1=5,22 45 5综上所述,k 的值是 2+√10或4 .-------【点评】此题考查了二次函数综合题,需要掌握待定系数法求二次函数解析式,勾股定理,菱形的性质,反比例函数图象上点的坐标特征等知识点.解答〔2〕题时要分类讨论,以防漏解.----。
【中考真题】2022年湖南省邵阳市中考数学试卷(附答案)

2022年湖南省邵阳市中考数学真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.-2022的绝对值是()A.12022B.12022-C.-2022D.20222.下列四种图形中,对称轴条数最多的是()A.等边三角形B.圆C.长方形D.正方形3.5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为1210a⨯,则a的值是()A.0.11B.1.1C.11D.110004.下列四个图形中,圆柱体的俯视图是()A.B.C.D.5.假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(正,正)的概率是()A.1B.34C.12D.146.下列长度的三条线段能首尾相接构成三角形的是()A.1cm,2cm,3cm B.3cm,4cm,5cm C.4cm,5cm,10cm D.6cm,9cm,2cm7.如图是反比例函数y=1x的图象,点A(x,y)是反比例函数图象上任意一点,过点A作AB⊥x轴于点B,连接OA,则△AOB的面积是()A .1B .12C .2D .328.在直角坐标系中,已知点3,2A m ⎛⎫⎪⎝⎭,点B n ⎫⎪⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是( ) A .m n <B .m n >C .m n ≥D .m n ≤9.如图,⊥O 是等边△ABC 的外接圆,若AB =3,则⊥O 的半径是( )A .32BCD .5210.关于x 的不等式组()1233111222x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩有且只有三个整数解,则a 的最大值是( ) A .3 B .4 C .5 D .6二、填空题11.因式分解:224a b -=_____. 12x 的取值范围是_________.13.某班50名同学的身高(单位:cm )如下表所示:则该班同学的身高的众数为_________. 14.分式方程5302x x-=-的根为_____ 15.已知矩形的一边长为6cm ,一条对角线的长为10cm ,则矩形的面积为_________2cm .16.已知2310x x -+=,则2395x x -+=_________.17.如图,在等腰ABC 中,120A ∠=︒,顶点B 在ODEF 的边DE 上,已知140∠=︒,则2∠=_________.18.如图,在ABC 中,点D 在AB 边上,点E 在AC 边上,请添加一个条件_________,使ADE ABC △△∽.三、解答题19.计算:21(2)2sin 602π-⎛⎫-+-- ⎪⎝⎭︒.20.先化简,再从-1,0,1x 值代入求值. 211111x x x x ⎛⎫+÷⎪+--⎝⎭. 21.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 在对角线BD 上,且BE DF =,OE OA =.求证:四边形AECF是正方形.22.2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团(假设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,并绘制成如图(1)、图(2)所示的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题.(1)求抽取参加调查的学生人数.(2)将以上两幅不完整的统计图补充完整.(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.23.2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?24.如图,已知DC是O的直径,点B为CD延长线上一点,AB是O的切线,点 .A为切点,且AB AC(1)求ACB∠的度数;(2)若O的半径为3,求圆弧AC的长.25.如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60︒方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45︒方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.≈ 1.732)1.41426.如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A在x轴上,点B在y轴上,点C(3,0)在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ 所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.参考答案:1.D【解析】【分析】直接利用绝对值定义判断即可.【详解】解:-2022的绝对值是2022,故选:D.【点睛】本题考查了绝对值的定义,明确负数的绝对值等于它的相反数是解题关键.2.B【解析】【分析】分别求出各个图形的对称轴的条数,再进行比较即可.【详解】解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B.【点睛】此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.3.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:因为1亿=108,所以11000亿用科学记数法表示为1.1×104×108=1.1×1012.故选:B.【点睛】此题考查了科学记数法表示绝对值大于1的数.解题的关键是关键知道1亿=108,要正确确定a的值以及n的值.4.D【解析】【分析】根据俯视图是从上面看到的视图进而得出答案即可.【详解】解:竖直放置的圆柱体,从上面看是圆,所以俯视图是圆.故选⊥D.【点睛】此题考查了简单几何体的三视图,解题的关键是熟练掌握圆柱体的三视图.5.D【解析】【分析】由列举法可得:掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,其中出现(正,正)的情况有1种,然后利用概率公式求解即可求得答案.【详解】⊥掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,其中出现(正,正)的情况有1种,⊥P(正,正)=14.故选⊥D.【点睛】此题考查了列举法求概率,解题的关键是知道概率=所求情况数与总情况数之比.6.B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:根据三角形的三边关系,知A 、1+2=3,不能组成三角形,故选项错误,不符合题意;B 、3+4>5,能够组成三角形,故选项正确,符合题意;C 、5+4<10,不能组成三角形,故选项错误,不符合题意;D 、2+6<9,不能组成三角形,故选项错误,不符合题意; 故选:B . 【点睛】此题考查了三角形的三边关系.解题的关键是看较小的两个数的和是否大于第三个数. 7.B 【解析】 【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是12. 【详解】解:设A (x ,y )则OB =x ,AB =y , ⊥A 为反比例函数y =1x图象上一点,⊥xy =1,⊥S △ABO =12AB •OB =12xy =12×1=12,故选:B . 【点睛】本题考查反比例函数的几何意义,即k 的绝对值,等于△AOB 的面积的2倍,数形结合比较直观. 8.A 【解析】 【分析】因为直线()0y kx b k =+<,所以随着自变量的增大,函数值会减小,根据这点即可得到问题解答.解:⊥因为直线()0y kx b k =+<, ⊥y 随着x 的增大而减小,⊥32>2,⊥32>⊥m <n , 故选:A . 【点睛】此题考查了一次函数的图象和性质,解题的关键是正确判断一次函数的增减性并灵活运用. 9.C 【解析】 【分析】作直径AD ,连接CD ,如图,利用等边三角形的性质得到⊥B =60°,关键圆周角定理得到⊥ACD =90°,⊥D =⊥B =60°,然后利用含30度的直角三角形三边的关系求解. 【详解】解:作直径AD ,连接CD ,如图,⊥⊥ABC 为等边三角形, ⊥⊥B =60°, ⊥AD 为直径, ⊥⊥ACD =90°,⊥⊥D =⊥B =60°,则⊥DAC =30°,⊥CD =12AD ,⊥AD 2=CD 2+AC 2,即AD 2=(12AD )2+32,⊥AD⊥OA =OB =12AD故选:C . 【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质、圆周角定理和含30度的直角三角形三边的关系. 10.C 【解析】 【分析】分别对两个不等式进行求解,得到不等式组的解集为1x a <<,根据不等式组有且只有三个整数解的条件计算出a 的最大值. 【详解】解不等式1233x x ->-,1233x x -+>, ⊥2233x >, ⊥1x >,解不等式111(2)22x a -<-,得11(2)122x a <-+, ⊥x a <,⊥1233111(2)22x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩的解集为1x a <<,⊥不等式组有且只有三个整数解, ⊥不等式组的整数解应为:2,3,4,⊥a 的最大值应为5故选:C .【点睛】本题考查不等式组的整数解,解题的关键是熟练掌握不等式组的相关知识.11.()()22a b a b +-【解析】【分析】本题利用平方差公式进行因式分解即可.【详解】解:原式=(a+2b)(a-2b) .12.x >2##2<x【解析】【分析】根据二次根式有意义的条件:被开方数是非负数和分式有意义的条件:分母不为0即可求出结论.【详解】解:由题意可得x-2>0,解得:x >2,故答案为:x >2.【点睛】本题考查的是分式及二次根式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0解题的关键.13.160【解析】【分析】根据众数的定义求解.【详解】在这一组数据中160出现了10次,次数最多,故众数是160.故答案为:160.此题考查了众数,解题的关键是掌握众数的定义.14.x =-3【解析】【详解】 解:5302x x-=-, 去分母得:5x -3(x -2)=0,解得:x =-3,检验:当x =-3时,x (x -3)≠0,所以,原分式方程的解为x =-3,故答案是:x =-3.15.48【解析】【分析】如图,先根据勾股定理求出8cm AB ,再由ABCD S AB BC =⨯矩形求解即可.【详解】解:在矩形ABCD 中,6cm BC ,10cm AC =,⊥在Rt ABC △中,8AB (cm),⊥28648(cm )ABCD S AB BC =⨯=⨯=矩形.故答案为:48.【点睛】此题考查了矩形的性质,勾股定理,解题的关键是熟知上述知识.16.2【解析】将2395x x -+变形为23(31)+2x x -+即可计算出答案.【详解】22239539323(31)+2x x x x x x -+=-++=-+⊥2310x x -+=⊥23950+2=2x x -+=故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.17.110º【解析】【分析】先根据等腰三角形的性质求出⊥ABC 的度数;再根据平行四边形对边平行和两直线平行同旁内角互补的性质,得出⊥2+⊥ABE =180º,代入求解即可.【详解】解:⊥ABC 是等腰三角形,⊥A =120º,⊥⊥ABC =⊥C =(180º-⊥A )÷2=30º,⊥四边形ODEF 是平行四边形,⊥OF ∥DE ,⊥⊥2+⊥ABE =180º,即⊥2+30º+40º=180º,⊥⊥2=110º.故答案为:110º.【点睛】此题考查了等腰三角形的性质和平行四边形的性质,解题的关键是数形结合,熟练运用上述知识求解.18.⊥ADE =⊥B (答案不唯一).【解析】【分析】已知有一个公共角,则可以再添加一个角从而利用有两组角对应相等的两个三角形相似来判定或添加夹此角的两边对应成比例也可以判定.【详解】解⊥⊥⊥A =⊥A ,⊥根据两角相等的两个三角形相似,可添加条件⊥ADE =⊥B 或⊥AED =⊥C 证ADE ABC △△∽相似; 根据两边对应成比例且夹角相等,可添加条件AD AE AB AC=证ADE ABC △△∽相似. 故答案为⊥⊥ADE =⊥B (答案不唯一).【点睛】此题考查了本题考查了相似三角形的判定,解题的关键是掌握相似三角形的判定方法. 19.【解析】【分析】先计算零指数幂、负指数幂、锐角三角函数值,再计算二次根式的乘法和加减法.【详解】 解:201(2)2sin 602π-⎛⎫-+-- ⎪⎝⎭︒【点睛】此题考查了零指数幂、负指数幂、锐角三角函数值,解题的关键是熟练掌握零指数幂、负指数幂、锐角三角函数值的计算法则.20.11x + 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把合适的x 的值代入计算即可求出值.【详解】解:211111x x x x ⎛⎫+÷ ⎪+--⎝⎭ 11(1)(1)(1)(1)1x x x x x x x ⎡⎤-=+÷⎢⎥+-+--⎣⎦ 1(1)(1)x x x x x-=⋅+- =11x +, ⊥x +1≠0,x -1≠0,x ≠0,⊥x ≠±1,x ≠0当x= 【点睛】 本题主要考查了分式的化简求值,分母有理化,解题的关键是掌握分式混合运算顺序和运算法则.21.证明过程见解析【解析】【分析】菱形的两条对角线相互垂直且平分,再根据两条对角线相互垂直平分且相等的四边形是正方形即可证明四边形AECF 是正方形.【详解】证明:⊥ 四边形ABCD 是菱形⊥ OA =OC ,OB =OD 且AC ⊥BD ,又⊥ BE =DF⊥ OB -BE =OD -DF即OE =OF⊥OE =OA⊥OA =OC =OE =OF 且AC =EF又⊥AC ⊥EF⊥ 四边形DEBF 是正方形.【点睛】此题考查了菱形的性质和正方形的判定,解题的关键是掌握上述知识.22.(1)抽取参加调查的学生人数为40人(2)统计图见解析(3)估计该校报兴趣类社团的学生人数有200人【解析】【分析】(1)从两个统计图中可知,报兴趣类社团有5人,占调查人数的12.5%,可求出抽取参加调查的学生人数;(2)求出报体育类社团的人数即可补全条形统计图,求出文艺类和阅读类所占百分比可补全扇形统计图;(3)用1600去乘报兴趣类社团的学生所占的比例即可.(1)解:5÷12.5%=40(人)答:抽取参加调查的学生人数为40人.(2)解:40×25%=10(人),补全条形统计图如图所示:15100%40⨯=37.5%,10100%25%40⨯=,补全扇形统计图如图所示:(3)解:1600×12.5%=200(人)答:估计该校报兴趣类社团的学生人数有200人.【点睛】此题考查了条形统计图、扇形统计图的意义和制作方法以及用样本估计总体,解题的关键是从两个统计图中获取数量和数量关系式.23.(1)购进“冰墩墩”摆件80件,“冰墩墩”挂件的100件;(2)购进的“冰墩墩”挂件不能超过70个.【解析】【分析】(1)设购进“冰墩墩”摆件x件,“冰墩墩”挂件的y件,利用总价=单价×数量,结合购买“冰墩墩”摆件和“冰墩墩”挂件共180个且共花费11400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买“冰墩墩”挂件m个,则购买“冰墩墩”摆件(180-m)个,利用总价=单价×数量,结合至少盈利2900元,即可得出关于m的不等式,解之即可得出结论.(1)解:设购进“冰墩墩”摆件x件,“冰墩墩”挂件的y件,依题意得:180 805011400x yx y+=⎧⎨+=⎩,解得:80100xy=⎧⎨=⎩,答:购进“冰墩墩”摆件80件,“冰墩墩”挂件的100件;(2)解:设购买“冰墩墩”挂件m个,则购买“冰墩墩”摆件(180-m)个,依题意得:(100-80)(180-m)+(60-50)m≥2900,解得:m≤70,答:购进的“冰墩墩”挂件不能超过70个.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.(1)30︒(2)2π【解析】【分析】(1)证明ADO ∆是等边三角形,得到60ADO ︒∠=,从而计算出ACB ∠的度数; (2)计算出圆弧AC 的圆心角,根据圆弧弧长公式计算出最终的答案.(1)如下图,连接AO⊥AB 是O 的切线⊥OA AB ⊥⊥90OAB ︒∠=⊥90DAC ︒∠=⊥DAC OAB ∠=∠⊥AB AC =⊥B C ∠=∠⊥ABO ACD ∆∆≌⊥AD AO DO ==⊥ADO ∆是等边三角形⊥60ADO ︒∠=⊥90DAC ︒∠=⊥30ACB ︒∠=(2)⊥60AOD ︒∠=⊥120AOC ︒∠=圆弧AC 的长为:12032180ππ︒︒⨯⨯= ⊥圆弧AC 的长为2π.【点睛】本题考查全等三角形、等腰三角形、等边三角形和圆的性质,解题的关键是熟练掌握全等三角形、等腰三角形、等边三角形和圆的相关知识.25.这艘轮船继续向正东方向航行是安全的,理由见解析【解析】【分析】如图,过C 作CD ⊥AB 于点D ,根据方向角的定义及余角的性质求出⊥BAC =30°,⊥CBD =45°,解Rt⊥ACD 和Rt⊥BCD ,求出CD 即可.【详解】解:过点C 作CD ⊥AB ,垂足为D .如图所示:根据题意可知⊥BAC =90°−60°=30°,⊥DBC =90°-45°=45°,AB =30×1=30(km ),在Rt⊥BCD 中,⊥CDB =90°,⊥DBC =45°,tan⊥DBC =CD BD ,即CD BD=1 ⊥CD =BD设BD =CD =x km ,在Rt⊥ACD 中,⊥CDA =90°,⊥DAC =30°,⊥tan⊥DAC =CD AD ,即30x x =+解得x,⊥40.98km>40km⊥这艘船继续向东航行安全.【点睛】此题考查了解直角三角形的应用;解题的关键是熟练掌握锐角三角函数定义.26.(1)该抛物线的表达式为y=23-x2+43x+2;(2)点P的坐标为(1,0)或(2,0);(3)线段CD'长度的最小值为1.【解析】【分析】(1)先求得点A(-1,0),点B(0,2),利用待定系数法即可求解;(2)分两种情况讨论:△AOB⊥△DPC和△AOB⊥△CPD,利用全等三角形的性质求解即可;(3)按照(2)的结论,分两种情况讨论,当P、D'、C三点共线时,线段CD'长度取得最小值,据此求解即可.(1)解:令x=0,则y=2x+2=2,令y=0,则0=2x+2,解得x=-1,点A(-1,0),点B(0,2),把A(-1,0),B(0,2),C(3,0)代入y=ax2+bx+c,得9302a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得23432abc⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,⊥该抛物线的表达式为y=23-x2+43x+2;(2)解:若△AOB和△DPC全等,且⊥AOB=⊥DPC=90°,分两种情况:⊥△AOB⊥△DPC,则AO=PD=1,OB=PC=2,⊥OC=3,⊥OP=3-2=1,⊥点P的坐标为(1,0);⊥△AOB⊥△CPD,则OB=PD=2,⊥正方形OPDE的边长为2,⊥点P的坐标为(2,0);综上,点P的坐标为(1,0)或(2,0);(3)解:⊥点P的坐标为(1,0)时,⊥△PQD'与△PQD关于PQ对称,⊥PD'=PD,⊥点D'在以点P为圆心,1为半径的圆上运动,当P、D'、C三点共线时,线段CD'长度取得最小值,最小值为2-1=1;⊥点P的坐标为(2,0)时,⊥⊥PQD'与⊥PQD关于PQ对称,⊥PD'=PD,⊥点D'在以点P为圆心,2为半径的圆上运动,当P、C、D'三点共线时,线段CD'长度取得最小值,最小值为2-1=1;综上,线段CD'长度的最小值为1.【点睛】此题主要考查了二次函数的综合应用,全等三角形的判定与性质以及待定系数法求二次函数解析式,正方形的性质的应用,点和圆的位置关系,解题的关键是正确进行分类讨论.答案第16页,共16页。
2022年湖南省邵阳市中考数学试卷(解析版)

2022年湖南省邵阳市中考数学试卷(真题)一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2022•邵阳)﹣2022的绝对值是()A.B.﹣2022 C.2022 D.2.(3分)(2022•邵阳)下列四种图形中,对称轴条数最多的是()A.等边三角形B.圆C.长方形D.正方形3.(3分)(2022•邵阳)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为a×1012,则a 的值是()A.0.11 B.1.1 C.11 D.110004.(3分)(2022•邵阳)下列四个图形中,圆柱体的俯视图是()A.B.C.D.5.(3分)(2022•邵阳)假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(正,正)的概率是()A.1 B.C.D.6.(3分)(2022•邵阳)下列长度的三条线段能首尾相接构成三角形的是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.4cm,5cm,10cm D.6cm,9cm,2cm7.(3分)(2022•邵阳)如图是反比例函数y=的图象,点A(x,y)是反比例函数图象上任意一点,过点A作AB⊥x轴于点B,连接OA,则△AOB的面积是()A.1 B.C.2 D.8.(3分)(2022•邵阳)在直角坐标系中,已知点A(,m),点B(,n)是直线y=kx+b(k<0)上的两点,则m,n的大小关系是()A.m<n B.m>n C.m≥n D.m≤n9.(3分)(2022•邵阳)如图,⊙O是等边△ABC的外接圆,若AB=3,则⊙O的半径是()A.B.C.D.10.(3分)(2022•邵阳)关于x的不等式组有且只有三个整数解,则a的最大值是()A.3 B.4 C.5 D.6二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)(2022•邵阳)因式分解:x2﹣4y2=.12.(3分)(2022•邵阳)若有意义,则x的取值范围是.13.(3分)(2022•邵阳)某班50名同学的身高(单位:cm)如下表所示:身155 156 157 158 159 160 161 162 163 164 165 166 167 168 高3 5 1 2 2 104 3 1 2 6 8 1 2人数则该班同学的身高的众数为.14.(3分)(2022•邵阳)分式方程﹣=0的解是.15.(3分)(2022•邵阳)已知矩形的一边长为6cm,一条对角线的长为10cm,则矩形的面积为cm2.16.(3分)(2022•邵阳)已知x2﹣3x+1=0,则3x2﹣9x+5=.17.(3分)(2022•邵阳)如图,在等腰△ABC中,∠A=120°,顶点B在▱ODEF 的边DE上,已知∠1=40°,则∠2=.18.(3分)(2022•邵阳)如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件,使△ADE∽△ABC.三、解答题(本大题有8个小题,第19~25题每题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程)19.(8分)(2022•邵阳)计算:(π﹣2)0+(﹣)﹣2﹣2sin60°.20.(8分)(2022•邵阳)先化简,再从﹣1,0,1,中选择一个合适的x值代入求值.(+)÷.21.(8分)(2022•邵阳)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.求证:四边形AECF是正方形.22.(8分)(2022•邵阳)2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团(假设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,并绘制成如图1、图2所示的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题.(1)求抽取参加调查的学生人数.(2)将以上两幅不完整的统计图补充完整.(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.23.(8分)(2022•邵阳)2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?24.(8分)(2022•邵阳)如图,已知DC是⊙O的直径,点B为CD延长线上一点,AB是⊙O的切线,点A为切点,且AB=AC.(1)求∠ACB的度数;(2)若⊙O的半径为3,求圆弧的长.25.(8分)(2022•邵阳)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60°方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45°方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈1.414,≈1.732)26.(10分)(2022•邵阳)如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A在x轴上,点B在y轴上,点C(3,0)在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E 在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.2022年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2022•邵阳)﹣2022的绝对值是()A.B.﹣2022 C.2022 D.【分析】直接利用绝对值的性质分析得出答案.【解答】解:﹣2022的绝对值是2022.故选:C.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.2.(3分)(2022•邵阳)下列四种图形中,对称轴条数最多的是()A.等边三角形B.圆C.长方形D.正方形【分析】根据轴对称图形的意义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此分析各图形的对称轴条数即可求解.【解答】解:A.等边三角形是轴对称图形,它有3条对称轴;B.圆是轴对称图形,有无数条条对称轴;C.长方形是轴对称图形,有2条对称轴;D.正方形是轴对称图形,有4条对称轴;故对称轴条数最多的图形是圆.故选:B.【点评】此题考查轴对称图形的知识,关键是掌握轴对称图形的意义及对称轴的描述.3.(3分)(2022•邵阳)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为a×1012,则a 的值是()A.0.11 B.1.1 C.11 D.11000【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:11000亿=1100000000000=1.1×1012,∴a=1.1,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.4.(3分)(2022•邵阳)下列四个图形中,圆柱体的俯视图是()A.B.C.D.【分析】根据俯视图是从物体的上面看得到的视图解答.【解答】解:从圆柱体的上面看到是视图是圆,则圆柱体的俯视图是圆,故选:D.【点评】本题考查的是几何体的三视图,掌握俯视图是从物体的上面看得到的视图是解题的关键.5.(3分)(2022•邵阳)假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(正,正)的概率是()A.1 B.C.D.【分析】画树状图,共有4种等可能的结果,其中出现(正,正)的结果有1种,再由概率公式求解即可.【解答】解:画树状图如下:共有4种等可能的结果,其中出现(正,正)的结果有1种,∴出现(正,正)的概率为,故选:D.【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.6.(3分)(2022•邵阳)下列长度的三条线段能首尾相接构成三角形的是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.4cm,5cm,10cm D.6cm,9cm,2cm【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形的三边关系,得:A、1+2=3,不能构成三角形;B、3+4>5,能构成三角形;C、4+5<10,不能构成三角形;D、2+6<9,不能构成三角形.故选:B.【点评】本题主要考查了三角形三边关系定理:三角形任意两边之和大于第三边.7.(3分)(2022•邵阳)如图是反比例函数y=的图象,点A(x,y)是反比例函数图象上任意一点,过点A作AB⊥x轴于点B,连接OA,则△AOB的面积是()A.1 B.C.2 D.【分析】由反比例函数的几何意义可知,k=1,也就是△AOB的面积的2倍是1,求出△AOB的面积是.【解答】解:∵A(x,y),∴OB=x,AB=y,∵A为反比例函数y=图象上一点,∴xy=1,∴S△ABO=AB•OB=xy=1=,故选:B.【点评】考查反比例函数的几何意义,反比例函数的图象,反比例函数图象上点的坐标特征,解决本题的关键是掌握k的绝对值,等于△AOB的面积的2倍.8.(3分)(2022•邵阳)在直角坐标系中,已知点A(,m),点B(,n)是直线y=kx+b(k<0)上的两点,则m,n的大小关系是()A.m<n B.m>n C.m≥n D.m≤n【分析】根据k>0可知函数y随着x增大而减小,再根>即可比较m 和n的大小.【解答】解:点A(,m),点B(,n)是直线y=kx+b上的两点,且k <0,∴一次函数y随着x增大而减小,∵>,∴m<n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握一次函数的增减性是解题的关键.9.(3分)(2022•邵阳)如图,⊙O是等边△ABC的外接圆,若AB=3,则⊙O的半径是()A.B.C.D.【分析】连接OB,过点O作OE⊥BC,结合三角形外心和垂径定理分析求解.【解答】解:连接OB,过点O作OE⊥BC,∵⊙O是等边△ABC的外接圆,∴OB平分∠ABC,∴∠OBE=30°,又∵OE⊥BC,∴BE=BC=AB=,在Rt△OBE中,cos30°=,∴,解得:OB=,故选:C.【点评】本题考查三角形的外接圆与外心,掌握等边三角形的性质,应用垂径定理和特殊角的三角函数值解题是关键.10.(3分)(2022•邵阳)关于x的不等式组有且只有三个整数解,则a的最大值是()A.3 B.4 C.5 D.6【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分表示出不等式组的解集,根据解集有且只有三个整数解,确定出a的范围即可.【解答】解:,由①得:x>1,由②得:x<a,解得:1<x<a,∵不等式组有且仅有三个整数解,即2,3,4,∴4<a≤5,∴a的最大值是5,故选:C.【点评】此题考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)(2022•邵阳)因式分解:x2﹣4y2=(x+2y)(x﹣2y).【分析】直接运用平方差公式进行因式分解.【解答】解:x2﹣4y2=(x+2y)(x﹣2y).【点评】本题考查了平方差公式分解因式,熟记公式结构是解题的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).12.(3分)(2022•邵阳)若有意义,则x的取值范围是x>2 .【分析】先根据二次根式及分式有意义的条件列出x的不等式组,求出x的取值范围即可.【解答】解:∵有意义,∴,解得x>0.故答案为:x>2.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.13.(3分)(2022•邵阳)某班50名同学的身高(单位:cm)如下表所示:155 156 157 158 159 160 161 162 163 164 165 166 167 168 身高3 5 1 2 2 104 3 1 2 6 8 1 2人数则该班同学的身高的众数为160cm.【分析】一组数据中出现次数最多的数据叫做众数,结合表格信息即可得出答案.【解答】解:身高160的人数最多,故该班同学的身高的众数为160cm.故答案为:160cm.【点评】本题考查了众数的知识,掌握众数的定义是解题的关键.14.(3分)(2022•邵阳)分式方程﹣=0的解是x=﹣3 .【分析】依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:去分母,得:5x﹣3(x﹣2)=0,整理,得:2x+6=0,解得:x=﹣3,经检验:x=﹣3是原分式方程的解,故答案为:x=﹣3.【点评】本题主要考查解分式方程能力,熟练掌握解分式方程的步骤是关键.15.(3分)(2022•邵阳)已知矩形的一边长为6cm,一条对角线的长为10cm,则矩形的面积为48 cm2.【分析】利用勾股定理列式求出另一边长,然后根据矩形的面积公式列式进行计算即可得解.【解答】解:∵长方形的一条对角线的长为10cm,一边长为6cm,∴另一边长==8cm,∴它的面积为8×6=48cm2.故答案为:48.【点评】本题考查矩形的性质,勾股定理等知识,利用勾股定理列式求出另一边长是解题的关键.16.(3分)(2022•邵阳)已知x2﹣3x+1=0,则3x2﹣9x+5= 2 .【分析】原式前两项提取3变形后,把已知等式变形代入计算即可求出值.【解答】解:∵x2﹣3x+1=0,∴x2﹣3x=﹣1,则原式=3(x2﹣3x)+5=﹣3+5=2.故答案为:2.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.17.(3分)(2022•邵阳)如图,在等腰△ABC中,∠A=120°,顶点B在▱ODEF 的边DE上,已知∠1=40°,则∠2=110°.【分析】根据等腰三角形的性质和平行四边形的性质解答即可.【解答】解:∵等腰△ABC中,∠A=120°,∴∠ABC=30°,∵∠1=40°,∴∠ABE=∠1+∠ABC=70°,∵四边形ODEF是平行四边形,∴OF∥DE,∴∠2=180°﹣∠ABE=180°﹣70°=110°,故答案为:110°.【点评】本题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.18.(3分)(2022•邵阳)如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件∠ADE=∠B或∠AED=∠C或=(答案不唯一),使△ADE∽△ABC.【分析】要使两三角形相似,已知一组角相等,则再添加一组角或公共角的两边对应成比例即可.【解答】解:∵∠A=∠A,∴当∠ADE=∠B或∠AED=∠C或=时,△ADE∽△ABC,故答案为:∠ADE=∠B或∠AED=∠C或=(答案不唯一).【点评】此题考查了相似三角形的判定的理解及运用,熟练应用相似三角形的判定是解题关键.三、解答题(本大题有8个小题,第19~25题每题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程)19.(8分)(2022•邵阳)计算:(π﹣2)0+(﹣)﹣2﹣2sin60°.【分析】直接利用特殊角的三角函数值以及零指数幂的性质、负整数指数幂的性质分别化简,进而得出答案.【解答】解:原式=1+4﹣2×=1+4﹣=5﹣.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.20.(8分)(2022•邵阳)先化简,再从﹣1,0,1,中选择一个合适的x值代入求值.(+)÷.【分析】先计算分式的混合运算进行化简,先算小括号里面的,然后算括号外面的,最后根据分式成立的条件确定x的取值,代入求值即可.【解答】解:原式=•=,又∵x≠﹣1,∴x可以取0,此时原式=1;x可以取1,此时原式=;x可以取,此时原式==.【点评】本题考查分式的混合运算,分式成立的条件及二次根式的运算,掌握运算顺序和计算法则准确计算是解题关键.21.(8分)(2022•邵阳)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.求证:四边形AECF是正方形.【分析】证明AC与EF互相垂直平分便可根据菱形的判定定理得出结论【解答】证明:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是菱形;∵OE=OA=OF,∠AOE=∠AOF=90°,∴△AOE≌△AOF(SAS),∴AE=AF,∴菱形AECF是正方形.【点评】本题主要考查了菱形的性质与判定,全等三角形的性质与判定,正方形的性质与判定,掌握相关定理是解题基础.22.(8分)(2022•邵阳)2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团(假设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,并绘制成如图1、图2所示的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题.(1)求抽取参加调查的学生人数.(2)将以上两幅不完整的统计图补充完整.(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.【分析】(1)根据兴趣类的人数和所占的百分比,可以求得此次调查的人数;(2)根据(1)中的计算和扇形统计图中的数据,可以计算出体育类的人数,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出喜欢兴趣类社团的学生有多少人.【解答】解:(1)5÷12.5%=40 (人),答:此次共调查了40人;(2)体育类有40×25%=10(人),文艺类社团的人数所占百分比:15÷40×100%=37.5%,阅读类社团的人数所占百分比:10÷40×100%=25%,将条形统计图补充完整如下:(3)1600×12.5%=200(人),答:估计喜欢兴趣类社团的学生有200人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.(8分)(2022•邵阳)2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?【分析】(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,利用进货总价=进货单价×进货数量,结合购进“冰墩墩”摆件和挂件共100个且共花费了11400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180﹣m)个,利用总利润=每个的销售利润×销售数量(购进数量),即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,依题意得:,解得:.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180﹣m)个,依题意得:(60﹣50)m+(100﹣80)(180﹣m)≥2900,解得:m≤70.答:购进的“冰墩墩”挂件不能超过70个.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.(8分)(2022•邵阳)如图,已知DC是⊙O的直径,点B为CD延长线上一点,AB是⊙O的切线,点A为切点,且AB=AC.(1)求∠ACB的度数;(2)若⊙O的半径为3,求圆弧的长.【分析】(1)连接OA,利用切线的性质可得∠BAO=90°,利用等腰三角形的性质可得∠B=∠ACB=∠OAC,根据三角形内角和定理列方程求解;(2)先求得∠AOC的度数,然后根据弧长公式代入求解.【解答】解:(1)连接OA,∵AB是⊙O的切线,点A为切点,∴∠BAO=90°,又∵AB=AC,OA=OC,∴∠B=∠ACB=∠OAC,设∠ACB=x°,则在△ABC中,x°+x°+x°+90°=180°,解得:x=30,∴∠ACB的度数为30°;(2)∵∠ACB=∠OAC=30°,∴∠AOC=120°,∴=2π.【点评】本题考查切线的性质、等腰三角形的性质,掌握切线的性质和弧长公式()是解题关键.25.(8分)(2022•邵阳)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60°方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45°方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈1.414,≈1.732)【分析】过点C作CD垂直AB,利用特殊角的三角函数值求得CD的长度,从而根据无理数的估算作出判断.【解答】解:安全,理由如下:过点C作CD垂直AB,由题意可得,∠CAD=90°﹣60°=30°,∠CBD=90°﹣45°=45°,AB=30×1=30km,在Rt△CBD中,设CD=BD=xkm,则AD=(x+30)km,在Rt△ACD中,tan30°=,∴,∴,解得:x=15+15≈40.98>40,所以,这艘轮船继续向正东方向航行是安全的.【点评】本题考查解直角三角形的应用,通过添加辅助线构建直角三角形,熟记特殊角的三角函数值是解题关键.26.(10分)(2022•邵阳)如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A在x轴上,点B在y轴上,点C(3,0)在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E 在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.【分析】(1)先分别求得点A,点B的坐标,从而利用待定系数法求函数解析式;(2)分△AOB≌△DPC和△AOB≌△CPD两种情况,结合全等三角形的性质分析求解;(3)根据点D′的运动轨迹,求得当点P,D′,C三点共线时求得CD′的最小值.【解答】解:在直线y=2x+2中,当x=2时,y=2,当y=0时,x=﹣1,∴点A的坐标为(﹣1,0),点B的坐标为(0,2),把点A(﹣1,0),点B(0,2),点C(3,0)代入y=ax2+bx+c,,解得,∴抛物线的解析式为y=﹣x2+x+2;(2)①当△AOB≌△DPC时,AO=DP,又∵四边形OPDE为正方形,∴DP=OP=AO=1,此时点P的坐标为(1,0),②当△AOB≌△CPD时,OB=DP,又∵四边形OPDE为正方形,∴DP=OP=OB=2,此时点P的坐标为(2,0),综上,点P的坐标为(1,0)或(2,0);(3)如图,点D′在以点P为圆心,DP为半径的圆上运动,∴当点D′′,点P,点C三点共线时,CD′′有最小值,由(2)可得点P的坐标为(1,0)或(2,0),且C点坐标为(3,0),∴CD′′的最小值为1.【点评】本题考查二次函数的应用,全等三角形的判定和性质,折叠的性质,掌握待定系数法求函数解析式,注意数形结合思想和分类讨论思想解题是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试卷 第1页(共8页)数学试卷 第2页(共8页)绝密★启用前湖南省邵阳市2018年初中学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中只有一项是符合题目要求的) 1.用计算器依次按键,得到的结果最接近的是 ( ) A .1.5B .1.6C .1.7D .1.82.如图所示,直线AB ,CD 相交于点O ,已知160AOD ∠=︒,则BOC ∠的大小为( )A .20︒B .60︒C .70︒D .160︒ 3.将多项式3x x -因式分解正确的是( )A .21x x -()B .21x x -()C .()()11x x x +-D .()()11x x x +-4.下列图形中,是轴对称图形的是( )ABCD5.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到97 nm 1 nm 10m =﹣(),主流生产线的技术水平为1428 nm ~,中国大陆集成电路生产技术水平最高为28 nm .将28 nm 用科学记数法可表示为( )A .92810m ⨯﹣B .82.810m ⨯﹣C .92810m ⨯D .82.810m ⨯6.如图所示,四边形ABCD 为O e 的内接四边形,120BCD ∠=︒,则BOD ∠的大小是 ( ) A .80︒B .120︒C .100︒D .90︒7.小明参加100 m 短跑训练,2018年1~4月的训练成绩如下表所示:月份 1 2 3 4 成绩(s )15.615.415.215体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100 m 短跑的成绩为(温馨提示;目前100 m 短跑世界记录为9秒58)( )A .14.8 sB .3.8 sC .3 sD .预测结果不可靠8.如图所示,在平面直角坐标系中,已知点()2,4A ,过点A 作AB x ⊥轴于点B .将AOB △以坐标原点O 为位似中心缩小为原图形的12,得到COD △,则CD 的长度是( ) A .2B .1C .4D .259.根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐 ( ) A .李飞或刘亮B .李飞C .刘亮D .无法确定10.程大位是我国明朝商人,珠算发明家他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )A .大和尚25人,小和尚75人 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人第Ⅱ卷(非选择题 共90分)二、填空题(本大题有8个小题,每小题3分,共24分) 11.点A 在数轴上的位置如图所示,则点A 表示的数的相反数是__________.12.如图所示,点E 是平行四边形ABCD 的边BC 延长线上一点,连接AE ,交CD 于点F ,连接BF .写出图中任意一对相似三角形:__________.13.已知关于x 的方程230x x m +-=的一个解为3-,则它的另一个解是__________.. 14.如图所示,在四边形ABCD 中,AD AB ⊥,110C ∠=︒,它的一个外角60ADE ∠=︒,则B ∠的大小是__________.15.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80 000名九年级学生中“综合素质”评价结果为“A ”的学生约为__________人.16.如图所示,一次函数y ax b =+的图象与x 轴相交于点()2,0,与y 轴相交于点()0,4,结合图象可知,关于x 的方程0ax b +=的解是__________.17.如图所示,在等腰ABC △中,AB AC =,36A ∠=︒,将ABC△中的A ∠沿DE 向下翻折,使点A 落在点C 处.若3AE =,则BC 的长是__________.18.如图所示,点A 是反比例函数ky x=图象上一点,作AB x ⊥轴,垂足为点B ,若AOB △的面积为2,则k 的值是__________..三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。
答应写出必要的文字说明、演算步骤或证明过程) 19.(本小题满分8分)计算:()21π 3.1||422-+---().20.(本小题满分8分)先化简,再求值:()()()222228a b a b a b b -+-+-,其中2a =-,12b =.21.(本小题满分8分)如图所示,AB 是O e 的直径,点C 为O e 上一点,过点B 作BD CD ⊥,垂足为点D ,连结BC .BC 平分ABD ∠. 求证:CD 为O e 的切线.22.(本小题满分8分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:数学试卷 第5页(共8页) 数学试卷 第6页(共8页)结合以上信息,回答下列问题:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小; (2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由. 23.(本小题满分8分)某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30 kg 材料,且A 型机器人搬运1 000 kg 材料所用的时间与B 型机器人搬运800 kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2 800 kg ,则至少购进A 型机器人多少台?24.(本小题满分8分)某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式自动扶梯AB 长为10 m ,坡角ABD ∠为30︒;改造后的斜坡式自动扶梯的坡角ACB ∠为15︒,请你计算改造后的斜坡式自动扶梯AC 的长度,(结果精确到0.1m ,温馨提示:sin150.26︒≈,cos150.97︒≈,tan150.27︒≈)25.(本小题满分8分)如图1所示,在四边形ABCD 中,点O ,E ,F ,G 分别是AB ,BC ,CD ,AD 的中点,连接OE ,EF ,FG ,GO ,GE .(1)证明:四边形OEFG 是平行四边形;(2)将OGE △绕点O 顺时针旋转得到OMN △,如图2所示,连接GM ,EN .①若OE =,1OG =,求ENGM的值; ②试在四边形ABCD 中添加一个条件,使GM ,EN 的长在旋转过程中始终相等.(不要求证明)26.(本小题满分10分)如图所示,将二次函数221y x x =++的图象沿x 轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数2y ax bx c =++的图象.函数221y x x =++的图象的顶点为点A .函数2y ax bx c =++的图象的顶点为点B ,和x 轴的交点为点C ,D (点D 位于点C 的左侧).(1)求函数2y ax bx c =++的解析式;(2)从点A ,C ,D 三个点中任取两个点和点B 构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M 是线段BC 上的动点,点N 是ABC △三边上的动点,是否存在以AM 为斜边的Rt AMN △,使AMN △的面积为ABC △面积的13?若存在,求tan MAN ∠的值;若不存在,请说明理由.选手项目 服装普通话主题演讲技巧李明 85 70 80 85 张华90757580-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________谢谢观赏数学试卷第7页(共8页)数学试卷第8页(共8页)。