苏科版七年级数学_第一学期_上_期末复习卷含答案
苏科版七年级上册数学期末考试试卷带答案

苏科版七年级上册数学期末考试试题一、单选题1.2022的相反数是()A .2022B .2022-C .12022D .12022-2.下列写法正确的是()A .直线AB 、CD 交于点m B .直线a 、b 交于点mC .直线a 、b 交于点MD .直线ab 、cd 交于点M3.下列四个几何体中,是四棱锥的是()A .B .C .D .4.下列各式的计算结果正确的是()A .355x y xy +=B .22752y y -=C .835a a a -=D .222523ab a b ab -=5.课本习题中有一方程2x -=■x+3,其中一个数字被污渍盖住了,书后该方程的答案为x =﹣7,那么■处的数字应是()A .﹣5B .﹣1C .1D .56.一个角的余角与这个角的补角之和为130°,这个角的度数是()A .60°B .70°C .75°D .80°7.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是()A .30°B .45°C .50°D .60°8.如图所示的图形是由正方形和相同大小的圆按照一定规律摆放而成,按此规律,若要得到604个圆,则为第()个图形.A.200B.201C.202D.302二、填空题9.单项式﹣23xy3的次数是_____.10.将102600000000这个数据用科学记数法表示正确的是_____________.11.关于m、n的单项式﹣2manb与3m2a﹣1n2的和仍为单项式,则这两个单项式的和为_____.12.如图,直线AB、CD相交于点O,OE平分∠BOD,∠BOE=24°13′48″,则∠AOC=_____°.13.已知点C在直线AB上,线段AB=8cm,BC=2cm,点D是线段AC的中点,则线段BD的长为_____cm.14.用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要_____个小立方块.15.某次篮球联赛共有十支队伍参赛,部分积分表如下表:比赛场队名胜场负场积分次A1814432B1811729C189927根据表格提供的信息,可知胜一场积_____分.三、解答题16.计算:(1)(﹣3.2)+12.5+(﹣16.8)﹣(﹣7.5);(2)﹣53×[4﹣(﹣4)]﹣300÷5.17.先化简,再求值:2(3ab 2﹣a 2b+ab )﹣3(2ab 2﹣4a 2b+ab ),其中a =﹣1,b =2.18.解方程:(1)5(2)1x x --=;(2)21101211364x x x -++-=-.19.已知A =3x 2+2x ﹣1,B =﹣2x 2﹣3x+5.求:(1)A ﹣2B ;(2)若2A 与3B 互为相反数,求x 的值.20.如图,点A 在∠MON 的边OM 上,选择合适的画图工具按要求画图.(1)反向延长射线ON ,得到射线OP ,画∠MOP 的角平分线OQ ;(2)在射线OP 上取一点B ,使得OB =OA ;(3)在射线OQ 上作一点C ,使得CB+AC 最小,这样作图依据是;(4)过点O 画OD ⊥OQ ,垂足为点O ,用量角器量得∠NOD 的度数为°.21.下图是某几何体的表面展开图:(1)这个几何体的名称是;(2)若该几何体的主视图是正方形,请在网格中画出该几何体的左视图、俯视图;(3)若网格中每个小正方形的边长为1,则这个几何体的体积为.22.如图,点O在直线AB上,CO⊥AB,∠2﹣∠1=34°,OE是∠AOD的平分线,OF⊥OE.(1)求∠AOE的度数.(2)找出图中与∠BOF互补的角,并求出∠BOF补角的度数.23.某校需制作一块活动展板,请来师徒两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.(1)两个人合作需要多少天完成?(2)现由徒弟先做1天,师徒两人再合作完成这项工作,问:徒弟共做了几天?24.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数﹣2,点B表示的数4,下列各数,3,2,0所对应的点分别C1,C2,C3,其中是点A,B的“联盟点”的是;(2)点A表示数﹣10,点B表示的数30,P在为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“联盟点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P表示的数为.25.2016年元旦来临之前,为了迎新年,甲、乙两校联合准备文艺汇演,甲、乙两校共92人参加演出(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买演出服装(一人买一套),下面是某服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套及以上每套服装的价格60元50元40元如果两校分别单独购买服装,一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱;(2)甲、乙两校各有多少学生准备参加演出;(3)如果甲校有9名准备参加演出的同学抽调去参加科技创新比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱.参考答案1.B【分析】根据相反数的定义直接求解.,【详解】解:实数2022的相反数是2022故选:B.【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2.C【分析】根据直线和点的表示法即可判断.【详解】A.点只能用一个大写字母表示,不能用小写字母表示,故错误;B.点只能用一个大写字母表示,不能用小写字母表示,故错误;C.正确;D.直线能用两个大写字母表示或用一个小写字母表示,不能用两个小写字母表示,故错误;故选:C .【点睛】本题考查了直线和点的表示法,直线能用两个大写字母表示,用一个小写字母表示,点只能用一个大写字母表示.3.A【分析】根据立体几何的识别选出正确选项.【详解】A 选项是四棱锥;B 选项是圆柱;C 选项是四棱柱;D 选项是三棱柱.故选:A .【点睛】本题考查立体几何的识别,解题的关键是掌握四棱锥的定义.4.C【分析】根据同类项所含字母相同,相同字母也分别相同的项是同类项,合并同类项法则是只把相似相加减,字母与字母的指数不变对各选项进行一一判断即可.【详解】A.∵3x 与5y 不是同类项,不能合并,355x y xy +≠,故选项A 不正确;B.∵()2222757522y y y y -=-=≠,故选项B 不正确;C.∵()83835a a a a -=-=,故选项C 正确;D.∵25ab 与22a b 不是同类项,不能合并,222523ab a b ab -≠,故选项D 不正确.故选C .【点睛】本题考查同类项与合并同类项法则,掌握同类项概念与合并同类项法则是解题关键.5.C【分析】设■表示的数为a ,将x =﹣7代入方程2x -=■x+3求解即可.【详解】解:设■表示的数为a ,∵x =﹣7是方程2x -=■x+3的解,∴72a--=-7+3,∴a =1,即■处的数字应是1,故选:C .【点睛】本题考查解一元一次方程,熟练掌握该知识点是解题关键.6.B【分析】设这个角的度数为x .再用x 表示出这个角的余角和补角的度数,最后根据题意列出一元一次方程并求解即可.【详解】解:设这个角的度数为x ,则这个角的余角是90x ︒-,这个角的补角是180x ︒-.根据题意可得90°﹣x+180°﹣x =130°,解得:x =70°,所以这个角是70°故选:B .【点睛】本题考查余角的定义,补角的定义,一元一次方程的实际应用,综合应用这些知识点是解题关键.7.B【分析】由角平分线的定义可得,∠COM=12∠AOC ,∠NOC=12∠BOC ,再根据∠MON=∠MOC-∠NOC 解答即可.【详解】∵OM 平分AOC ∠,∴∠COM=12∠AOC ,∵ON 平分∠BOC ,∴∠NOC=12∠BOC ,∴∠MON=∠MOC-∠NOC=12(∠AOC-∠BOC)=12∠AOB=45°.故选B.【点睛】本题考查角的相关计算,解题的关键是通过角平分线的定义将所求的角转化已知角.8.B【分析】观察图形的变化找到规律,再代入求解即可.【详解】解:观察图形的变化可知.第1个图形中圆的个数为4;第2个图形中圆的个数为4+3=4+3×1=7;第3个图形中圆的个数为4+3+3=4+3×2=10;…则第n 个图形中圆的个数为4+3×(n ﹣1)=3n+1.当有604个圆时,得3n+1=604,解得:n =201.故选:B .9.4【详解】解:单项式33328xy xy -=-的次数是4.故答案为:4.10.111.02610⨯【详解】解:102600000000=111.02610⨯故答案为:111.02610⨯.11.2mn 【分析】根据单项式的定义、合并同类项法则解决此题.【详解】解:由题意得:212a ab -=⎧⎨=⎩12a b =⎧∴⎨=⎩∴这两个单项式的和为:22223mn mn mn -=+.故答案为:2mn .12.48.46【分析】根据角平分线的定义可得2BOD BOE ∠=∠,再根据对顶角相等解答.【详解】解:OE 平分BOD ∠,''''2224134848273648.46BOD BOE ∴∠=∠=⨯︒=︒=''︒,48.46AOC BOD ∴∠=∠=︒.故答案为:48.46.13.5或3【分析】分为两种情况,画出图形,结合图形求出AC和DC,即可求出答案.【详解】解:分为两种情况:①点C在线段AB上,如图所示:∵AB=8cm,BC=2cm,∴AC=AB﹣BC=6cm,∵点D是线段AC的中点,∴CD12=AC=3cm,∴BD=CD+BC=3+2=5cm;②点C在线段AB的延长线上,如图所示:∵AB=8cm,BC=2cm,∴AC=AB+BC=10cm,∵点D是线段AC的中点,∴AD12=AC=5cm,∴BD=CD﹣BC=5﹣2=3cm;即线段BD的长是5cm或3cm.故答案为:5或3.14.5【分析】根据主视图可判断组成该几何体的小正方体的最少个数的分布情况.【详解】解:根据题意,组成该几何体的小正方体的分布情况如下图所示,所以这样的几何体最少要5个小立方块.故答案为:5.15.2【分析】根据C队情况确定胜一场和负一场共积3分,然后设胜一场积x分,则负一场积(3﹣x)分,根据A队情况列出一元一次方程并求解即可.【详解】解:观察C队情况,可知胜一场和负一场的积分之和为27÷9=3分.设胜一场积x分,则负一场积(3﹣x)分.根据A队情况得14x+4(3﹣x)=32.解得x=2.∴胜一场积2分.故答案为:2.16.(1)0(2)-1060【解析】(1)解:原式=﹣3.2+12.5﹣16.8+7.5=(﹣3.2﹣16.8)+(12.5+7.5)=(﹣20)+20=0(2)解:原式=﹣125×(4+4)﹣300÷5=﹣125×8﹣300÷5=﹣1000﹣60=﹣106017.10a2b﹣ab;22【分析】先把整式去括号、合并同类项化简后,再代入计算即可.【详解】解:2(3ab2﹣a2b+ab)﹣3(2ab2﹣4a2b+ab)=6ab2﹣2a2b+2ab﹣6ab2+12a2b﹣3ab=10a2b﹣ab.当a=﹣1,b=2时,原式=10a2b﹣ab=10×(﹣1)2×2﹣(﹣1)×2=10×1×2﹣(﹣1)×2=20+2=22.18.(1)x=12;(2)x=16【分析】(1)先去括号,再合并解方程即可;(2)按照去分母、去括号、合并同类项、系数化为1的步骤解方程即可.【详解】(1)5x-2+x=1x=12;(2)4(2x-1)-2(10x+1)=3(2x+1)-128x-4-20x-2=6x+3-12-18x=-316x=.19.(1)7x2+8x﹣11(2)135 x=【分析】(1)根据整式的加减运算法则计算即可.(2)根据相反数的性质列出一元一次方程并求解即可.(1)解:∵A=3x2+2x﹣1,B=﹣2x2﹣3x+5,∴A﹣2B=(3x2+2x﹣1)﹣2(﹣2x2﹣3x+5)=3x2+2x﹣1+4x2+6x﹣10=7x2+8x﹣11.(2)解:∵2A与3B互为相反数,∴2A+3B=0.∵A=3x2+2x﹣1,B=﹣2x2﹣3x+5,∴2(3x2+2x﹣1)+3(﹣2x2﹣3x+5)=0.解得135x=.20.(1)见解析(2)见解析(3)两点之间线段最短(4)28或152【分析】(1)根据题意画出图形即可;(2)根据要求画出图形即可;(3)利用两点之间线段最短解决问题即可;(4)利用测量法解决问题.(1)解:如图,射线ON,射线OQ即为所求;(2)解:如图,线段OB即为所求;(3)解:如图,点C即为所求.作图依据:两点之间线段最短,故答案为:两点之间线段最短;(4)解:测量可知:∠DON=28°或152°,故答案为:28或152.21.(1)长方体;(2)作图见解析;(3)12.【分析】(1)展开图都是由3对长方形组成的,每对长方形的大小完全相同.(2)观察左视图,主视图以及俯视图即可判定.(3)根据长方体的体积公式求解.【详解】(1)由题目中的图可知为长方体.(2)∵该几何体的主视图是正方形,则主视图和俯视图如图:⨯⨯=.(3)体积=长⨯宽⨯高=32212【点睛】本题考查作图-三视图、解题的关键是学会观察、搞清楚三视图的定义,求长方体体积的计算公式.22.(1)59°(2)∠AOF;21°【分析】(1)根据垂线的定义确定∠COB=∠AOC=90°,进而得到∠1+∠2=90°,再根据∠2﹣∠1=34°用∠1表示∠2,进而可求出∠1的度数,根据角的和差关系求出∠AOD的度数,最后根据角平分线的定义即可求出∠AOE.(2)根据补角的定义即可得出图中与∠BOF互补的角.根据垂线的定义确定∠EOF=90°,再根据角的和差关系即可求出∠BOF补角的度数.(1)解:∵CO⊥AB,∴∠COB=∠AOC=90°.∴∠1+∠2=90°.∵∠2﹣∠1=34°,∴∠2=∠1+34°.∴∠1+∠1+34°=90°.∴∠1=28°.∴∠AOD =∠AOC+∠1=90°+28°=118°.∵OE 是∠AOD 的平分线,∴1592AOE AOD ∠=∠=︒.(2)解:点O 在直线AB 上,∴∠AOF+∠BOF=180°.∴图中与∠BOF 互补的角是∠AOF .∵OF ⊥OE ,∴∠EOF =90°.∴∠AOF =∠EOF ﹣∠AOE =21°.【点睛】本题考查垂线的定义,角的和差关系,角平分线的定义,补角的定义,熟练掌握这些知识点是解题关键.23.(1)两个人合作需要125天完成(2)3天【分析】(1)设两个人合作需要x 天完成,根据师傅完成的工作量+徒弟完成的工作量=总工作量,即可得出关于x 的一元一次方程,解之即可求出两个人合作完成这项工作所需时间;(2)设徒弟共做了y 天,则师傅做了(y ﹣1)天,根据师傅完成的工作量+徒弟完成的工作量=总工作量,即可得出关于y 的一元一次方程,解之即可求出徒弟共做的时间.(1)解:设两个人合作需要x 天完成,依题意得:46x x +=1,解得:x 125=.答:两个人合作需要125天完成.(2)设徒弟共做了y 天,则师傅做了(y ﹣1)天,依题意得:146y y -+=1,解得:y =3.答:徒弟共做了3天.【点睛】本题考查列一元一次方程解应用题,掌握列一元一次方程解应用题的方法与步骤是解题关键.24.(1)C2或C3(2)①103或503或﹣50;②70或50或110【分析】(1)根据“联盟点”的定义,分别验证C1,C2,C3三点即可.(2)①设点P在数轴上所表示的数为x.根据点P所处的位置进行分类讨论,根据“联盟点”的定义列出方程求解即可.②分三种情况进行解答,即点A是点P,点B的“联盟点”;点B是点A、点P的“联盟点”;点P是点A、点B的“联盟点”,然后根据“联盟点”的定义列出方程求解即可.(1)解:对于表示的数是3的C1来说.∵点A所表示的数为﹣2,点B所表示的数是4,∴AC1=5,BC1=1.∵AC1和BC1不满足2倍的数量关系,∴C1不是点A、点B的“联盟点”.对于表示的数是2的C2来说.∵点A所表示的数为﹣2,点B所表示的数是4,∴AC2=4,BC2=2.∵422=⨯,即AC2=2BC2,∴C2是点A、点B的“联盟点”.对于表示的数是0的C3来说.∵点A所表示的数为﹣2,点B所表示的数是4,∴AC3=2,BC3=4.∵422=⨯,即BC3=2AC3,∴C3是点A、点B的“联盟点”.故答案为:C2或C3.(2)解:①设点P在数轴上所表示的数为x.当点P 在线段AB 上,且PA =2PB 时.根据题意得()()10230x x --=-.解得503x =.当点P 在线段AB 上,且2PA =PB 时.根据题意得()21030x x --=-⎡⎤⎣⎦.解得103x =.当点P 在点A 的左侧时,且2PA =PB 时.根据题意得2(﹣10﹣x )=30﹣x .解得x =﹣50.综上所述,点P 表示的数为103或503或﹣50.②当点A 是点P ,点B 的“联盟点”时,有PA =2AB .根据题意得()()1023010x --=⨯--⎡⎤⎣⎦.解得x =70.当点B 是点A 、点P 的“联盟点”时,有AB =2PB 或2AB =PB .根据题意得()()3010230x --=-或()2301030x ⨯--=-⎡⎤⎣⎦.解得x =50或x =110.当点P 是点A 、点B 的“联盟点”时,有PA =2PB .根据题意得()()10230x x --=⨯-.解得x =70.所以此时点P 表示的数为70或50或110.故答案为:70或50或110.【点睛】本题考查数轴上两点间的距离,一元一次方程的实际应用,正确理解题意和应用分类讨论思想是解题关键.25.(1)1320元;(2)乙校40人,甲校52人;(3)两种,买91套最省钱.【分析】(1)根据表格可得两校合买40元/套,因此用5000减去92乘以40元每套即可;(2)首先讨论,如果两小都超过45人,花费应为50×92=4600元,4600<5000,因此甲校人数多余45,乙校人数少于46,再设乙校x 人,甲校(92﹣x )人,由题意得等量关系:甲校单独购买服装的花费+乙校单独购买服装的花费=5000元,根据等量关系列出方程,再解即可;(3)讨论买83套的花费和买91套的花费,然后进行比较即可.【详解】解:(1)5000﹣92×40=1320(元).答:比各自购买服装共可以节省1320元;(2)∵50×92=4600<5000,∴甲校人数多余45,乙校人数少于46,设乙校x人,甲校(92﹣x)人,由题意得:60x+50(92﹣x)=5000,解得:x=40,则92﹣40=52(人),答:乙校40人,甲校52人;(3)①如果买92﹣9=83套,则花费为:83×50=4150(元),②如果买91套,则花费:91×40=3640(元),∵3640<4200,∴买91套.答:两种购买方案,一种是购买83套,一种是购买91套,应买91套最省钱.【点睛】本题考查一元一次方程的应用,掌握题目中的等量关系是本题的解题关键.。
苏科版七年级上册数学期末考试试题及答案

苏科版七年级上册数学期末考试试卷一、单选题1.3-的倒数是()A.3B.13C.13-D.3-2.如果规定符号“⊗”的意义为a ba ba b-⊗=+,则()23⊗-的值是()A.5B.-5C.1D.1 5 -3.如果关于x的方程230x m-+=的解是=1x-,则m的值是()A.-1B.1C.5D.-54.如图是一个正方体的表面展开图,则原正方体与“祖”所在面相对的面上的汉字是()A.我B.和C.国D.的5.若一个多项式加上2x2﹣y2等于x2+y2,则这个多项式是()A.x2﹣2y2B.x2C.﹣x2+2y2D.﹣x26.如图,下列几何体中,主视图和俯视图相同的是()A.B.C.D.7.有下列说法:①两条直线相交所成的四个角中有一个角是直角,则这两条直线互相垂直;①如果同一平面内的两条线段不相交,那么这两条线段所在直线互相平行;①如果一个角的两边与另一个角的两边互相垂直,则这两个角互补;①如果一个角的两边与另一个角的两边互相平行,则这两个角相等,其中正确的有()A.1个B.2个C.3个D.4个8.如图,点D为线段AB的中点,点C为DB的中点,若16AB=,13DE AE=,则线段EC的长()A .7B .203C .6D .59.如图,①AOC=20°, ①AOB=①DOC=90° ,则①BOD 等于( )A .20°B .40°C .70°D .110°10.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m+n )C .4nD .4m 二、填空题11.将14亿用科学记数法表示为__________.12.若单项式132m x y -与单项式223n x y --是同类项,则m n +=__________. 13.若α∠的补角为7633'︒,则α∠=__________.14.某项工作甲单独做8天完成,乙单独做12天完成,若甲先做3天,然后甲、乙合作完成此项工作,则甲一共做了__________天,15.如图所示,点C 是线段AB 上的点,点M 、N 分别是AC 、BC 的中点,若3cm CB =,4.5cm MN =,则线段MB 的长度是__________.16.将一张长方形纸片按如图所示的方式折叠,EF 、FG 为折痕.若30EFA '∠=︒,则GFB ∠=__________.17.某正方体的平面展开图如图所示,已知该正方体相对两个面上的数互为相反数,则a b c ++=__________.18.如图,C 为线段AB 上一点,45AB =,AC 比BC 的13多5,P ,Q 两点分别从A ,B 两点同时出发,分别以3个单位/秒和1.5个单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①2BC AC =;①4AB NQ =;①当12PB BQ =时,12t =.其中正确的结论是________.三、解答题19.计算:()()322122104-÷--⨯- 20.解方程:(1)7332x x -=-;(2)132123x x +--=.21.先化简,再求值:22223(2)(54)a b ab a b ab ---,其中21a b ==-,22.利用网格画图:(1)过点C画AB的平行线CD;(2)过点C画AB的垂线,垂足为E;(3)连接CA、CB,在线段CA、CB、CE中,线段___________最短.23.在创建全国文明城市,做文明市民活动中,某企业献爱心,把一批图书分给某班学生阅读,如果每人分三本,则剩余20本,如果每人分4本,则还缺25本,这个班有多少学生?共有多少本图书?(列方程解答)24.用若干个棱长为1cm的小正方体搭成如图所示的几何体.(1)这个几何体的体积为___________3cm.(2)请在方格纸中用实线画出该几何体的主视图,左视图和俯视图.(3)在上面的实物图中,再添加一个小正方体,使得它的左视图和俯视图不变,那么它的主视图共有___________种不同结果.分成两部分.25.如图,直线AB,CD相交于点O,射线OE把AOC(1)写出图中AOC ∠的对顶角___________,AOE ∠的补角是___________.(2)已知80AOC ∠=︒,且:1:3COE AOE ∠∠=,求DOE ∠的度数.26.已知3x =-是关于x 的方程()3232k x x k ++=-的解,(1)求k 的值;(2)在(1)的条件下,已知线段6cm AB =,点C 是直线AB 上一点,且BC kAC =,求线段AC 的长.27.平价商场经销的甲、乙两种商品,甲种商品每件售价98元,利润率为40%;乙种商品每件进价80元,售价128元.(1)甲种商品每件进价为 元,每件乙种商品利润率为 .(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为3800元,求购进甲、乙两种商品各多少件?(3)在“元且“期间,该商场只对乙种商品进行如下的优惠促销活动:按下表优惠条件,若小华一次性购买乙种商品实际付款576元,求小华在该商场购买乙种商品多少件?28.如图,直线,,AB CD EF 相交于点O ,OG CD ⊥.(1)已知3812'AOC ∠=︒,求BOG ∠的度数;(2)如果OC 是AOE ∠的平分线,那么OG 是EOB ∠的平分线吗?说明理由.参考答案1.C【分析】由互为倒数的两数之积为1,即可求解.【详解】解:①1313⎛⎫-⨯-= ⎪⎝⎭, ①3-的倒数是13-. 故选C2.B【分析】根据新定义代入,即可求解.【详解】解:根据题意得:()()()2323523---==-+-⊗. 故选:B【点睛】本题主要考查了有理数的混合运算,理解新定义是解题的关键.3.B【分析】根据关于x 的方程230x m -+=的解是=1x -,可得关于m 的方程,解出即可求解.【详解】解:①关于x 的方程230x m -+=的解是=1x -,①()2130m ⨯--+=,解得:1m =.故选:B【点睛】本题主要考查了方程的解,解一元一次方程,熟练掌握使方程左右两边同时成立的未知数是方程的解是解题的关键.4.B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,原正方体与“祖”所在面相对的面上的汉字是“和”.故选:B .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.C【分析】用x 2+y 2减去2x 2﹣y 2即可.【详解】解:该多项式为(x 2+y 2)﹣(2x 2﹣y 2)=x 2+y 2﹣2x 2+y 2=﹣x 2+2y 2,故选:C .【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.6.C【分析】分别分析四种几何体的主视图和左视图,找出主视图和左视图相同的几何体即可.【详解】A .主视图是长方形,俯视图是圆形,不符合题意;B .主视图是两个拼在一起的长方形,俯视图是三角形,不合题意;C .主视图和俯视图都是是正方形,符合题意;D .主视图是两个拼在一起的三角形,俯视图是三个拼在一起三角形,不合题意; 故选:C .【点睛】本题考查了简单几何体的三视图,解决问题的关键是掌握主视图是从物体的正面看到的视图,左视图是从物体的左面看得到的视图.7.A【分析】根据垂直的定义、平行线的定义和性质、角与角之间的关系,即可得出答案.【详解】解:①是垂直的定义,所以①正确;①如果同一平面内的两条线段不相交,那么这两条线段所在直线互相平行或相交,故本选项错误;①如果一个角的两边与另一个角的两边互相垂直,那么这两个角的关系是相等或互补,故本选项错误;①如果一个角的两边与另一个角的两边互相平行,则这两个角相等或互补,故本选项错误.故选:A.【点睛】掌握垂直的定义、平行线的定义和性质、角与角之间的关系,熟知相关定义是解题的关键.8.C【分析】应用一条线上的线段和差关系进行计算即可得出答案.【详解】解:①点D为线段AB的中点,①AD=BD=12AB=12×16=8,①AD=AE+DE,DE=13 AE,①AE+13AE=8,①AE=6,DE=2,①点C为DB的中点,①CD=12BD=12×8=4,①CE=DE+CD=2+4=6,故选:C.【点睛】本题主要考查了一条线上各个线段关系,看清图中线段关系,熟练掌握两点间的距离计算方法进行求解是解决本题的关键.9.A【分析】由等式的基本性质即可求解.【详解】①①AOB=①COD=90°,①①AOB -①BOC=①COD -①BOC ,即①AOC=①BOD ,①①AOC=20°,①①BOD=20°故选:A10.D【详解】解:设小长方形的宽为a ,长为b ,则有3b n a =-,阴影部分的周长:()()2232m b m a n -+-+22262m b m a n =-+-+()42362m n a a n =---+42662m n a a n =-+-+4m =.故选D .11.1.4×109【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:14亿=1400000000=1.4×109,故答案为:1.4×109.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.-2【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出m 、n 的值,再代入代数式计算即可.【详解】解;根据题意得,1-m =2,2−n =3,解得:m=-1,n =−1,所以m +n =-1−1=-2,故答案为:-2.13.10327'︒【详解】解:①α∠的补角为7633'︒,①180763310327α''∠=︒-︒=︒.故答案为:10327'︒.【点睛】本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键.14.6【分析】设甲一共做了x 天,则乙做了(x -3)天,根据总工作量=甲完成的工作量+乙完成的工作量即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设甲一共做了x 天,则乙做了(x -3)天, 根据题意得:31812x x -+= 解得:6x =,故答案为:6.【点睛】本题考查了一元一次方程的应用,根据数量关系(工作总量=工作效率×工作时间)列出关于x 的一元一次方程是解题的关键.15.6cm 【分析】由中点的性质可知1=1.5cm 2BN CN CB ==,再根据图形进行线段的和与差即可求出MB 的长度.【详解】①点N 是BC 的中点, ①1=1.5cm 2BN CN CB ==, ① 4.5 1.53cm MC MN CN =-=-=,①336cm MB MC CB =+=+=.故答案为:6cm .16.60°【分析】根据折叠的性质可得30,AFE A FE BFG B FG ''∠=∠=︒∠=∠,从而得到60AFA '∠=︒,进而得到120BFB '∠=︒,即可求解.【详解】解:根据题意得:30,AFE A FE BFG B FG ''∠=∠=︒∠=∠,①60AFA '∠=︒,①180120BFB AFA ''∠=︒-∠=︒,①1602GFB BFB '∠=∠=︒. 故答案为:60°【点睛】本题主要考查了图形的折叠,熟练掌握图形折叠前后对应角相等,对应边相等是解题的关键.17.-4【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的两个数的和是0求出a 、b ,c ,然后相加即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“a”与“-2”是相对面,“1”与“1+b”是相对面,“3”与“c+1”是相对面,①正方体相对两个面上的数之和为零,①a=2,b=-2,c=-4①a+b+c=2+(-2)+(-4)=-4.故答案为:-4.18.①①【分析】根据AC 比BC 的13多5,可得153AC BC =+,从而得到30BC =,进而得到AC=15,可得到BC=2AC ,故①正确;根据题意得:AP=3t ,BQ=1.5t ,可得BP=45-3t ,再由M 为BP 的中点,可得到()14532BM t =-,进而得到452MQ =,再由N 为QM 的中点,可得到AB=4NQ ,故①正确;然后分两种情况:当点P 没有到达点B 之前,当点P 没有到达点B 之前,可得当12PB BQ =时,12t =或20,故①错误,即可求解. 【详解】解:①AC 比BC 的13多5, ①153AC BC =+, ①45AB =, ①15453AC BC BC BC +=++=, 解得:30BC =,①AC=15,①BC=2AC ,故①正确;根据题意得:AP=3t ,BQ=1.5t ,①BP=45-3t ,①M 为BP 的中点, ①()1145322BM BP t ==-, ①()145453 1.522MQ BM BQ t t =+=-+=,①N 为QM 的中点, ①14524NQ MQ ==,①AB=4NQ ,故①正确;当015t ≤≤时,当点P 在线段AB 上, ①12PB BQ =, ①1453 1.52t t -=⨯,解得:12t =;当1530t ≤≤时,点P 在点B 右侧,位于点Q 左侧,345PB t =-, ①12PB BQ =, ①1345 1.52t t -=⨯,解得:20t =;当1530t ≤≤时,点P 位于点Q 右侧,12PB BQ =不成立, 综上所述,当12PB BQ =时,12t =或20,故①错误,①正确的结论是①①.故答案为:①①19.23【分析】先计算乘方、绝对值,然后计算乘除,最后计算加减,即可得到答案.【详解】解:()()322122104-÷--⨯-()()1841004=-÷-⨯-23=20.(1)4x = (2)13x = 【分析】(1)根据解一元一次方程的步骤“移项,合并同类项、系数化为1”,计算即可;(2)根据解一元一次方程的步骤“去分母、去括号、移项,合并同类项、系数化为1”,计算即可.(1)7332x x -=-,移项,合并同类项得:4x -=-,系数化为“1”,得:4x =;(2)132123x x +--=, 去分母,得:3(1)62(32)x x +-=-,去括号,得:33664x x +-=-,移项,合并同类项得:31x -=-,系数化为“1”,得:13x =. 21.22a b ab +;-2【分析】先根据整式的乘法去括号,再合并同类项,进行化简,再代入已知数求值即可.【详解】解:原式22226354a b ab a b ab =--+22a b ab =+当a=2,b=-1时,原式42=-+2=-22.(1)见解析(2)见解析(3)CE【分析】(1)根据题意得:AB 为长为6,宽为2的长方形的对角线,所以取位于点C 左上方,以点C 为顶点,长为6,宽为2的长方形的对角线的另一个端点D ,然后作直线CD ,(2)根据题意得:AB为长为6,宽为2的长方形的对角线,所以取位于点C左下方,以点C为顶点,长为6,宽为2的长方形的对角线的另一个端点F,然后作直线CF交AB于点F,即可求解;(3)根据点到直线,垂线段最短,即可求解.(1)解:根据题意得:AB为长为6,宽为2的长方形的对角线,所以取位于点C左上方,以点C为顶点,长为6,宽为2的长方形的对角线的另一个端点D,然后作直线CD,则直线CD即为所求,如下图;(2)解:根据题意得:AB为长为6,宽为2的长方形的对角线,所以取位于点C左下方,以点C为顶点,长为6,宽为2的长方形的对角线的另一个端点F,然后作直线CF交AB于点F,则直线CE即为所求,如下图:(3)解:根据点到直线,垂线段最短,得在线段CA、CB、CE中,线段CE最短.故答案为:CE【点睛】本题主要考查了作平行线,垂线,垂线段最短,熟练掌握垂线段最短,灵活运用所学知识解决问题是解题的关键.23.这个班有45个学生,共有155本图书.【分析】根据题意找出等量关系,设学生人数为x,列方程,解方程得到人数,再依题意求出图书总数即可.【详解】解:设这个班有x个学生,根据题意得:3x+20=4x﹣25,解得:x=45,3×45+20=155(本),答:这个班有45个学生,共有155本图书.【点睛】本题主要考查了列方程和解方程,根据题意正确列出方程是解题的关键. 24.(1)7(2)画图见解析.(3)2【分析】(1)根据该组合图形由7个棱长为1cm的小正方体搭成,即可知这个几何体的体积为37cm;(2)根据主视图是从前面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,画出图形即可;(3)根据题意可知,要想添加一个小正方体,使得它的左视图和俯视图不变,只能在第二列上面或第三列上面添加一个小正方体,由此即可知其主视图有两种情况.(1)根据图形可知,该组合体由7个棱长为1cm的小正方体搭成,①一个小正方体的体积为3⨯⨯=,1111cm①这个几何体的体积为3717cm⨯=.故答案为:7;(2)画图如下:;(3)如图,要想添加一个小正方体,使得它的左视图和俯视图不变,那么只能在A 或B 处添加一个小正方体.当在A 处添加小正方体时,其主视图如下,当在B 处添加小正方体时,其主视图如下,综上可知,它的主视图共有2种不同结果.故答案为:2.【点睛】本题主要考查三视图的画法,解决问题的关键是掌握主视图是从物体的正面看到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图. 25.(1)BOD ∠,∠BOE(2)160°【分析】(1)根据对顶角和补角的定义,即可求解;(2)根据:1:3COE AOE ∠∠=,可得4AOC COE ∠=∠,从而得到1204COE AOC ∠=∠=︒,即可求解.(1)解:根据题意得:AOC ∠的对顶角为BOD ∠;AOE ∠的补角是∠BOE ,故答案为:BOD ∠,∠BOE ;(2)解:①:1:3COE AOE ∠∠=,COE AOE AOC ∠+∠=∠,①4AOC COE ∠=∠,①80AOC ∠=︒, ①1204COE AOC ∠=∠=︒, ①180COE DOE ∠+∠=°,①180160DOE COE ∠=︒-∠=︒.【点睛】本题主要考查了对顶角和补角的定义,角的和与差,邻补角的性质,熟练掌握对顶角和补角的定义,邻补角的性质是解题的关键.26.(1)2k =;(2)线段AC 的长为2cm 或6cm .【分析】(1)将3x =-代入方程()3232k x x k ++=-,即可求出k 的值.(2)将(1)所得k 的值代入,即可得到BC 、AC 和AB 的关系,需要注意A 、B 、C 三点之间的位置关系,此题得解.(1)解:将3x =-代入方程()3232k x x k ++=-得:()()()332332k k +⨯-+=⨯--,解得:2k =.(2)解:由(1)可知2k =,①2BC kAC AC ==,情况一、当C 在AB 中间时,①6cm AB =,AB AC BC =+,①3AB AC =, ①6233AB AC ===cm . 情况二、当C 在AB 的延长线上时,①AB BC AC =-,①26AB AC AC AC =-==cm ,综上所述,线段AC 的长为2cm 或6cm .【点睛】本题主要考察了一元一次方程的解、线段之间的等量关系,需要注意第二问A 、B 、C 三点之间的位置关系.27.(1)70,60%; (2)该商场购进甲种商品20件,乙种商品30件;(3)小华在该商场购买乙种商品5或6件.【分析】(1)根据商品利润率= -商品出售价商品成本价商品成本价×100%,可求每件乙种商品利润率,甲种商品每件进价;(2)首先设出购进甲商品的件数,然后根据“同时购进甲、乙两种商品共50件”表示出购进乙商品的件数;然后根据“恰好用去3800元”列方程求出未知数的值,即可得解;(3)分类讨论:小华一次性购买乙种商品超过480元,但不超过680元;超过680元,根据优惠条件分别计算.【详解】(1)设甲种商品的进价为a 元,则有:98﹣a =40%a .解得a =70.即甲种商品每件进价为 70元,1288080-×100%=60%, 即每件乙种商品利润率为 60%.故答案是:70;60%;(2)设该商场购进甲种商品x 件,根据题意可得:70x+80(50﹣x )=3800,解得:x =20;乙种商品:50﹣20=30(件).答:该商场购进甲种商品20件,乙种商品30件.(3)设小华在该商场购买乙种商品b 件,根据题意,得①当过480元,但不超过680元时,480+(128b ﹣480)×0.6=576解得b =5.①当超过680元时,128b×0.75=576解得b=6.答:小华在该商场购买乙种商品5或6件.【点睛】考查了一元一次方程的应用,在解析的过程中应该知道商品数为整数,有时有几个答案,应该注意,不要遗漏.的平分线,理由详见解析.28.(1) 51°48′,(2). OG是EOB【分析】(1)根据平角,直角的性质,解出①BOG的度数即可.(2)根据角平分线的性质算出答案即可.【详解】(1)由题意得:①AOC=38°12′,①COG=90°,①①BOG=①AOB-①AOC-①COG=180°-38°12′-90°=51°48′.(2) OG是①EOB的平分线,理由如下:由题意得:①BOG=90°-①AOC,①EOG=90°-①COE,①OC是①AOE的平分线,①①AOC=①COE①①BOG=90°-①AOC=90°-①COE=①EOG①OG是①EOB的平分线.。
苏科版七年级上册数学期末考试试卷含答案

苏科版七年级上册数学期末考试试题一、单选题1.2022-的相反数是()A .12022-B .12022C .2022-D .20222.用科学记数法表示42000为()A .34210⨯B .44.210⨯C .54.210⨯D .54200010⨯3.下列图形绕图中的虚线旋转一周,能形成圆锥的是()A .B .C .D .4.下列运算中,正确的是()A .a+2a =3a 2B .2a ﹣a =1C .3ab 2﹣2b 2a =ab 2D .2a+b =2ab5.若关于x 的一元一次方程2x ﹣k+1=0的解是x =2,那么k 的值是()A .3B .4C .5D .66.若3xm +5y 2与23x 8yn +4的差是一个单项式,则代数式nm 的值为()A .﹣8B .6C .﹣6D .87.古代数学:现有一伙人共同买一个物品,每人出8钱,还余3钱;每人出7钱,还差4钱,问有人数、物价各是多少?设物价为x 钱,根据题意可列出方程()A .8374x x +=-B .3487x x +-=C .8374x x -=+D .3487x x -+=8.有下列说法:①射线AB 与射线BA 表示同一条直线;②若AB =BC ,则点B 是线段AC 的中点;③过一点有且只有一条直线与已知直线平行;④两点之间,线段最短;⑤已知三条射线OA ,OB ,OC ,若12AOC AOB ∠=∠,则射线OC 是∠AOB 的平分线;⑥在同一平面内,两条不重合的直线的位置关系只有两种:相交或平行.其中正确的有()A .1个B .2个C .3个D .4个二、填空题9.比0小4的数是_____.10.单项式﹣2πa2bc的次数为_____.11.已知∠α=32°24′,则∠α的补角是_____.12.如图,想在河堤两岸搭建一座桥,搭建方式最短的是线段_____.13.已知a﹣2b=1,那么代数式5﹣2a+4b的值是_____.14.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之积为24,则x﹣y=_____.15.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°,∠2=_____.16.某城市下水管道工程由甲、乙两个工程队单独铺设分别需要10天和15天完成,如果两队从两端同时施工2天,然后由乙单独完成,还需_____天完成.17.如图所示的运算程序中,若开始输入的x值为96,我们发现第一次输出的结果为48,第二次输出的结果为24,…,则第2022次输出的结果为_____.18.如图,在长方形ABCD中,AB=6cm,BC=8cm,点E是AB上的一点,且AE=2BE.点P从点C出发,以2cm/s的速度沿点C﹣D﹣A﹣E匀速运动,最终到达点E.设点P运动时间为ts,若三角形PCE的面积为18cm2,则t的值为_____.三、解答题19.计算:(1)132()12243-+-⨯;(2)2022211(3)|2|2-+-÷--.20.解方程:(1)2﹣3x =5﹣2x ;(2)121123x x +-=-.21.先化简,再求值:3(2a 2b ﹣ab 2)﹣3(ab 2﹣2a 2b ),其中21||(3)02a b -++=.22.在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD 的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)过点C 画AD 的平行线CE ;(2)过点B 画CD 的垂线,垂足为F .23.如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请在网格中画出几何体的主视图、左视图、俯视图;(2)图中共有个小正方体.(3)已知每个小正方体的棱长为1cm,则该几何体的表面积为cm2.24.如图,已知点D是线段AB上一点,点C是线段AB的中点,若AB=8cm,BD=3cm.(1)求线段CD的长;(2)若点E是线段AB上一点,且13BE BD,求线段AE的长.25.如图,直线AB、CD相交于点O,OE平分∠BOD,OE⊥OF.(1)若∠DOE=32°,求∠BOF的度数;(2)若∠COE:∠COF=8:3,求∠AOF的度数.26.某景区旅游团队的门票价格如下:购票人数不超过50人超过50人,但不超过100人超过100人门票价格100元/人80元/人60元/人(1)甲旅游团共有40人,则甲旅游团共付门票费元;(2)乙旅游团共付门票费7200元,则乙旅游团共有人;(3)丙,丁两个旅游团共有100人,其中丙旅游团人数不超过50人,两个旅游团先后共付门票费8600元,求丙、丁两个旅游团的人数.27.如图1:已知OB⊥OD,OA⊥OC,∠COD=40°,若射线OA绕O点以每秒30°的速度顺时针旋转,射线OC绕O点每秒10°的速度逆时针旋转,两条射线同时旋转,当一条射线与射线OD重合时,停止运动.(1)开始旋转前,∠AOB=.(2)若射线OB也绕O点以每秒20°的速度顺时针旋转,三条射线同时旋转,当一条射线与射线OD重合时,停止运动.当三条射线中其中一条射线是另外两条射线夹角的角平分线时,求旋转的时间.(3)【实际应用】从今天上午6时整开始到上午7时整结束的运动过程中,经过多少分钟时针与分针所形成的钝角等于120°(直接写出所有可能结果).参考答案1.D2.B3.B4.C5.C6.A7.B8.B9.-410.411.147°36′12.PN【分析】根据从直线外一点到这条直线上各点所连的线段中,垂线段最短可知搭建方式最短的是PN,理由垂线段最短.【详解】解:因为PN⊥MQ,垂足为N,则PN为垂线段,根据垂线段最短,可得线段PN最短,故答案为:PN.【点睛】本题考查了垂线段最短,利用垂线段的性质是解题关键.13.3【分析】已知a-2b的值,将原式变形后代入计算即可求出值.【详解】解:∵a-2b=1,∴5-2a+4b=5-2(a-2b)=5-2×1=3,故答案为:3.【点睛】本题考查了代数式求值,是基础题,整体思想的利用是解题的关键.14.6【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数之积为24,列出方程求出x、y的值,从而得到x-y的值.【详解】解:将题图中平面展开图按虚线折叠成正方体后,可知标有数字“2”的面和标有x的面是相对面,标有数字“4”的面和标有y的面是相对面,∵相对面上两个数之积为24,∴x=12,y=6,∴x-y=6.故答案为:6.【点睛】本题考查了正方体对面上的字,找出x、y的对面是解题的关键.15.57°##57度【分析】先利用∠1求出∠EAC的度数,再利用90°减去∠EAC即可解答.【详解】解:∵∠BAC=60°,∠1=27°,∴∠EAC=∠BAC-∠1=60°-27°=33°,∵∠EAD=90°,∴∠2=∠EAD-∠EAC=90°-33°=57°,故答案为:57°.【点睛】本题考查角的和差,题目较容易,根据已知求出∠EAC 便可求出答案.16.10【分析】由乙队单独施工,设还需x 天完成,题中的等量关系是:甲工程队2天完成的工作量+乙工程队(x+2)天完成的工作量=1,依此列出方程,解方程即可.【详解】解:由乙队单独施工,设还需x 天完成,根据题意得2211015x ++=,解得x=10.答:由乙队单独施工,还需10天完成,故答案为:10.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.17.6【分析】把x 的值代入程序中计算,以此类推得到一般性规律,即可得到第2022次输出结果.【详解】解:第一次输出结果为96×12=48,第二次输出结果为48×12=24,第三次输出结果为24×12=12,第四次输出结果为12×12=6,第五次输出结果为6×12=3,第六次输出结果为3+3=6,第七次输出结果为6×12=3,…,依此类推,得出规律:第四次后,偶数次时,输出结果为6;奇数次时,输出结果为3;第2022次输出结果为6,故答案为:6.【点睛】此题考查了代数式求值,数字型规律,弄清题中程序框图表示的意义是解本题的关键.18.94或6【分析】分下列三种情况讨论,如图1,当点P在CD上,即0<t≤3时,根据三角形的面积公式建立方程求出其解即可;如图2,当点P在AD上,即3<t≤7时,由S△PCE=S四边形AECD-S△PCD-S△PAE建立方程求出其解即可;如图3,当点P在AE上,即7<t≤9时,由S△PCE=12PE•BC=18建立方程求出其解即可.【详解】解:如图1,当点P在CD上,即0<t≤3时,∵四边形ABCD是长方形,∴AB=CD=6cm,AD=BC=8cm.∵CP=2t(cm),∴S△PCE=12×2t×8=18,∴t=9 4;如图2,当点P在AD上,即3<t≤7时,∵AE=2BE,∴AE=23AB=4.∵DP=2t-6,AP=8-(2t-6)=14-2t.∴S△PCE=12×(4+6)×8-12(2t-6)×6-12(14-2t)×4=18,解得:t=6;当点P在AE上,即7<t≤9时,PE=18-2t .∴S △CPE=12(18-2t )×8=18,解得:t=274<7(舍去).综上所述,当t=94或6时△APE 的面积会等于18.故答案为:94或6.【点睛】本题考查了一元一次方程的运用,三角形面积公式的运用,梯形面积公式的运用,动点问题,分类讨论等;解答时要运用分类讨论思想求解,避免漏解.19.(1)-5(2)15【分析】(1)利用乘法分配律展开计算即可;(2)先算乘方,和绝对值,再算除法,最后算加减.(1)解:13212243⎛⎫-+-⨯ ⎪⎝⎭=132121212243-⨯+⨯-⨯=698-+-=5-(2)2022211(3)22-+-÷--=2192-+⨯-=1182-+-=15【点睛】本题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(1)x=-3(2)x=11【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.(1)解:移项合并得:-x=3,解得:x=-3;(2)去分母得:()()312216x x +=--去括号得:33426x x +=--,移项合并得:11x -=-,解得:11x =.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.22126a b ab -,36-【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=22226336a b ab ab a b--+=22126a b ab -∵21||(3)02a b -++=,∴a=12,b=-3,则原式=()()22111236322⎛⎫⨯⨯--⨯⨯- ⎪⎝⎭=36-.【点睛】此题考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.(1)见解析;(2)见解析【分析】(1)根据要求作出图形即可.(2)根据要求作出图形即可.【详解】解:(1)根据题意得:AD是长为4,宽为3的长方形的对角线,所以在点C右上方长为4,宽为3的长方形的对角线所在的直线与AD平行,如图,直线CE即为所求作.(2)根据题意得:CD是长为6,宽为3的长方形的对角线,所以在点B右下方长为6,宽为3的长方形的对角线所在的直线与CD垂直,如图,直线BF即为所求作.【点睛】本题主要考查了画平行线和垂线,熟练掌握平行线和垂线的画法是解题的关键.23.(1)见解析(2)6(3)26【分析】(1)根据三视图的画法画出相应的图形即可;(2)观察几何体可得结果;(3)根据三视图的面积求出该几何体的表面积.(1)解:如图所示:(2)由图可知:图中共有6个小正方体;(3)(4+4+5)×2=26(cm 2)答:该几何体的表面积为26cm 2.【点睛】本题考查解答几何体的三视图,画三视图时应注意“长对正,宽相等,高平齐”.24.(1)1cm(2)9cm 或7cm【分析】(1)根据中点定义,求得BC 的长,再由线段的和差计算结果;(2)分两种情况:①当点E 在点B 的右侧时,②当点E 在点B 的左侧时,分别根据线段的和差计算即可.(1)解:∵点C 是线段AB 的中点,AB=8cm ,∴BC=12AB=4cm ,∴CD=BC-BD=4-3=1cm .(2)①当点E 在点B 的右侧时,如图:∵BD=3cm ,BE=13BD ,∴BE=1cm ,∴AE=AB+BE=8+1=9cm ;②当点E 在点B 的左侧时,如图:∵BD=3cm ,BE=BE=13BD ,∴BE=1cm ,∴AE=AB-BE=8-1=7cm ;综上,AE 的长为9cm 或7cm .【点睛】此题考查的是两点间的距离,掌握线段中点的定义是解决此题关键.25.(1)58°(2)126°【分析】(1)根据角平分线的定义求出∠BOE ,再根据垂线的定义求出∠EOF ,从而可得∠BOF ;(2)设∠DOE=x ,分别表示出∠COE 和∠COF ,根据∠COE :∠COF =8:3,列出方程,求出x 值,再根据∠AOF=∠COF+∠AOC=∠COF+∠BOD 求出结果.(1)解:∵OE 平分∠BOD ,∴∠DOE=∠BOE=32°,∵OE ⊥OF ,∴∠EOF=90°,∴∠BOF=90°-∠BOE=58°;(2)设∠DOE=x ,∵OE 平分∠BOD ,∴∠DOE=∠BOE=x ,∵OE ⊥OF ,∴∠COF=90°-x ,∴∠COE=90°-x+90°=180°-x ,∵∠COE :∠COF =8:3,∴()()318090:8:x x -=︒-︒,解得:36x =,∴∠AOF=∠COF+∠AOC=∠COF+∠BOD=90°-x+2x=126°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,比较简单,准确识图并熟记性质与概念是解题的关键.26.(1)4000(2)90或120(3)丙旅游团的人数为30人、丁旅游团的人数70人【分析】(1)由费用=单价×人数,可求解;(2)分两种情况讨论,由人数=费用÷单价,可求解;(3)设丙旅游团人数为x 人(0<x <50),由“两个旅游团先后共付门票费8600元”列出方程可求解.(1)解:甲旅游团共付门票费=40×100=4000(元),故答案为:4000;(2)当人数超过50人,但不超过100人,乙旅游团的人数=7200÷80=90(人数);当人数超过100人,乙旅游团的人数=7200÷60=120(人数);故答案为:90或120;(3)∵8600>80×100,∴丁旅游团人数小于100,设丙旅游团人数为x 人(0<x≤50),则丁旅游团人数为(100-x )人,由题意可得:100x+80(100-x )=8600,解得x=30,∴100-x=70(人),答:丙旅游团的人数为30人、丁旅游团的人数70人.【点睛】本题考查了一元一次方程的应用,理解题意,找出正确的相等关系是本题的关键.27.(1)40︒(2)4秒或2秒,53秒或135秒,12秒或94秒(3)12011分钟或60011分钟【分析】(1)根据同角的余角相等可得40AOB COD ∠=∠=︒;(2)根据路程等于速度乘以时间分别求得,,OA OC OB 运动到OD 所需要的时间,进而求得停止的时间,根据角度的和差可得,,AOD BOD COD ∠∠∠,根据角度的方向以及角平分线的定义,建立绝对值方程,解方程求解即可;(3)根据题意作出图形,类比(2)建立方程,在周角内求角度,进而解方程求解即可.(1)OB ⊥OD ,OA ⊥OC ,90AOC BOD ∴∠=∠=︒AOB BOC BOC COD∴∠+∠=∠+∠AOB COD∴∠=∠ ∠COD =40°40AOB ∴∠=︒故答案为:40︒(2)40AOB ∠=︒4090130AOD AOB BOD ∴∠=∠+∠=︒+︒=︒设旋转时间为t 秒,当OA 旋转至OD 所需要的时间为:13013303︒=︒(秒)当OC 旋转至OD 所需要的时间为:()3604010=32︒-︒÷︒(秒)当OB 旋转至OD 所需要的时间为:99020=2︒÷︒(秒)∴当OA 旋转至OD 时,其他线段都停止,则133t ≤,旋转t 秒后,()13030AOD t ∠=︒-︒,()9020BOD t ∠=︒-︒,()4010COD t ∠=︒+︒∴()4010AOB AOD BOD t ∠=∠-∠=︒-︒,()5030BOC BOD COD t ∠=∠-∠=︒-︒,()9040AOC AOD COD t ∠=∠-∠=︒-︒①当OB 平分AOC ∠时,AOB BOC ∠=∠,()4010t ︒-︒=()5030t ︒-︒即()4010t ︒-︒=()5030t ︒-︒或()4010t ︒-︒=()5030t -︒+︒解得:12t =或94t =②当OA 平分BOC ∠时,BOA AOC ∠=∠,()4010t ︒-︒=()9040t ︒-︒即()4010t ︒-︒=()9040t ︒-︒或()4010t ︒-︒=()9040t -︒+︒解得:53t =或135t =③当OC 平分AOB ∠时,AOC BOC ∠=∠,()9040t ︒-︒=()5030t ︒-︒即()9040t ︒-︒=()5030t ︒-︒或()9040t ︒-︒=()5030t -︒+︒解得:4t =或2t =综上所述,4t =或2t =,53t =或135t =,12t =或94t =(3)如图,根据题意,6时整时,180AOB ∠=︒,6时至7时,OA 旋转了30°,OB 旋转了360°则OA 的速度为301=602︒度/分钟,OB 的速度为360=660︒度/分钟,6点整之后,设()060m m <<分钟后,120AOB ∠=︒则1,62AOD m COB m ∠=︒∠=︒∴118018062AOB AOD COB m m ∠=︒+∠-∠=︒+︒-︒112018062m m ∴︒=︒+︒-︒112018062m m ∴︒=︒+︒-︒或112018062m m -︒=︒+︒-︒解得:12011m =或60011m =。
苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试题一、单选题1.3-的倒数是()A .3B .13C .13-D .3-2.将数据460000000用科学记数法表示是()A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯3.下列长度的三条线段能组成三角形的是()A .1,2,3B .4,5,9C .6,8,10D .5,15,84.下列图形中,能围成正方体的是()A .B .C .D .5.如图是用五个相同的立方体搭成的几何体,其左视图是()A .B .C .D .6.如图,OA 为北偏东44︒方向,90AOB ∠=︒,则OB 的方向为()A .南偏东46︒B .南偏东44︒C .南偏西44︒D .北偏东46︒7.如图,如果13∠=∠,250∠=︒,那么4∠的度数为()A.50°B.100°C.120°D.130°8.若钝角∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系满足()A.∠1﹣∠3=90°B.∠1+∠3=90°C.∠1+∠3=180°D.∠1=∠39.古代数学问题:“今有人共买物,人出七,盈二;人出六,不足四,问人数,物价各几何?”译文:“几个人一起去购买某物品,若每人出7钱,则多了2钱;若每人出6钱,则少了4钱,问有多少人,物品的价格是多少?”设有x人,可列方程为()A.7x﹣2=6x+4B.7x+2=6x+4C.7x﹣2=6x﹣4D.7x+2=6x﹣4 10.如图,在这个数运算程序中,若开始输入的正整数n为奇数,都计算3n+1;若n为偶数,都除以2.若n=21时,经过1次上述运算输出的数是64;经过2次上述运算输出的数是32;经过3次上述运算输出的数是16;…;经过2022次上述运算输出的数是()A.1B.2C.3D.4二、填空题11.比较大小:﹣2_______﹣3.(填“>”或“<”号)12.已知C是线段AB中点,若AB=5cm,则BC=____.13.若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3,理由是_____.14.已知线段AB=11cm,C是直线AB上一点,若BC=5cm,则线段AC的长等于_____cm.15.如图所示,∠BAC的外角∠CAE等于100°,∠B=45°,则∠C的度数是_______.16.一个正多边形的内角和等于1440°,则此多边形是________边形.17.如图,已知//AE BD ,1130∠=︒,230∠=︒,则C ∠=__________.18.如图,将一副三角板叠在一起,使它们的直角顶点O 重合,若∠AOB=165°,则∠COD 的度数为____.三、解答题19.计算:(1)()()75364-⨯--÷;(2)()2411237⎡⎤--⨯--⎣⎦.20.解方程:(1)4x-3=2(x-1)(2)x-22x-=1+2x-1321.先化简,再求值:5x 2y +6xy ﹣2(3xy ﹣x 2y ),其中x =﹣2,y =3.22.如图,B 是线段AD 上一点,C 是线段BD 的中点.若AD =8,BC =3.求线段CD ,AB 的长;23.如图,直线AB 、CD 相交于点O ,过点O 作OE ⊥AB ,射线OF 平分∠AOC ,∠AOF =25°.求:(1)∠BOD的度数;(2)∠COE的度数.24.某超市先后以每千克12元和每千克14元的价格两次共购进大葱800千克,且第二次付款是第一次付款的1.5倍.(1)求两次各购进大葱多少千克?(2)该超市以每千克18元的标价销售这批大葱,售出500千克后,受市场影响,把剩下的大葱标价每千克22元,并打折全部售出.已知销售这批大葱共获得利润4440元,求超市对剩下的大葱是打几折销售的?(总利润=销售总额-总成本)25.如图,A、B、C为网格图中的三点,利用网格作图.(1)过点A画直线AD∥BC;(2)过点A画线段BC的垂线AH,垂足为H;(3)点A到直线BC的距离是线段的长;(4)三角形ABC的面积为.26.已知关于x的一元一次方程ax+b=0(其中a≠0,a、b为常数),若这个方程的解恰好为x=a﹣b,则称这个方程为“恰解方程”,例如:方程2x+4=0的解为x=﹣2,恰好为x=2﹣4,则方程2x+4=0为“恰解方程”.(1)已知关于x的一元一次方程3x+k=0是“恰解方程”,则k的值为;(2)已知关于x的一元一次方程﹣2x=mn+n是“恰解方程”,且解为x=n(n≠0).求m,n的(3)已知关于x的一元一次方程3x=mn+n是“恰解方程”.求代数式3(mn+2m2﹣n)﹣(6m2+mn)+5n的值.27.如图,直线CD//EF,点A、B分别在直线CD、EF上(自左向右分别为点C、A、D和点E、B、F),∠ABF=60°,射线AM自射线AB的位置开始,绕点A以每秒1°的速度沿逆时针方向旋转,同时,射线BN自射线BE开始以每秒5°的速度绕点B沿顺时针方向旋转,当射线BN旋转到BF的位置时,两者均停止运动,设旋转时间为x秒.(1)如图1,直接写出下列答案:①∠BAD的度数是;②当旋转时间x=秒时,射线BN过点A.(2)如图2,若AM∥BN,求此时对应的旋转时间x的值.(3)若两条射线AM和BN所在直线交于点P,①如图3,若点P在CD与EF之间,且∠APB=126°,求旋转时间x的值;②若旋转时间x<24,求∠APB的度数(用含x的代数式表示).参考答案1.C2.C3.C4.C5.A6.A8.A9.A10.B11.>【分析】比较的方法是:两个负数,绝对值大的其值反而小.【详解】解:(1)∵|-3|=3,|-2|=2,而3>2,∴-2>-3,故答案为>.【点睛】本题主要考查了有理数的大小比较,解题时注意:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.12.2.5cm【分析】根据线段中点的定义即可得到结论.【详解】 C 是线段AB 中点,5AB cm =,115 2.522BC AB ∴==⨯=()cm ,故答案为:2.5cm .【点睛】本题考查了线段中点的定义,熟练掌握线段中点的定义是解题关键.13.同角的补角相等【分析】根据补角的性质:同角的补角相等进行解答即可.【详解】解:∵∠1+∠2=180°,∠1+∠3=180°,∴∠2=∠3(同角的补角相等).故答案为:同角的补角相等.【点睛】本题考查了补角的定义和性质,解题时牢记同角的补角是解题关键.14.6或16.【分析】根据线段的性质分类讨论即可求解.【详解】解,当点C 在线段AB 之间时,AC =AB ﹣BC =11﹣5=6cm .当点C 在线段AB 的延长线上时,AC+BC =11+5=16cm .故答案为:6或16.【点睛】此题主要考查线段长度的求解,解题的关键是根据题意分类讨论.15.55°##55度【分析】根据三角形外角的性质可得答案.【详解】解:∵,45,100CAE B C B CAE ∠=∠+∠∠=︒∠=︒,∴55C ∠=︒,故答案为:55°.【点睛】本题主要考查三角形的外角的性质,熟练掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.16.10##十【分析】设这个多边形的边数为n ,根据内角和公式得出(n -2)×180°=1440,求出方程的解即可.【详解】解:设这个多边形的边数为n ,则(n -2)×180°=1440°,解得:n=10,即这个多边形是10边形,故答案为:10.【点睛】本题考查了多边形的内角与外角,能熟记多边形的内角和公式是解此题的关键,注意:边数为n (n≥3)的多边形的内角和=(n -2)×180°.17.20°【分析】由//AE BD ,得∠AEC=230∠=︒,结合1130∠=︒,即可得到答案.【详解】∵//AE BD ,230∠=︒,∴∠AEC=230∠=︒,∵∠1+∠AEC+∠C=180°,∴∠C=180°-130°-30°=20°.故答案是:20°.【点睛】本题主要考查平行线的性质定理和三角形内角和定理,掌握平行线的性质定理和三角形内角和定理是解题的关键.18.15°【分析】先根据直角三角板的性质得出∠AOD+∠COB =180°,进而可得出∠COD 的度数.【详解】解:∵△AOD 与△BOC 是一副直角三角板,∴∠AOD+∠COB =180°,∴∠AOC+2∠COD+∠BOD=∠AOB+∠COD=180°.∵∠AOB =165°,∴∠COD =180°﹣∠AOB =180°﹣165°=15°.故答案为15°.【点睛】本题考查了角度的计算,熟知直角三角板的特点,找准各角之间的关系是解答此题的关键.19.(1)-26(2)0【分析】(1)先计算有理数乘除法,再计算有理数加减法来求解;(2)先计算乘方,再计算中括号里面的,然后根据有理数乘除法的计算法则,乘方法则进行计算,最后计算加减法求解.(1)解:()()75364-⨯--÷()359=---359=-+26=-(2)解:()2411237⎡⎤--⨯--⎣⎦()411297=--⨯-()1177=--⨯-=11-+0=【点睛】本题主要考查有理数的混合运算,理解有理数混合运算法则是解答关键.20.x=0.5;(2)x=2【分析】(1)按照去括号、移项、合并同类项、系数化1的步骤解答即可;(2)按照去分母、去括号、移项、合并同类项、系数化1的步骤解答即可.【详解】解:(1)去括号得:4x-3=2x-2移项得:4x-2x=3-2合并同类项得:2x=1系数化为1:x=0.5;(2)去分母得:6x-3(x-2)=6+2(2x-1)去括号得:6x-3x+6=6+4x-2移项得:6x-3x-4x=6-2-6合并同类项得:-x=-2系数化为1:x=2【点睛】本题考查一元一次方程的解法,解题关键是熟练运用一元一次方程的解法步骤,本题属于基础题型.21.27x y ,84【分析】先对整式进行化简,然后再把x 、y 的值代入求解即可.【详解】解:()225623x y xy xy x y +--()225662x y xy xy x y=+--225662x y xy xy x y =+-+27x y =;把2,3x y =-=代入,得:原式=27(2)384⨯-⨯=.【点睛】本题主要考查整式加减的化简求值,熟练掌握整式的加减运算是解题的关键.22.AB =2.【分析】根据中点的定义求得CD=BC=3,则由图中相关线段间的和差关系求得AB 的长度.【详解】解:∵C 是线段BD 的中点,BC =3,∴CD =BC =3.又∵AB +BC +CD =AD ,AD =8,∴AB =8-3-3=2.【点睛】本题主要考查线段间的计算及线段的中点.23.(1)∠BOD =50°;(2)∠COE =40°.【分析】(1)根据角平分线的性质求出∠AOC ,再根据对顶角相等求出∠BOD 即可;(2)根据垂直得出∠AOE =90°,再用角的和差求∠COE 即可.【详解】解:(1)∵射线OF 平分∠AOC ,∠AOF =25°,∴∠AOC =2∠AOF =50°,∴∠BOD =∠AOC =50°;(2)∵OE ⊥AB ,∴∠AOE =90°,∵∠AOC =50°,∴∠COE =90°﹣∠AOC =90°﹣50°=40°.【点睛】本题考查了角平分线定义和垂直的定义、对顶角相等以及角的和差,解题关键是准确识图,找到图中相等的角和角之间的关系.24.(1)第一次购进350千克,第二次购进450千克;(2)九折【分析】(1)设第一次购进的数量为x 千克,则第二次购进800-x 千克,从而根据“第二次付款是第一次付款的1.5倍”列方程求解即可;(2)用销售总额减去总成本等于总利润建立方程求解即可.【详解】(1)设第一次购进的数量为x 千克,则第二次购进800-x 千克,()151214800.x x ⨯=-解得:350x =800350450-=,∴第一次购进350千克,第二次购进450千克;(2)设折扣为y 折,根据题意列方程为:()50018800500223501245014444010y ⨯+-⨯⨯-⨯-⨯=解得:9y =∴超市对剩下的大葱是打九折销售的.【点睛】本题考查一元一次方程的实际应用,仔细审题,找准等量关系是解题关键.25.(1)见解析(2)见解析(3)AH(4)2.5【分析】(1)根据平行线的判定,画出图形即可;(2)根据垂线的定义,画出图形即可;(3)根据点到直线的距离解决问题即可;(4)把三角形的面积看成矩形的面积减去周围三个三角形面积即可.(1)解:如图,取格点D,作直线AD,直线AD即为所求;(2)解:如图,取格点E,作直线AE交BC于点H,直线AH即为所求;(3)解:点A到直线BC的距离是线段AH的长;故答案为:AH;(4)解:三角形ABC的面积=2×3﹣12×1×2﹣12×1×2﹣12×1×3=2.5.故答案为:2.5.【点睛】本题考查作图——应用与设计作图,平行线的判定和性质,垂线的定义等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求三角形面积.26.(1)92(2)m=﹣3,n=﹣23(3)-9【分析】(1)利用“恰解方程”的定义,得出关于k的一元一次方程,解方程即可得出k的值;(2)解方程﹣2x=mn+n得出x=﹣12(mn+n),由﹣2x=mn+n是“恰解方程”得出x=﹣2+mn+n,再结合x=n,即可求出m,n的值;(3)根据“恰解方程”的定义得出mn+n =92-,把3(mn+2m 2﹣n )﹣(6m 2+mn )+5n 化简后代入计算即可.【详解】(1)解:(1)解方程3x+k =0得:x =﹣3k,∵3x+k =0是“恰解方程”,∴x =3﹣k ,∴﹣3k=3﹣k ,解得:k =92;(2)解:解方程﹣2x =mn+n 得:x =﹣12(mn+n ),∵﹣2x =mn+n 是“恰解方程”,∴x =﹣2+mn+n ,∴﹣12(mn+n )=﹣2+mn+n ,∴3mn+3n =4,∵x =n ,∴﹣2+mn+n =n ,∴mn =2,∴3×2+3n =4,解得:n =﹣23,把n =﹣23代入mn =2得:m×(﹣23)=2,解得:m =﹣3;(3)解:解方程3x =mn+n 得:x =3mn n+,∵方程3x =mn+n 是“恰解方程”,∴x =3+mn+n ,∴3mn n+=3+mn+n ,∴mn+n =92-,∴3(mn+2m 2﹣n )﹣(6m 2+mn )+5n=3mn+6m 2﹣3n ﹣6m 2﹣mn+5n=2mn+2n=2(mn+n )=2×(92-)=﹣9.【点睛】本题考查了一元一次方程的解,理解“恰解方程”的定义是解题的关键.27.(1)120︒;24(2)20()x =秒(3)29()x =秒;当0<<20x 时,()1206APB x ∠=-︒,当20<<24x 时,()6120APB x ∠=-︒【分析】(1)①根据平行线的性质可求得;②根据邻补角的定义求得120ABE ︒∠=,进而求得结论;(2)根据平行线的性质得出=BAM ABN ∠∠,即可得出等式,解出即为所求;(3)①根据三角形内角和定理得51201261()80BAM ABN APB x x ∠+∠+∠=+-+=解出即可;②借助图形可求得APB ∠的度数.(1)①CD EF ∥,180DAB ABF ︒∴∠+∠=,60ABF ︒∠=,=120BAD ︒∴∠.故答案为:120°.②=60ABF ︒∠ ,=120ABE ︒∴∠,当射线BN 过点A 时,5120x =,24x =,∴当旋转时间为24秒时,射线BN 过点A .故答案为:24.(2)若AM BN ∥,根据平行线的性质得,=BAM ABN ∠∠,120ABE ︒∠= ,1205ABN x ∴∠=-,1205x x ∴-=,解得:20x =,∴此时对应时间为20秒.(3)①5BAM x EBN x ∠=∠= ,,5120ABN x ∴∠=-,根据三角形内角和为180︒得,51201261()80BAM ABN APB x x ∠+∠+∠=+-+=,解得29x =.②由(2)可知,AM BN ∥时时间是20秒,<24x ∴时,分两种情况:如图4,当0<<20x 时,()1801206APB BAP ABP x ∠=-∠-∠=-︒;如图5,当20<<24x 时,()()12056120APB BAM ABP x x x ∠=∠-∠=--=-︒.。
苏科版七年级上册数学期末考试试卷附答案

苏科版七年级上册数学期末考试试题一、单选题1.下列各数中最小的是()A .-1B .3C .0D .22.数据696000000这个数用科学记数法可表示为()A .0.696×109B .6.96×109C .6.96×108D .69.6×1073.下列方程中,是一元一次方程的是()A .0.3x=6B .2x 4x 3-=C .11x 3x-=-D .x=3y-54.下列立体图形中,有五个面的是()A .四棱锥B .五棱锥C .四棱柱D .五棱柱5.一个整式与x 2-y 2的和是x 2+y 2,则这个整式是()A .2x 2B .2y 2C .-2x 2D .-2y 26.下列关于多项式2a 2b+ab-1的说法中,正确的是()A .次数是5B .二次项系数是0C .最高次项是2a 2bD .常数项是17.在下列图形中,可围成正方体的是()A .B .C .D .8.已知30AOB ∠=︒,自AOB ∠顶点O 引射线OC ,若:4:3AOC AOB ∠∠=,那么BOC ∠的度数是()A .10°B .40°C .70°D .10°或70°9.某超市出售一种方便面,原价为每箱24元.现有三种调价方案:方案一,先提价20%,再降价20%;方案二,先降价20%,再提价20%;方案三,先提价15%,再降价15%.三种调价方案中,最终价格最高的是()A .方案一B .方案二C .方案三D .不确定10.有理数p ,q ,r ,s 在数轴上的对应点的位置如图所示.若10p r -=,12p s -=,9q s -=,则q r -的值是()A .5B .6C .7D .10二、填空题11.14的倒数是__________.12.已知∠A =40°,则它的补角等于___.13.若2x 3yn 与﹣5xmy 是同类项,则m +n =______.14.若x=2是关于x 的方程ax+3=5的解,则a=__________.15.如图,线段AB =12cm ,C 是线段AB 上任一点,M ,N 分别是AC ,BC 的中点,如AM =4cm ,则BN 的长为______cm .16.整式mx+n 的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值:x ﹣2﹣1012mx+n﹣12﹣8﹣44则关于x 的方程﹣mx+n =8的解为______.17.已知代数式2x y -的值是12,则代数式21x y -+-的值是______.18.一组“数值转换机”按下面的程序计算,如果输入的数是30,则输出的结果为56,要使输出的结果为60,则输入的最小正整数是_____.三、解答题19.计算:(1)20(14)(18)13-+----;(2)202221133(3)2--÷⨯--.20.解方程(1)532(5)x x +=-;(2)2151136x x +--=.21.先化简,再求值:4(3a 2b ﹣ab 2)﹣5(﹣ab 2+3a 2b ),其中a =2,b =﹣3.22.作图题(1)由大小相同的小立方块搭成的几何体如下图,请在右图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.23.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.△ABC 的顶点A 、B 、C 都在格点上.(1)过B 作AC 的平行线BD .(2)作出表示B 到AC 的距离的线段BE .(3)线段BE 与BC 的大小关系是:BE BC(填“>”、“<”、“=”).(4)△ABC 的面积为.24.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?25.如图,直线AB 与CD 相交于O ,OE ⊥AB ,OF ⊥CD .(1)图中与∠AOF 互余的角是______,与∠COE 互补的角是______;(把符合条件的角都写出来)(2)如果∠AOC=14∠EOF ,求∠EOF 的度数.26.已知A =a ﹣2ab+b 2,B =a+2ab+b 2.(1)求14(B ﹣A )的值;(2)若3A ﹣2B 的值与a 的取值无关,求b 的值.27.如图,将一张正方形纸片的4个角剪去4个大小一样的小正方形,然后折起来就可以制成一个无盖的长方体纸盒,设这个正方形纸片的边长为a ,这个无盖的长方体盒子高为h .(1)若a=18cm ,h=4cm ,则这个无盖长方体盒子的底面面积为;(2)用含a 和h 的代数式表示这个无盖长方体盒子的容积V=;(3)若a=18cm ,试探究:当h 越大,无盖长方体盒子的容积V 就越大吗?请举例说明;这个无盖长方体盒子的最大容积是.28.对于数轴上的点M ,线段AB ,给出如下定义:P 为线段AB 上任意一点,如果M ,P 两点间的距离有最小值,那么称这个最小值为点M ,线段AB 的“近距”,记作1(,)d M AB 点线段;如果M ,P 两点间的距离有最大值,那么称这个最大值为点M ,线段AB的“远距”,记作2(,)d M AB 点线段.特别的,若点M 与点P 重合,则M ,P 两点间距离为0.已知点A 表示的数为2-,点B 表示的数为3.例如图,若点C 表示的数为5,则1(,)2d C AB =点线段,2(,)7d C AB =点线段.(1)若点D 表示的数为3-,则1(d 点D ,线段)AB =_____,2(d 点D ,线段)AB =______;(2)若点E 表示数为x ,点F 表示数为1x +.2(,)d F AB 点线段是1(,)d E AB 点线段的3倍.求x的值.参考答案1.A【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小,据此判断即可.【详解】解:∵-1<0<2<3,∴其中最小的为-1.故选:A.【点睛】本题主要考查了有理数大小比较,解答此题的关键是掌握有理数大小比较法则.2.C【详解】解:根据科学记数法的定义,696000000=6.96×108.故选:C.【点睛】本题考查科学记数法.3.A【分析】根据一元一次方程的定义解答即可.【详解】选项A,是一元一次方程;选项B,未知数的最高次数是2,不是一元一次方程;选项C,等号左边不是整式,不是一元一次方程;选项D,含有两个未知数,不是一元一次方程.故选A.【点睛】本题考查了一元一次方程,熟知含有一个未知数,并且未知数的最高次数为1的整式方程是一元一次方程是解决问题的关键.4.A【分析】要明确棱柱和棱锥的组成情况,棱柱有两个底面,棱锥有一个底面.【详解】解:A.四棱锥有一个底面,四个侧面组成,共5个面,符合题意.B.五棱锥有一个底面,五个侧面组成,共6个面,不符合题意.C.四棱柱有两个底面,四个侧面组成,共6个面,不符合题意.D.五棱柱有两个底面,五个侧面组成,共7个面,不符合题意.故选A.5.B【分析】知道和与一个加数,求另一个加数,用减法即可.【详解】解:根据题意得(x2+y2)-(x2-y2)=x2+y2-x2+y2=2y2.故选:B.【点睛】本题考查了整式的加减,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.6.C【分析】根据多项式的概念逐项分析即可.【详解】A.多项式2a2b+ab-1的次数是3,故不正确;B.多项式2a2b+ab-1的二次项系数是1,故不正确;C.多项式2a2b+ab-1的最高次项是2a2b,故正确;D.多项式2a2b+ab-1的常数项是-1,故不正确;故选:C.【点睛】本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.7.C【分析】根据正方体的11种平面展开图解题.【详解】解:由正方体的11种平面展开图可知,选项A、B、D均不符合题意,选项C符合题意,故选:C.【点睛】本题考查正方体展开图的识别,是基础考点,掌握相关知识是解题关键.8.D【分析】分为两种情况:①OC和OB在OA的两侧时,②OC和OB在OA的同侧时,分别进行求解即可.【详解】∵∠AOB=30°,∠AOC:∠AOB=4:3,∴∠AOC=40°,分为两种情况:当OC和OB在OA的两侧时,如图1∠BOC=∠AOB+∠AOC=30°+40°=70°②OC和OB在OA的同侧时,如图2∠BOC=∠AOC-∠AOB=40°-30°=10°故选:D.【点睛】考查了角的计算,解题关键是分两种情况:OC、OB在OA的两侧时和OC、OB 在OA的同侧时.9.C【分析】根据题意,算出每种方案的最终价格,然后比较即可.+-=元;【详解】解:方案一的最终价格为:24(120%)(120%)23.04-+=元;方案二的最终价格为:24(120%)(120%)23.04+-=元;方案三的最终价格为:24(115%)(115%)23.46>=,因为23.4623.0423.04则选方案三,故选:C【点睛】此题考查了列出代数式计算的能力,读懂题意,找出题中的数量关系,列出式子正确计算是解题的关键.10.C【分析】根据绝对值的几何意义,将|p−r|=10,|p−s|=12,|q−s|=9转化为两点间的距离,进而可得q 、r 两点间的距离,即可得答案.【详解】解:根据绝对值的几何意义,由|p−r|=10,|p−s|=12,|q−s|=9得:|p−q|=|p−s|-|q−s|=3,|r−s|=|p−s|-|p−r|=2∴|q−r|=|p−s|-|p−q|-|r−s|=12-3-2=7.故选:C .【点睛】本题考查了绝对值的几何意义,解题的关键是运用数形结合的数学思想表示出数轴上两点间的距离.11.4.【分析】根据倒数的定义即可求解.【详解】14的倒数是4.故答案是:4.【点睛】考查了倒数,关键是熟悉乘积是1的两数互为倒数.12.140°【分析】根据补角的和等于180︒计算即可.【详解】解:40A ∠=︒ ,∴它的补角18040140=-=︒︒︒.故答案为140︒.【点睛】本题考查了补角的知识,熟记互为补角的两个角的和等于180︒是解题的关键.13.4【分析】根据同类项的定义可求得m 和n 的值,再代入计算即可求解.【详解】解:∵2x 3yn 与﹣5xmy 是同类项,∴m=3,n=1∴m+n=3+1=4故答案为:4【点睛】本题考查了同类项,解决本题的关键是明确同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.注意只有同类项才能合并使它们的和是单项式.14.1【详解】解:将x=2代入得:2a+3=5,解得:a=1.故答案为:115.2【分析】根据线段中点的定义可得AC=8cm ,根据线段的和差可得BC=4cm ,再根据线段的中点可得答案.【详解】解:∵点M 是线段AC 的中点,∴AC=2AM=8cm ,∵AB=12cm ,∴BC=AB-AC=12-8=4cm ,∵点N 是线段BC 的中点,∴BN=12BC=2cm .故答案为:2.【点睛】本题考查两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.16.3x =-【分析】根据表格中的数据,求得m n ,的值,然后代入方程8mx n -+=,求解即可.【详解】解:根据表格的数据可得:4n m n =-⎧⎨+=⎩,解得44m n =⎧⎨=-⎩代入方程8mx n -+=,可得448x --=,解得3x =-,故答案为:3x =-【点睛】本题考查了解一元一次方程和解二元一次方程组,解题的关键是正确求得m n ,的值.17.32-## 1.5-【分析】利用已知将原式变形求出答案.【详解】解:∵代数式2x y -的值是12,∴代数式()132121122x y x y -+-=---=--=-.故答案为:32-.【点睛】本题主要考查代数式求值,正确将原式变形是解题的关键.18.11【分析】根据输出的结果确定出x 的所有可能值即可.【详解】解:当2x ﹣4=60时,x =32,当2x ﹣4=32时,x =18,当2x ﹣4=18时,x =11,当2x ﹣4=11时,x =152,不是整数;所以输入的最小正整数为11,故答案为11.【点睛】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.19.(1)29-;(2)2-.【分析】(1)根据有理数的加减运算求解即可;(2)根据有理数的乘方、乘除等运算求解即可.(1)解:20(14)(18)132014181329-+----=--+-=-;(2)202221133(3)2--÷⨯--111(93)23=--⨯⨯-1166=--⨯2=-【点睛】此题考查了有理数的乘方、绝对值、加减乘除等四则运算,解题的关键是熟练掌握有理数的有关运算.20.(1)1x =;(2)3x =-.【分析】(1)根据去括号,移项,合并同类项步骤求解即可;(2)去分母,去括号,移项,合并同类项等步骤求解即可.(1)解:532(5)x x +=-53102x x+=-55=x 1x =(2)2151136x x +--=2(21)(51)6x x +--=42516x x +-+=3x -=3x =-21.﹣3a 2b+ab 2,54.【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:原式=12a 2b ﹣4ab 2+5ab 2﹣15a 2b =﹣3a 2b+ab 2,当a =2,b =﹣3时,原式=36+18=54.22.(1)见解析;(2)57【分析】(1)从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最少和最多个数相加即可.(1)(2)由俯视图易得最底层有4个小立方块,第二层最少有1个小立方块,所以最少有5个小立方块;第二层最多有3个小立方块,所以最多有7个小立方块.故答案为:57.23.(1)见解析;(2)见解析;(3)<;(4)9【分析】(1)连接与点B 在同一水平线的格点即可得;(2)过点B 作AC 的垂线,交AC 于点E ,则BE 即为所求;(3)根据垂线段最短即可得;(4)根据三角形的面积公式可得12ABCS AC BE =⋅ .【详解】(1)如图BD 即为所求;(2)过点B 作AC 的垂线,交AC 于点E ,则BE 即为所求,如图所示:(3)由垂线段最短得:BE BC<故答案为:<;(4)ABC 的面积为1163922ABCS AC BE =⋅=⨯⨯= 故答案为:9.【点睛】本题考查了平行线与垂直的定义、垂线段最短等知识点,掌握理解平行线与相交线的相关概念是解题关键.24.先安排整理的人员有10人【详解】试题分析:等量关系为:所求人数1小时的工作量+所有人2小时的工作量=1,把相关数值代入即可求解.试题解析:设先安排整理的人员有x 人,依题意得,2(15)16060xx ++=解得,x=10.答:先安排整理的人员有10人.考点:一元一次方程25.(1)∠AOC 、∠BOD ;∠EOD 、∠BOF ;(2)∠EOF=144°.【分析】(1)根据互余及互补的定义,结合图形进行判断即可;(2)设∠AOC=x ,则∠BOD=x ,∠EOF=4x ,根据周角为360度,即可解出x .【详解】解:(1)图中与∠AOF 互余的角是:∠AOC 、∠BOD ;图中与∠COE 互补的角是:∠EOD 、∠BOF .(2)∵OE ⊥AB ,OF ⊥CD ,∴∠EOB=90°,∠FOD=90°,又∵∠AOC=14∠EOF ,设∠AOC=x ,则∠BOD=x ,∠EOF=4x ,根据题意可得:4x+x+90+90=360°,解得:x=36°.∴∠EOF=4x=144°.【点睛】本题考查了余角和补角的知识,注意结合图形进行求解.26.(1)ab ;(2)110b =【分析】(1)直接把A 、B 代入进行化简运算即可;(2)把A 、B 代入3A ﹣2B 求解,然后根据整式的无关型问题进行求解即可.【详解】解:(1)∵A =a ﹣2ab+b 2,B =a+2ab+b 2,∴()14B A -=()221224a ab b a ab b ++-+-=144ab⨯=ab ;(2)∵A =a ﹣2ab+b 2,B =a+2ab+b 2,∴32A B-=()()223222a ab b a ab b -+-++=22363242a ab b a ab b -+---=210a ab b -+=()2110b a b -+,∵3A ﹣2B 的值与a 的取值无关,∴1100b -=,∴110b =.【点睛】本题主要考查整式的加减,熟练掌握整式的加减运算是解题的关键.27.(1)100cm 2;(2)h (a ﹣2h )2cm 3;(3)432cm 3.【分析】(1)根据已知得出长方体底面的边长进而求出即可;(2)由于原来正方形的边长为a ,如果四个角上各剪去一个同样大小的正方形,那么无盖长方体的底面的长宽分别都是(a-2h),高是h ,由此即可表示这个无盖长方体的容积;(3)根据材料一定,长方体中体积最大与底面各积和高都有关进行解答即可.【详解】(1)∵a=18cm ,h=4cm ,∴这个无盖长方体盒子的底面面积为:(a ﹣2h)(a ﹣2h)=(18﹣2×4)×(18﹣2×4)=100(cm 2),故答案为100cm 2;(2)这个无盖长方体盒子的容积V=h(a ﹣2h)(a ﹣2h)=h(a ﹣2h)2(cm 3),故答案为h(a ﹣2h)2cm 3;(3)若a=18cm ,当h 越大,无盖长方体盒子的容积V 不一定就越大,如h=6时,体积V=216,h=8时,体积V=32;∵V=h(18﹣2h)2=4(9-h)(9-h)h=2(9-h)(9-h)2h9-h+9-h+2h=0,∴当9-h=2h 时,体积最大,即h=3时,此时体积最大,∴这个无盖长方体盒子的最大容积是:3×(18﹣6)2=432(cm 3),故答案为432cm 3.【点睛】本题考查了几何体的体积求法以及展开图面积问题,根据题意表示出长方体体积是解题关键.28.(1)1,6(2)4x =或6x =【分析】(1)根据已知定义,进行计算即可解答;(2)分两种情况,点E 在点A 的左侧,点E 在点B 的右侧.【详解】(1)解: 点D 表示的数为3-,∴1(d 点D ,线段)AB 2(3)231DA ==---=-+=∴2(d 点D ,线段)AB 3(3)336DB ==--=+=故答案为:1,6;(2)分两种情况:当点E 在点A 的左侧,2(d 点F ,线段)AB =BF=3-(x-1)=2-x1(d 点E ,线段)AB =AE=-2-x2(d 点F ,线段)AB 是1(d 点E ,线段)AB 的3倍,23(2)x x ∴-=--4x ∴=-点E 在点B 的右侧2(d 点F ,线段)AB =AF=x+1-(-2)=x+31(d 点E ,线段)AB =EB=x-32(d 点F ,线段)AB 是1(d 点E ,线段)AB 的3倍,33(3)x x ∴+=-综上所述,4x =或6x =.。
苏科版七年级上册数学期末考试试卷带答案

苏科版七年级上册数学期末考试试题一、单选题1.2022-的相反数是( ) A .2022B .2020-C .12000-D .120002.下列计算正确的是( )A .222a a a +=B .22223a a a -=-C .235a b ab +=D .532a a -= 3.下列说法不一定成立的是( ) A .若a b =,则11a b +=+ B .若a b =,则a c b c -=- C .若a b =,则22a b -=-D .若23a b =,则23a b = 4.如图是一个几何体的侧面展开图,则该几何体是( )A .三棱柱B .三棱锥C .五棱柱D .五棱锥5.如图,用剪刀沿虚线将一个长方形纸片剪掉一个三角形,发现剩下纸片的周长比原纸片的周长小,能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .经过一点有无数条直线C .两点确定一条直线D .垂线段最短6.如图,AC BC ⊥,CD AB ⊥,垂足分别为C 、D ,线段CD 的长度是( )A .点A 到BC 的距离B .点B 到AC 的距离 C .点C 到AB 的距离D .点D 到AC 的距离7.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( ) A .120350506x x+-=+ B .350506x x -=+ C .120350650x x+-=+ D .120350506x x +-=+ 8.下列关于代数式1m -+的值的结论:①1m -+的值可能是正数;①1m -+的值一定比m -大;①1m -+的值一定比1小;①1m -+的值随着m 的增大而减小.其中所有正确结论的序号是( ) A .①①① B .①①①C .①①①D .①①①二、填空题9.若42α∠=︒,则α∠的余角为_______°,α∠的补角为_______°. 10.把数据70000000用科学记数法表示为______.11.若关于x 的方程250x m +-=的解为2x =-,则m 的值为_______.12.如图是一个正方体的表面展开图,每个面上都标有字母.其中与字母A 处于正方体相对面上的是字母_______.13.一张长方形纸条折成如图的形状,若150∠=︒,则2∠=_______.14.若a<0,化简|1||2|a a ---的结果是_______.15.一件商品若按标价的8折销售可获利16元.若该商品的进价为100元,设这件商品的标价是x 元,根据题意可列出方程_______.16.数a 、b 在数轴上的位置如图所示,则a 、b 、a -、b -的大小关系为_______(用“<”号连接).17.计算1111111111212462462468⎛⎫⎛⎫⎛⎫⨯+++----+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果是_______.18.如图,OC 、OD 是AOB ∠内的两条射线,OE 平分AOC ∠,OF 平分DOB ∠,若EOF m ∠=︒,BOC n ∠=︒,则AOD ∠=_______°(用含m 、n 的代数式表示).三、解答题 19.计算:(1)231216(2)2⎛⎫-+-⨯÷- ⎪⎝⎭;(2)7111(36)9126⎛⎫-+⨯- ⎪⎝⎭.20.先化简,再求值:()()22642ab a ab a ---,其中2a =-,12b =.21.解方程: (1)2(3)6x +=-; (2)212134x x -+=-.22.如图,是一个由7个正方体组成的立体图形.画出该立体图形的主视图、左视图和俯视图.23.如图,已知ABC 和DEF ,请结合图中标注的角,利用直尺和圆规完成下列作图.(不写作法,保留作图痕迹)(1)在图①中作BCM ∠,使得105BCM ∠=︒; (2)在图①中作FEN ∠,使得80FEN ∠=︒.24.小丽在水果店用36元买了苹果和橘子共6千克,已知苹果每千克6.4元,橘子每千克5.2元.小丽买了苹果和橘子各多少千克?25.如图,线段10cm AB =,C 是线段AB 上一点,6cm AC =,D 、E 分别是AB 、BC 的中点.(1)求线段CD 的长; (2)求线段DE 的长.26.甲、乙两地相距72km ,一辆工程车和一辆洒水车上午6时同时从甲地出发,分别以1km /h v 、2km /h v 的速度匀速驶往乙地.工程车到达乙地后停留了2h ,沿原路以原速返回,中午12时到达甲地,此时洒水车也恰好到达乙地. (1)1v =______,2=v ______; (2)求出发多长时间后,两车相遇? (3)求出发多长时间后,两车相距30km ?27.已知AOB ∠与BOC ∠互为补角,OD 平分BOC ∠.(1)如图①,若80AOB ∠=︒,则BOC ∠=______°,AOD ∠=______°. (2)如图①,若140AOB ∠=︒,求AOD ∠的度数;(3)若AOB n ∠=︒,直接写出AOD ∠的度数(用含n 的代数式表示),及相应的n 的取值范围.参考答案1.A【分析】根据相反数的概念解答即可,只有符号不同的两个数叫做互为相反数. 【详解】解:2022-的相反数是2022, 故选:A .【点睛】本题考查了相反数,掌握相反数的定义是解答本题的关键.求一个数的相反数的方法就是在这个数的前边添加“-”,如a 的相反数是a -,m n +的相反数是()m n -+,这时m n+是一个整体,在整体前面添负号时,要用小括号. 2.B【分析】利用合并同类项,逐项判断即可求解.【详解】解:A 、23a a a +=,故本选项错误,不符合题意; B 、22223a a a -=-,故本选项正确,符合题意;C 、2a 和3b 不是同类项,不能合并,故本选项错误,不符合题意;D 、532a a a -=,故本选项错误,不符合题意; 故选:B【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母连同指数不变是解题的关键. 3.D【分析】根据等式的性质逐项分析判断即可.【详解】A. 若a b =,则11a b +=+,故该选项正确,不符合题意, B. 若a b =,则a c b c -=-,故该选项正确,不符合题意, C. 若a b =,则22a b -=-,故该选项正确,不符合题意, D. 若23a b =,则2a 不一定等于3b,故该选项不正确,符合题意,故选D【点睛】本题考查了等式的性质,熟练等式的性质是解题的关键.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等. 4.D【分析】由题意可知,该几何体侧面为5个三角形,底面是五边形,从而得到该几何体为五棱锥,即可求解.【详解】解:由题意可知,该几何体侧面为5个三角形,底面是五边形, 所以该几何体为五棱锥. 故选:D【点睛】本题主要考查了几何体的展开图,熟练掌握棱锥的展开图是解答本题的关键.5.A【分析】根据题意,可根据两点之间,线段最短解释. 【详解】解:①剩下纸片的周长比原纸片的周长小, ①能正确解释这一现象的数学知识是两点之间,线段最短. 故选A【点睛】本题考查了两点之间线段最短,掌握线段的性质是解题的关键. 6.C【分析】根据点到直线的距离等于垂线段的长度即可求解. 【详解】解:依题意,AC BC ⊥,CD AB ⊥,∴点A 到BC 的距离是线段AC 的长度,点B 到AC 的距离是线段BC 的长度, 点C 到AB 的距离是线段CD 的长度 点D 到AC 的距离图中没有标出, 故选C【点睛】本题考查了点到直线的距离的定义,数形结合以及理解定义是解题的关键.点到直线的距离的等于垂线段的长度. 7.D【分析】根据零件任务÷原计划每天生产的零件个数-(零件任务+120)÷实际每天生产的零件个数=3【详解】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6, 所以根据时间列的方程为:120350506x x +-=+, 故选:D .【点睛】本题考查了一元一次方程的应用,根据时间得到相应的等量关系是解决本题的关键. 8.C【分析】利用特殊值判断①①;利用作差法判断①;根据m 越大,-m 越小,-m+1越小判断①.【详解】解:当m=0时,-m+1=1>0,故①符合题意; ①-m+1-(-m )=1>0, ①-m+1>-m ,故①符合题意;当m=0时,-m+1=1,故①不符合题意; m 越大,-m 越小,-m+1越小,故①符合题意; 故选:C .【点睛】本题主要考查了代数式求值,利用特殊值判断是解题的关键. 9. 48°##48度 138°##138度【分析】根据两个角的和等于90°(直角),就说这两个角互为余角,两个角的和等于180°(平角),就说这两个角互为补角,列式计算即可. 【详解】解:①α的余角:90°-42°=48°, ①α的补角:180°-42°=138°, 故答案为:48°、138°.【点睛】本题考查余角和补角,掌握余角和补角的定义,根据定义列式计算是解题关键. 10.7710⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数. 【详解】解:把数据70000000用科学记数法表示为7710⨯; 故答案为7710⨯.【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键. 11.9【分析】将方程的解代入一元一次方程中,即可求出结果. 【详解】解:①关于x 的方程250x m +-=的解是2x =-, ①()2250m ⨯-+-=, 解得:9m =, 故答案为:9.【点睛】此题考查的是根据一元一次方程的解,求方程中的参数,掌握方程解的定义是解决此题的关键. 12.F【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可. 【详解】解:与字母A 处于正方体相对面上的是字母:F ,故答案为:F .【点睛】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键. 13.80︒##80度【分析】根据邻补角的性质求出3∠,进而根据折叠的性质可得123∠+∠=∠,进而即可求得2∠.【详解】解:如图, ①150∠=︒,①3180118050130∠=︒-∠=︒-︒=︒, 由折叠的性质可得123∴∠+∠=∠2311305080∴∠=∠-∠=︒-︒=︒故答案为:80︒【点睛】本题考查了邻补角的性质和轴对称的性质,掌握折叠的性质是解题的关键. 14.-1【分析】a<0时,a -1<0,2-a>0,根据绝对值的含义和求法,化简|a -1|-|2-a|即可. 【详解】解:①a<0时,a -1<0,2-a>0, ①|a -1|-|2-a| =-(a -1)-(2-a ) =-a+1-2+a =-1.故答案为:-1.【点睛】此题主要考查了绝对值的含义和应用,解答此题的关键是要明确:(1)当a 是正有理数时,a 的绝对值是它本身a ;(2)当a 是负有理数时,a 的绝对值是它的相反数-a ;(3)当a 是零时,a 的绝对值是零.15.0.810016x -=【分析】设这件商品的标价是x 元,根据“按标价的8折销售可获利16元.”即可求解. 【详解】解:设这件商品的标价是x 元,根据题意得:0.810016x -=.故答案为:0.810016x -=【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键. 16.b a a b -<<-<【分析】根据数轴上点的位置可知0,a b a b <<<,进而确定,a b --的大小,将a 、b 、a -、b -表示在数轴上,进而根据数轴右边的数大于左边的数即可求解.【详解】0,a b a b <<<0b a ∴-<<-如图,0b a a b ∴-<<<-<即b a a b -<<-< 故答案为:b a a b -<<-<【点睛】本题考查了根据数轴上点的位置比较有理数的大小,数形结合是解题的关键. 17.78##0.875【分析】将111246⎛⎫++ ⎪⎝⎭看做整体,根据乘法分配律进行计算,再进行计算即可【详解】解:1111111111212462462468⎛⎫⎛⎫⎛⎫⨯+++----+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11122461111122468⎛⎫=+-⎛⨯++- ⎪⎝⎭⎫⨯++ ⎪⎝⎭1187=8故答案为:78【点睛】本题考查了有理数的混合运算,掌握乘法运算律是解题的关键. 18.()2m n -【分析】由角平分线的定义可得2AOB EOF COD ∠=∠-∠,结合AOD AOB BOD ∠=∠-∠可求解. 【详解】解:OE 平分AOC ∠,OF 平分DOB ∠,2,2AOC COE BOD DOF ∴∠=∠∠=∠AOB AOC COD BOD ∴∠=∠+∠+∠22COE DOF COD =∠+∠+∠2EOF COD =∠-∠,,EOF m BOC n ︒︒∠=∠=2,AOB m COD ∴∠=-∠AOD AOB BOD ∴∠=∠-∠2m COD BOD =-∠-∠2m BOC =-∠()2m n ︒=- 故答案为:()2m n -.【点睛】本题主要考查角的平分线,角的计算,灵活运用角的平分线的定义是解题的关键. 19.(1)3-(2)1-【解析】(1) 解:231216(2)2⎛⎫-+-⨯÷- ⎪⎝⎭()()488=-+-÷-41=-+3=-(2) 解:7111(36)9126⎛⎫-+⨯- ⎪⎝⎭ ()()()71113636369126=⨯--⨯-+⨯- 28336=-+-1=-.【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键. 20.222a ab --;6-【分析】先去括号,再合并同类项,再将字母的值代入求解即可.【详解】解:()()22642ab a ab a ---226684ab a ab a =--+222a ab =--当2a =-,12b =,原式()()2122222=-⨯--⨯-⨯82=-+6=-【点睛】本题考查了整式加减中的化简求值,正确的去括号是解题的关键.21.(1)6x =- (2)25x =-【解析】(1)2(3)6x +=-266x +=-解得6x =-(2)212134x x-+=-()()4213212x x -=+-843612x x -=+-52x =- 解得25x =-【点睛】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.22.见解析【分析】根据三视图的定义,画出图形,即可求解.【详解】解:根据题意得:该立体图形的主视图、左视图和俯视图如下图所示:【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.23.(1)见解析(2)见解析【分析】(1)作①ACM=①ABC,则①BCM即为所求;(2)作①DEN=①F=30°,EN交DF于点N,①FEN即为所求.(1)如图,①BCM即为所求.(2)如图,①FEN即为所求.【点睛】本题考查作图-复杂作图,解题的关键是理解题意,熟练掌握五种基本作图.24.购买了苹果4千克,则购买橘子2千克.【分析】设购买了苹果x 千克,则购买橘子()6x -千克,根据购买苹果和橘子6千克用了36元,建立一元一次方程,解方程求解即可.【详解】解:设购买了苹果x 千克,则购买橘子()6x -千克,根据题意得,()6.4 5.2636x x +-=解得:4x =则购买橘子:64=2-千克答:购买了苹果4千克,则购买橘子2千克.【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.25.(1)1cm =CD(2)3cm DE =【分析】(1)先根据线段的中点求得AD ,根据DC AC AD =-即可求解;(2)先根据线段的和差可得BC AB AC =-,根据线段的中点求得CE ,根据DE DC CE =+求解即可(1) D 是AB 的中点,10cm AB =15cm 2AD AB ∴== 6cm AC =∴DC AC AD =-651cm =-=∴1cm =CD(2)10cm AB =,6cm AC =1064cm BC AB AC ∴=-=-=E 是BC 的中点,12cm 2CE BC ∴== 1cm =CD∴DE DC CE =+123cm +=3cm DE ∴=【点睛】本题考查了线段中点的性质,线段和差的计算,数形结合是解题的关键.26.(1)36km/h ,12km/h(2)出发92小时后两车相遇 (3)出发5741428,,小时,两车相距30km. 【分析】(1)根据路程除以时间即可求得速度;(2)根据两车的路程和为甲、乙两地距离的2倍建立一元一次方程,解方程求解即可;(3)设出发t 小时后两车相距30km ,分情况讨论:①在工程车还未到达乙地,即当0<t <2时, ①在工程车在乙地停留,即当2≤t≤4时,①在工程车返回甲地的途中,即当4<t≤6时,分相遇前后相距30km ,根据题意建立一元一次方程,解方程求解即可.(1) 由题意得:()172236km/h 1262v ⨯==-- ()27212km/h 126v ==- 故答案为:36,12;(2)设出发x 小时后两车相遇,根据题意得:36(x -2)+12x =72×2, 解得92x = 答:出发92小时后两车相遇; (3)设出发t 小时后两车相距30km ,①在工程车还未到达乙地,即当0<t <2时,36t -12t=30,解得t=54, ①在工程车在乙地停留,即当2≤t≤4时,12t +30=72,解得t =72, ①在工程车返回甲地的途中,即当4<t≤6时,相遇前,36(t -2)+12t+30=72×2, 解得318t =(舍) 相遇后,36(t -2)+12t -30=72×2,解得418t = 答:出发5741428,,小时,两车相距30km. 【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.27.(1)100,130(2)160︒或120︒(3)答案见解析【分析】(1)根据补角的定义可求BOC ∠度数,在利用角平分线的定义可求解BOD ∠度数,进而求解AOD ∠的度数;(2)分两种情况:当BOC ∠在AOB ∠的外部时,当BOC ∠在AOB ∠的内部时,利用补角的定义结合角平分线的定义可求解;(3)可分两种情况:当BOC ∠和AOB ∠互为邻补角时,即OC 和OA 在OB 的不同侧时;当OC 和OA 在OB 的同一侧时。
苏科版七年级上册数学期末考试试卷带答案

苏科版七年级上册数学期末考试试题一、单选题1.﹣3的相反数是()A .13-B .13C .3-D .32.下列各式中,不相等的是()A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32-3.下列是一元一次方程的是()A .2230x x --=B .25x y +=C .11x =D .=1x -4.如图数轴上的A 、B 两点分别表示有理数a 、b ,下列式子中不正确...的是()A .0a b +<B .0b a ->C .b a <-D .()0a b --<5.下列结论正确的是()A .﹣3ab 2和b 2a 是同类项B .2π不是单项式C .a 比﹣a 大D .2是方程2x+1=4的解6.如图,点A 、B 、C 在同一直线上,H 为AC 的中点,M 为AB 的中点,N 为BC 的中点,则下列说法:①MN=HC ;②MH=12(AH ﹣HB );③MN=12(AC+HB );④HN=12(HC+HB ),其中正确的是()A .①②B .①②④C .②③④D .①②③④7.如图,OA 方向是北偏西40°方向,OB 平分∠AOC ,则∠BOC 的度数为()A .50°B .55°C .60°D .65°8.如图所示的正方体,如果把它展开,可以是下列图形中的()A .B .C .D .二、填空题9.将5500万用科学记数法表示应为_______.10.下列三个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某名同学的跳远成绩.其中,可以用“两点之间线段最短”来解释的是________.(填序号)11.写出一个解是=1x -,未知数的系数为3,且等号左边为多项式的一元一次方程_______.12.已知()2|2|30a b -++=,则a b 的值等于_______.13.已知2∠是1∠的余角、3∠是1∠的补角,则3∠比2∠大________︒.14.如图1是边长为18cm 的正方形纸板,剪掉阴影部分后将其折叠成如图2所示的长方体盒子.已知该长方体的宽是高的2倍,则它的体积是______3cm .15.如图,如果圆环外圆的周长比内圆的周长长2m ,那么外圆的半径比内圆的半径大______m.(结果保留π)16.有一数值转换器,原理如图所示,如果开始输入x 的值是34,则第一次输出的结果是17,第二次输出的结果是52,……,那么第2022次输出的结果是_________.17.球赛入场券有10元、15元两种票价,老师用480元买了40张入场券,其中票价为10元的比票价为15元的多的张数是_________.18.一副三角板AOB 与COD 如图摆放,且∠A=∠C=90°,∠AOB=60°,∠COD=45°,ON 平分∠COB ,OM 平分∠AOD .当三角板COD 绕O 点顺时针旋转(从图1到图2).设图1、图2中的∠NOM 的度数分别为α,β,αβ+=______度.三、解答题19.计算:(1)()218(6)2⎛⎫-⨯-+- ⎪⎝⎭;(2)()411293⎛⎫-+-÷--- ⎪⎝⎭20.解方程:71132x x -+-=.21.已知3a ﹣7b =﹣3,求代数式2(2a+b ﹣1)+5(a ﹣4b )﹣3b 的值.22.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.()1过点C 画线段AB 的平行线CD ;()2过点A 画线段BC 的垂线,垂足为E ;()3过点A 画线段AB 的垂线,交线段CB 的延长线于点F ;()4线段AE 的长度是点______到直线______的距离;()5线段AE 、BF 、AF 的大小关系是______.(用“<”连接)23.在平整的地面上,由若干个完全相同的棱长为10cm的小正方体堆成一个几何体,如图所示.(1)请你在方格纸中分别画出这个几何体的主视..图;..图和左视(2)若现在手头还有一些相同的小正方体,如果保持这个几何体的主视图和俯视图不变,Ⅰ.在图中所示几何体上最多可以添加______个小正方体;Ⅱ.在图中所示几何体上最多可以拿走______个小正方体;24.“城有二姝,小艺与迎迎.小艺行八十步,迎迎行六十.今迎迎先行百步,小艺追之,问几何步及之?(改编自《九章算术》)”(步:古长度单位,1步约合今1.5米.)大意:在相同的时间里,小艺走80步,迎迎可走60步.现让迎迎先走100步,小艺开始追迎迎,问小艺需走多少步方可追上迎迎?(1)在相同的时间里:①若小艺走160步,则迎迎可走________步;②若小艺走a步,则迎迎可走_________步;(2)求小艺追上迎迎时所走的步数.25.如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数.解:因为∠BOC=3∠AOB,∠AOB=40°所以∠BOC=_____°,所以∠AOC=_____+_____=____°+_____°=______°,因为OD平分∠AOC,所以∠COD=12_____=_______°.26.如图,两条直线AB,CD相交于点O,且∠AOC=∠AOD,射线OM从OB开始绕O 点逆时针方向旋转,速度为15°/s,射线ON同时从OD开始绕O点顺时针方向旋转,速度为12°/s,运动时间为t秒(0<t<12,本题出现的角均小于平角)(1)图中一定有个直角;当t=2时,∠MON的度数为,∠BON的度数为;(2)若OE平分∠COM,OF平分∠NOD,当∠EOF为直角时,请求出t的值;(3)当射线OM在∠COB内部,且7COM2BONMON∠+∠∠是定值时,求t的取值范围,并求出这个定值.参考答案1.D2.A3.D4.D5.A6.B7.D8.B9.75.510⨯10.②11.330x +=(答案不唯一)【详解】解:根据题意可得,330x +=(答案不唯一),故答案为:330x +=(答案不唯一)【点睛】本题考查了一元一次方程的定义,熟记定义是解题的关键.12.9【分析】根据绝对值的非负性和平方运算的非负性,可求得a ,b 的值,再把a ,b 的值代入,即可求得.【详解】解:()22|03|a b -++= ,||02a ≥﹣,()230b +≥,20a ∴-=,30b +=,解得a=2,b=-3,()2=3=9a b ∴-,故答案为:9.【点睛】本题考查了绝对值的非负性和平方运算的非负性,代数式求值,熟练掌握和运用绝对值的非负性和平方运算的非负性是解决本题的关键.13.90【分析】先根据余角性质得出∠2=90°-∠1,再根据补角性质得出∠3=180°-∠1,根据两角差计算即可.【详解】解∵2∠是1∠的余角,∴∠2+∠1=90°,∴∠2=90°-∠1,∵3∠是1∠的补角,∴∠3+∠1=180°,∴∠3=180°-∠1,∴∠3-∠2=180°-∠1-(90°-∠1)=90°.故答案为:90.【点睛】本题考查余角性质,补角性质,角的和差,掌握余角性质,补角性质,角的和差是解题关键.14.216【分析】设该长方体的高为x,则长方体的宽为2x,利用展开图得到2x+2x+x+x=18,然后解方程得到x的值,从而得到该长方体的高、宽、长,于是可计算出它的体积.【详解】设该长方体的高为x,则长方体的宽为2x,2x+2x+x+x=18,解得x=3,所以该长方体的高为3,则长方体的宽为6,长为18−6=12,所以它的体积为3×6×12=216(cm3),故答案为216.【点睛】本题的主要目的是为了考查列一元一次方程解应用题,其关键是设出未知数,找到边的等量关系,从而得到方程,求出长、宽、高,从而得到体积.15.1π【分析】设内圆的周长为l,表示出外圆周长l2+,利用周长公式表示出两圆半径之差即可得到结果.【详解】解:设内圆的周长为l,则外圆周长l2+,根据题意得:l2l1 2π2ππ+-=则外圆的半径比内圆的半径长1m.π故答案为1π.【点睛】考查了代数式,熟练掌握圆的周长公式是解本题的关键.16.2【分析】根据第一次输出的结果是17,第二次输出的结果是52,…,总结出每次输出的结果的规律,求出2022次输出的结果是多少即可.【详解】第一次输出的结果是:12×34=17,第二次输出的结果是:3×17+1=52,第三次输出的结果是:12×52=26,第四次输出的结果是:12×26=13,第五次输出的结果是:3×13+1=40,第六次输出的结果是:12×40=20,第七次输出的结果是:12×20=10,第八次输出的结果是:12×10=5,第九次输出的结果是:3×5+1=16,第十次输出的结果是:12×16=8,第十一次输出的结果是:12×8=4,第十二次输出的结果是:12×4=2,第十三次输出的结果是:12×2=1,第十四次输出的结果是:3×1+1=4,…,∴从第十一次开始,输出的结果分别是4、2、1,…,不断循环出现,∵(2022−10)÷3=2012÷3=670…2,∴第2022次输出的结果是2.故答案为:2.【点睛】此题主要考查了代数式求值问题,数字的变化规律,解答的关键是通过计算找到数字的变化规律.17.8【分析】设票价为10元买了x张,根据用480元买了40张入场券可得10x+15(40-x)=480,即可解得x=24,从而得到答案.【详解】解:设票价为10元买了x张,则票价为15元买了(40-x)张,票价为10元的比票价为15元的多的张数是x-(40-x)=2x-40,根据题意得:10x+15(40-x)=480,解得x=24,∴票价为15元买了40-x=16(张),票价为10元的比票价为15元的多的张数是2x-40=2×24-40=8,答:票价为10元的比票价为15元的多的张数是8,故答案为:8.【点睛】本题考查了一次方程的应用,解题的关键是读懂题意,找出等量关系列方程.18.105【分析】图1中先设∠AOM=x=∠DOM,则∠BOM=60−x,根据∠BOD=∠DOM−∠BOM,得出∠BOD的度数,再根据∠COB=∠BOD+∠DOC,求出∠CON=∠BON,最后根据∠NOM=∠BOM+∠BON,即可得出α;图2中设∠AOM=∠DOM=x,∠CON=∠BON =y,则∠BOD=60−2x,根据∠AOB=60°,∠COD=45°,列出算式,求出x−y的度数,最后根据∠MON与各角之间的关系,【详解】解:图1中设∠AOM=x=∠DOM,∵∠AOB=60°,∴∠BOM=60°−x,∵∠BOD=∠DOM−∠BOM,∴∠BOD=x−(60°−x)=2x−60°,∵∠COB=∠BOD+∠DOC,∴∠COB=(2x−60°)+45°=2x−15°,∴∠CON=∠BON=12(2x−15°)=x−7.5°,∴α=∠NOM=∠BOM+∠BON=60°−x+x−7.5°=52.5°;图2中设∠AOM=∠DOM=x,∠CON=∠BON=y,则∠BOD=60°−2x,∵∠COD=45°,∴60−2x+2y=45°,即x−y=7.5°,∴β=∠MON=x+(60−2x)+y=60−(x−y)=52.5°,∴αβ+=52.5°+52.5°=105°,故答案为:105.【点睛】本题考查了角的计算,解题的关键是设一个未知数(或两个未知数),用代数方法解决几何问题.19.(1)40;(2)-4【分析】(1)先算乘方,再算乘法,最后算加法;(2)先算乘方,再算除法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【详解】解:(1)原式=4+36=40;(2)原式=-1+6-9=-4.【点睛】考查了有理数混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.x=-23【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:71132x x -+-=去分母得,2(x-7)-3(1+x )=6,去括号得,2x-14-3-3x=6,移项得,2x-3x=6+14+3,合并同类项得,-x=23,系数化为1得,x=-23.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.11【分析】去括号,合并同类项,整体代入求值.【详解】解:()()221543a b a b b+-+--=4225203a b a b b+-+--=9212a b --.37=3a b -- ,∴原式=9212a b --=()3372a b --=()332⨯--=92--=11-.22.(1)见解析(2)见解析(3)见解析(4)线段AE 的长度是点A 到直线BC 的距离(5)A ,BC ,AE AF BF<<【分析】()()()123利用网格的特点直接作出平行线及垂线即可;()4利用垂线段的性质直接回答即可;()5利用垂线段最短比较两条线段的大小即可.【详解】()1直线CD 即为所求;()2直线AE 即为所求;()3直线AF 即为所求;()4线段AE 的长度是点A 到直线BC 的距离;()5AE BE ⊥ ,AE AF ∴<,AF AB ⊥ ,BF AF ∴>,AE AF BF ∴<<.故答案为A ,BC ,AE AF BF <<.【点睛】考查了垂线段最短和点到直线的距离的知识,解题的关键是理解有关垂线段的性质及能进行简单的基本作图.23.(1)见解析(2)Ⅰ.添加2个小正方体;Ⅱ.拿走2个小正方体【分析】对于(1),画出从正面,左面看该组合体看到的图形即可;对于(2),Ⅰ从俯视图的相应位置增加小正方体,直至主视图不变;Ⅱ在俯视图的基础上减少小正方体,至主视图不变.(1)解:该组合体主视图,左视图如图所示.(2)解:Ⅰ在俯视图的相应位置最多相应数量的正方体,如图.故答案为:2.Ⅱ在俯视图的相应位置最多减少相应数量的正方体,如图.故答案为:2.【点睛】本题主要考查了几何体的三视图,掌握简答组合体的三视图的画法是解题的关键.24.(1)①120,②34a ;(2)400步.【分析】(1)根据题意,先表示出小艺走160步的时间,然后进一步求取迎迎的步数即可;(2)设小艺追上迎迎所走的步数为x 步,则迎迎在相同时间内走的步数为()100-x 步,据此进一步列出方程求解即可.【详解】(1)①若小艺走160步,则迎迎可走:1006012080⨯=(步),②若小艺走a 步,则迎迎可走:360804a a ⨯=(步),故答案为:①120,②34a ;(2)设小艺追上迎迎所走的步数为x 步,则迎迎在相同时间内走的步数为()100-x 步,则:1008060x x -=,解得:400x =,答:小艺追上迎迎时所走的步数为400步.【点睛】本题主要考查了一元一次方程的实际应用,熟练掌握相关方法是解题关键.25.120°,∠AOB ,∠BOC ,40°,120°,160°,∠AOC ,80°.【分析】先求出BOC ∠的度数,再求出AOC ∠的度数,根据角平分线定义求出即可.【详解】∵3BOC AOB ∠=∠,40AOB ∠=︒∴120BOC ∠=︒∴40120160AOC AOB BOC =+=︒+︒=︒∠∠∠∵OD 平分AOC∠∴111608022COD AOC ==⨯︒=︒∠∠故答案为:120°,∠AOB ,∠BOC ,40°,120°,160°,∠AOC ,80°.26.(1)4;144°,114°;(2)t 的值为10s ;(3)当射线OM 在∠COB 内部,且7COM 2BON MON ∠+∠∠是定值时,t 的取值范围为103<t <6,这个定值是3【分析】(1)由直线AB ,CD 相交于点O ,∠AOC =∠AOD 即可得到共4个直角;当t =2时求得∠BOM =30°,∠NON =24°,即可得到∠MON 、∠BON 的度数;(2)用t 分别表示出∠BOM =15t ,∠NOD =12t ,∠COM =15t ﹣90°,根据OE 平分∠COM ,OF 平分∠NOD ,分别求得∠COE 、∠DOF,由∠EOF 为直角即∠COE+∠DOF =90°,列出方程解答即可.(3)先确定∠MON =180°时,∠BOM =90°时t 的值,再分两种情况进行计算,得到0<t <103时7COM 2BON MON ∠+∠∠不是定值,当103<t <6时,7COM 2BON MON ∠+∠∠=3是定值.【详解】(1)如图所示,∵两条直线AB ,CD 相交于点O ,∠AOC =∠AOD ,∴∠AOC =∠AOD =90°,∴∠BOC =∠BOD =90°,∴图中一定有4个直角;当t =2时,∠BOM =30°,∠NON =24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°;故答案为:4;144°,114°;(2)如图所示,∠BOM=15t,∠NOD=12t,∠COM=15t﹣90°,∵OE平分∠COM,OF平分∠NOD,∴∠COE=12∠COM=12(15t﹣90°),∠DOF=12∠DON=12×12t,∵当∠EOF为直角时,∠COE+∠DOF=90°,∴12(15t﹣90°)=12×12t,解得t=10,∴当∠EOF为直角时,t的值为10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t+90°+12t=180°,解得t=10 3,当∠BOM=90°时,15t=90°,解得t=6,①如图所示,当0<t<103时,∠COM=90°﹣15t,∠BON=90°+12t,∠MON=∠BOM+∠BOD+∠DON=15t+90°+12t,∴7COM2BONMON∠+∠∠=9015)2(9012)81015901227079(t t tt t t︒+︒+︒+︒++=︒﹣﹣81,(不是定值)②如图所示,当103<t<6时,∠COM=90°﹣15t,∠BON=90°+12t,∠MON=360°﹣(∠BOM+∠BOD+∠DON)=360°﹣(15t+90°+12t)=270°﹣27t,∴7COM2BONMON∠+∠∠=9015)2(9012)8102707(2727027t t tt t︒+︒+︒︒︒=﹣﹣81﹣﹣=3,(是定值)综上所述,当射线OM在∠COB内部,且7COM2BONMON∠+∠∠是定值时,t的取值范围为103<t<6,这个定值是3.。
苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试题一、单选题1.2022的相反数是()A .2022B .2022-C .12022D .12022-2.下列计算正确的是()A .2m ﹣m =2B .2m+n =2mnC .2m 3+3m 2=5m 5D .m 3n ﹣nm 3=03.将一副三角尺按下列几种方式摆放,则能使αβ∠=∠的摆放方式为()A .B .C .D .4.小丽同学在做作业时,不小心将方程2(x -3)-■=x +1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x =9,请问这个被污染的常数■是()A .4B .3C .2D .15.马龙同学沿直线将一三角形纸板剪掉一个角,发现剩下纸板的周长比原纸板的周长要小,能正确解释这一现象的数学知识是()A .经过一点有无数条直线B .两点之间,线段最短C .经过两点,有且仅有一条直线D .垂线段最短6.若(﹣2x+a )(x ﹣1)的结果中不含x 的一次项,则a 的值为()A .1B .﹣1C .2D .﹣27.如图所示几何体的左视图是()A .B .C .D .8.如图,点A 表示的实数是()A 6B 5C .15D .169.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是()A .ab >0B .﹣a+b >0C .a+b <0D .|a|﹣|b|>010.如图,点O 在直线AB 上,∠AOC 与∠BOD 互余,∠AOD =148°,则∠BOC 的度数为()A .122°B .132°C .128°D .138°二、填空题11.﹣690000000用科学记数法表示_____.12.若单项式2xmy 5和﹣x 2yn 是同类项,则n ﹣3m 的值为______.13.若2|35|(3)0m n -++=,则()9m n -=________.14.根据数值转换机的示意图,输出的值为_____.15.如图所示,一块长为m ,宽为n 的长方形地板中间有一条裂缝,若把裂缝右边的一块向右平移距离为d 的长度,则由此产生的裂缝面积是______.16.一个立方体的表面展开图如图所示,将其折叠成立方体后,与“你”对面的字为______.17.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.设原有x 只鸽子,则可列方程_____.18.如图,已知图①是一块边长为1,周长记为C 1的等边三角形卡纸,把图①的卡纸剪去一个边长为12的等边三角形纸板后得到图②,然后沿同一底边再剪去一个边长为14的等边三角形后得到图③,依次剪去一个边长为18、116、132…的等边三角形后,得到图④、⑤、⑥、…,记图n (n≥3)中的卡纸的周长为Cn ,则Cn ﹣Cn ﹣1=_____.三、解答题19.计算:(1)31125(25)25()424⨯--⨯+⨯-;(2)201721(1)(132(3)2⎡⎤---÷⨯--⎣⎦.20.解方程:(1)2(1)25(2)x x -=-+(2)5172124x x ++-=21.先化简,再求值:2(x 2y+3xy )﹣3(x 2y ﹣1)﹣2xy ﹣2,其中x =﹣2,y =2.22.如图,网格线的交点叫格点,格点P 是AOB ∠的边OB 上的一点(请利用网格作图,保留作图痕迹).(1)过点P画OB的垂线,交OA于点C;(2)线段的长度是点O到PC的距离;<的理由是;(3)PC OC(4)过点C画OB的平行线;23.现规定一种新运算,规则如下:a※b ab a bx-=,求x的值.=++,已知3※32424.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)25.如图,C是线段AB上的一点,N是线段BC的中点.若AB=12,AC=8,求AN的长.26.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求△BOE的度数;(3)试判断OF是否平分∠AOC,请说明理由.27.若在一个两位正整数A的个位数字之后添上数字6,组成一个三位数,我们称这个三位数为A的“添彩数”,如78的“添彩数”为786,若将一个两位正整数B减去6得到一个新数,我们称这个新数为B的“减压数”,如78的“减压数”为72.(1)求证:对任意一个两位正整数M,其“添彩数”与“减压数”之和能被11整除.(2)对任意一个两位正整数N ,我们将其“添彩数”与“减压数”之比记作()f N ,若()f N 为整数且()18f N ≤,求出所有符合题意的N 的值.参考答案1.B【分析】根据相反数的定义直接求解.【详解】解:实数2022的相反数是2022-,故选:B .【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2.D【分析】根据合并同类项逐项分析判断即可【详解】A.2m ﹣m =m ,故该选项不正确,不符合题意;B.2m 与n 不是同类项,不能合并,故该选项不正确,不符合题意;C.2m 3与3m 2不是同类项,不能合并,故该选项不正确,不符合题意;D.m 3n ﹣nm 3=0,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项,掌握合并同类项是解题的关键.3.B【分析】根据三角板的特殊角分别进行判断即可;【详解】由图形摆放可知,αβ∠≠∠;由图形摆放可知,αβ∠=∠;由图形摆放可知,15α∠=︒,=30β∠︒,αβ∠≠∠;由图形摆放可知,180αβ∠+∠=︒,αβ∠≠∠;故答案选B .【点睛】本题主要考查了直角三角板的角度求解,准确分析判断是解题的关键.4.C【分析】把x=9代入原方程即可求解.【详解】把x=9代入方程2(x-3)-■=x+1得2×6-■=10∴■=12-10=2故选C.【点睛】此题主要考查方程的解,解题的关键是把方程的根代入原方程.5.B【分析】根据两点之间,线段最短进行解答即可.【详解】解:某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是:两点之间,线段最短.故选:B.【点睛】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.6.D【分析】根据多项式乘多项式的运算法则进行化简,然后令含x的一次项系数为零即可求出答案.【详解】解:(﹣2x+a)(x﹣1)=﹣22x+(a+2)x﹣a,∴a+2=0,∴a=﹣2,故选:D.【点睛】本题考查了整式的乘法中的不含某项的计算,正确理解题意是解题的关键.7.A【分析】视线从左面观察几何体所得的视图叫左视图,能够看到的线用实线,看不到的线用虚线.【详解】解:从左边看,底层是一个矩形,上层是一个直角三角形(三角形与矩形之间没有实线隔开),左齐.故选:A.【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.8.B【分析】利用勾股定理求出OA长度,然后得到A点表示的实数即可【详解】解:∵OA =∴点A 故选B .【点睛】本题考查勾股定理,能够灵活运用勾股定理解题是本题的关键9.B【分析】根据a ,b 两数在数轴上的位置确定它们的符号和绝对值的大小,再对各个选项逐一分析判断即可.【详解】解:A .由数轴可知,﹣1<a <0<1<b ,|b|>|a|,因为a <0,b >0,所以ab <0,故选项错误,不符合题意;B .因为a <0,所以﹣a >0,又因为b >0,所以﹣a+b >0,故选项错正确,符合题意;C .因为a <0,b >0,|b|>|a|,所以a+b >0,故选项错误,不符合题意;D .因为|b|>|a|,所以|a|﹣|b|<0,故选项错误,不符合题意.故选:B【点睛】本题考查了实数与数轴上点的对应关系,解题的关键是确定a ,b 的符号和绝对值的大小关系.10.A【分析】利用∠AOC 与∠BOD 互余得出∠AOC+∠BOD =90°,再由平角的定义求出∠COD ,即可求出答案.【详解】解:∵点O 在直线AB 上,∠AOC 与∠BOD 互余,∴∠AOC+∠BOD =90°,∴∠COD =180°﹣(∠AOC+∠BOD )=180°﹣90°=90°,∵∠AOD =148°,∴∠BOD =180°﹣∠AOD =180°﹣148°=32°,∴∠BOC =∠COD+∠BOD =90°+32°=122°,故选:A .11.﹣6.9×108【分析】用科学记数法表示绝对值大于1的数,形如,11001,n a n <⨯<为正整数,据此解答.【详解】解:﹣690000000用科学记数法表示为﹣6.9×108故答案为:﹣6.9×108.12.-1【详解】解:∵单项式2xmy 5和﹣x 2yn 是同类项,∴m =2,n =5,∴n ﹣3m =5﹣6=-1.故答案为:-1.13.-20【分析】利用非负性,确定m=53,n=-3,代入计算即可.【详解】∵2|35|(3)0m n -++=,∴m=53,n=-3,∴()59(12)3m n -=⨯-=-20,故答案为:-20.14.19【详解】解:当x =﹣3时,31+x =3﹣2=19,故答案为:19.15.dn【分析】根据平移后的图形面积-平移前的面积=裂缝面积列式即可计算出结果.【详解】裂缝面积=(m+d)n-mn=mn+dn-mn=dn .故答案为dn .16.顺【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“试”是相对面,“你”与“顺”是相对面,“考”与“利”是相对面.故答案为:顺.17.36x -=58x+【分析】直接利用鸽笼的数量不变得出方程,即可得出答案.【详解】解:设原有x 只鸽子,则可列方程:3568x x -+=.故答案为:3568x x -+=.18.112n -【分析】利用等边三角形的性质(三边相等)求出等边三角形的周长C 1,C 2,C 3,C 4,根据周长相减的结果能找到规律即可求出答案.【详解】解:∵C 1=1+1+1=3,C 2=1+1+12=52,C 3=1+1+14×3=114,C 4=1+1+14×2+18×3=238,…∴C 3﹣C 2=12,C 3﹣C 2=114﹣52=14=(12)2;C 4﹣C 3=238﹣114=18=(12)3,…则C n ﹣Cn ﹣1=(12)n ﹣1=112n -.故答案为:112n -.19.(1)25;(2)16【详解】解:(1)原式=311252525424⨯+⨯-⨯=31125(424⨯+-=25×1=25;(2)原式=111(29)23--⨯⨯-=111(7)23--⨯⨯-=716-+=16.20.(1)67x =-;(2)43x =【分析】(1)首先去括号,然后移项,合并同类项,系数化为1即可;(2)去分母,然后去括号,移项,合并同类项,系数化为1即可求解.【详解】(1)解:222510x x -=--,76x =-,67x =-;(2)102724x x +--=,34x =,43x =.21.﹣x 2y+4xy+1,-23【分析】原式去括号再合并即可得到最简结果,将x 与y 的值代入计算即可求出值.【详解】原式=2x 2y+6xy ﹣3x 2y+3﹣2xy ﹣2=﹣x 2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.22.(1)见解析;(2)OP ;(3)垂线段最短;(4)见解析【详解】试题分析:(1)先以点P 为圆心,以任意长为半径画弧,与OB 交于两点,然后再分别以这两点为圆心,作弧在OB 两侧交于两点,过这两点作直线即可;(2)根据点到直线的距离的概念即可得;(3)根据垂线段最短即可得;(4)根据“同位角相等,两直线平行”作∠BOA 的同位角即可得.试题解析:(1)如图所示:PC 即为所求作的;(2)根据点到直线的距离的定义可知线段OP 的长度是点O 到PC 的距离,故答案为OP ;(3)PC<OC 的理由是垂线段最短,故答案为垂线段最短;(4)如图所示.23.6x =【分析】根据题意,可得:3※333324x x x -=++-=,据此求出x 的值即可.【详解】解:a ※b ab a b =++,3∴※333324x x x -=++-=,32433x x ∴+=-+,424x ∴=,解得:6x =.【点睛】此题主要考查了解一元一次方程的方法,解题的关键是要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.AB 两地距离为252千米.【分析】根据路程、速度、时间之间的关系列出方程,解方程即可.【详解】设AB 两地距离为x 千米,则CB 两地距离为(x ﹣2)千米.根据题意,得238282x x -+=+-解得x =252.答:AB 两地距离为252千米.【点睛】考查了一元一次方程的应用,解题关键是理解题意找到等量关系,根据等量关系列出方程.25.10【分析】先根据已知求出BC的长,再根据N是线段BC的中点求出CN,从而求出AN.【详解】解:∵AB=12,AC=8,∴BC=AB﹣AC=12﹣8=4,∵N是线段BC的中点,∴CN=12BC=12×4=2,∴AN=AC+CN=8+2=10.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及中点的性质是解答此题的关键.26.(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF 平分∠AOC .【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.27.(1)证明见解析;(2)17.【分析】(1)设M 的十位数字为a ,个位数字为b ,分别写出M 的“添彩数”和“减压数”,求和,化简,表示出11的倍数,即可证明;【详解】(1)证明:设M 的十位数字为a ,个位数字为b则其“添彩数”与“减压数”分别为:100a+10b+6;10a+b-6它们的差为:100a+10b+6+(10a+b-6)=110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y-6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9,则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数∴N 的值为17.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扬州市2006—2007学年度第一学期期末学业评价七年级数学试卷 2007.2(满分:150分;考试时间:120分钟)[卷首语:亲爱的同学,你好!升入初中已经一学期了,祝贺你与新课程一起成长。
相信你在原有的基础上又掌握了许多新的数学知识和方法,变得更加聪明了。
你定会应用数学来一.选择题(每题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每题3分,计30分)1.的绝对值是A .-3B .13- C .3 D .3± 2.下列计算正确的是A .ab b a 523=+B .235=-y y C .277a a a =+ D .y x yx y x22223=- 3.下列关于单项式532xy -的说法中,正确的是A .系数是3,次数是2B .系数是53,次数是2 C .系数是53,次数是3 D .系数是53-,次数是34.将下面的直角梯形绕直线l 旋转一周,可以得到右边立体图形的是5.有理数a 、b 在数轴上的位置如图所示,则下列各式错误的是A .b <0<aB .│b│>│a│C .ab <0D .a +b >0-1b aO6.下列方程中,解为2=x 的方程是A .323=-xB .1)1(24=--xC .x x 26=+-D .0121=+x 7.下列四个平面图形中,不能折叠成无盖的长方体盒子的是A B C D8.若代数式35)2(22++-y x m 的值与字母x 的取值无关,则m 的值是 A .2 B .-2 C .-3 D .09.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了 A .70元 B .120元 C .150元 D .300元 10.如图,,,,,b CD a AB CD AD BC AC ==⊥⊥则AC 的取值范围 A .大于b B .小于a C .大于b 且小于a D .无法确定二.填空题(每题3分,计30分)11.写出一个比2-大的负数: 。
12.某天温度最高是12℃,最低是-7℃,这一天温差是 ℃。
13.已知6234'︒=∠α,则α∠的余角为 。
14.地球的表面积约是510 000 000km 2,可用科学记数法表示为 km 2。
15.若021=+a ,则=3a 。
16.若212b an +与2235b a n -是同类项,则=n 。
17.如图,已知正方形的边长为4cm ,则图中阴影部分的面积为 cm 2。
18.小华和小明每天坚持跑步,小明每秒跑6米,小华每秒跑4米,如果他们同时从相距200米的两地相向起跑,那么几秒后两人相遇?若设x 秒后两人相遇,可列方程 。
baCBDA19.如图,点A 在射线OX 上,OA 的长等于2cm 。
如果OA 绕点O 按逆时针方向旋转30°到/OA ,那么点/A 的位置可以用(2,30°)表示。
如果将/OA 再沿逆时针方向继续旋转45°,到//OA ,那么点//A 的位置可以用( , )表示。
XA /AO 20.已知线段AB=20cm ,直线..AB 上有一点C ,且BC=6cm , M 是线段AC 的中点,则AM= cm 。
8题,满分90分) 21.(本题满分10分)(1)计算:)6(30)43()4(2-÷+-⨯-(2)化简:)6()2(422-+--xy x xy x22.(本题满分10分) (1)解方程:x x -=-1)1(4(2)解方程:133221=--+x x 23.(本题满分10分)(1)如图1,在方格纸中有三个格点三角形(顶点在小正方形的顶点上),把三角形ABC 绕A 点顺时针旋转90°,可以得到三角形ADE ,再将三角形ADE 向左平移5格,得到三角形FHG 。
图中,直线AB 、AD 、FH 两两之间有怎样的位置关系?(2)如图2,用直尺过点A 画AD ⊥AB ,过点C 画CF ⊥AB ,垂足为F ,并在图中标出直线AD 、CF 经过的格点。
图1 图224.(本题满分12分)(1)根据下列条件,分别求代数式)(11)(5)(4y x y x y x ---+-的值:(9分)①1,3==y x②2,0-==y x③5.2,5.0-=-=y x(2)观察上述计算结果,请你给出一组y x ,的值,使得上述代数式的值与(1)中①的计算结果相同。
(3分) 25.(本题满分12分)如图,直线AB 与CD 相交于点O ,OE ⊥AB ,OF ⊥CD 。
(1)图中∠AOF 的余角是 (把符合条件的角都填出来)。
(3分)(2)图中除直角相等外,还有相等的角,请写出三对:① ;② ;③ 。
(3分) (3)①如果∠AOD =140°.那么根据 ,可得∠BOC = 度。
(3分)②如果AOD EOF ∠=∠51,求∠EOF 的度数。
(3分)OFEDC BA26.(本题满分12分)前一排增加a个座位。
(1)请你在下表的空格里填写一个适当的代数式:(6分)(2)已知第15排座位数是第5排座位数的2倍,求a的值,并计算第21排有多少个座位?(6分)(1)这个几何体由个小正方体组成,请画出这个几何体的三视图。
(5分)主视图左视图俯视图(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色。
(3分)(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?这时如果要重新给这个几何体表面喷上红漆,需要喷漆的面积比原几何体增加还是减少了?增加或减少了多少cm2?(4分)(1)两同学向公司经理了解租车的价格。
公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元。
”王老师说:“我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”甲、乙两同学想了一下,都说知道了价格。
你知道45座和60座的客车每辆每天的租金各是多少元?(6分)(2)公司经理问:“你们准备怎样租车?”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在一旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗?”如果是你,你该如何设计租车方案,并说明理由。
(6分)扬州市2006—2007学年度第一学期期末学业评价七年级数学试卷参考答案及评分标准说明:若有本参考答案没有提及的解法,只要解答正确,请参照给分.一、选择题(每题3分,计30分)二、填空题(每题3分,计30分)11.省略; 12.19; 13.55°34′; 14.5.1×108; 15.81-; 16.3; 17.8; 18.20046=+x x ; 19.(2,75°); 20.7或13。
(只写出一个给2分)三、解答题(本题计90分)21.(1)原式=16)5()43(-+-⨯ ……………………3分 =-12+(-5) ……………………4分 =-17 ……………………5分 (2)原式=64822+---xy x xy x ……………………3分 =6572+-xy x ………………………5分 22.(1)x x -=-144 ……………………2分144+=+x x ……………………3分 55=x ……………………4分 1=x ………………5分 (2)6)32(2)1(3=--+x x …………………2分66433=+-+x x ……………………3分 79=x ……………………4分97=x ……………………5分23.(1)(1)AD ⊥AB ,FH ⊥AB ,FH ∥AD ……………………6分(2)两条直线画正确得2分,每条直线上标出除已知点外一个格点即可,少标1个扣1分。
……………………10分24.(1)①②③结果均为-4;如果直接代入求解,代入正确的给1分,计算正确的给2分;如果先化简,再代入求值的,化简正确给3分,代入计算正确的各给2分。
(2)所给y x ,的值满足2=-y x 。
………………………12分25.(1)∠AOC 、∠EOF 、∠BOD ………………………3分(2)∠AOC =∠EOF =∠BOD ,∠COE =∠BOF ,∠AOD =∠COB ,∠AOF =∠DOE ……………………6分(只须写出不重复的三对即可)(3)①对顶角相等 ……………………8分140 ……………………9分 ②∠EOF =30° ……………………11分26.(1)a 212+;a 312+;…;a n )1(12-+。
……………………6分 (2)12+14a =2)412(a + ……………………9分 解之得:2=a ……………………10分 求得当21=n 时,a n )1(12-+=12+(21-1)×2=52。
……12分 27.(1)10 ……………2分三视图 ……………5分 (2)1、2、3 ……………8分 (3)最多可以放4个小正方体 …………9分 比原来增加了4002cm 。
……………12分28.(1)设45座的客车每辆每天的租金为x 元,则60座的客车每辆每天的租金为(100+x )元, ……………………1分 则:16005)100(2=++x x , ……………………3分解得:200=x ……………………4分 ∴300100=+x ……………………5分答:设45座的客车每辆每天的租金为200元,则60座的客车每辆每天的租金为300元。
……………………6分(2)设这个学校七年级共有y 名学生, 则:2604530+=+yy ……………………8分 解得:240=y , ……………………9分甲和乙的方案的费用为1200元, ……………………10分比甲和乙的经济的方案是:租用45座的客车4辆,60座的客车1辆。
…………11分 这个方案的费用为1100元,且能让所有同学都能有座位。
…………12分。