苏科版数学七年级上学期期末考试试题及答案

合集下载

苏科版七年级上册数学期末考试试卷带答案

苏科版七年级上册数学期末考试试卷带答案

苏科版七年级上册数学期末考试试题一、单选题1.2022的相反数是()A .2022B .2022-C .12022D .12022-2.下列写法正确的是()A .直线AB 、CD 交于点m B .直线a 、b 交于点mC .直线a 、b 交于点MD .直线ab 、cd 交于点M3.下列四个几何体中,是四棱锥的是()A .B .C .D .4.下列各式的计算结果正确的是()A .355x y xy +=B .22752y y -=C .835a a a -=D .222523ab a b ab -=5.课本习题中有一方程2x -=■x+3,其中一个数字被污渍盖住了,书后该方程的答案为x =﹣7,那么■处的数字应是()A .﹣5B .﹣1C .1D .56.一个角的余角与这个角的补角之和为130°,这个角的度数是()A .60°B .70°C .75°D .80°7.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是()A .30°B .45°C .50°D .60°8.如图所示的图形是由正方形和相同大小的圆按照一定规律摆放而成,按此规律,若要得到604个圆,则为第()个图形.A.200B.201C.202D.302二、填空题9.单项式﹣23xy3的次数是_____.10.将102600000000这个数据用科学记数法表示正确的是_____________.11.关于m、n的单项式﹣2manb与3m2a﹣1n2的和仍为单项式,则这两个单项式的和为_____.12.如图,直线AB、CD相交于点O,OE平分∠BOD,∠BOE=24°13′48″,则∠AOC=_____°.13.已知点C在直线AB上,线段AB=8cm,BC=2cm,点D是线段AC的中点,则线段BD的长为_____cm.14.用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要_____个小立方块.15.某次篮球联赛共有十支队伍参赛,部分积分表如下表:比赛场队名胜场负场积分次A1814432B1811729C189927根据表格提供的信息,可知胜一场积_____分.三、解答题16.计算:(1)(﹣3.2)+12.5+(﹣16.8)﹣(﹣7.5);(2)﹣53×[4﹣(﹣4)]﹣300÷5.17.先化简,再求值:2(3ab 2﹣a 2b+ab )﹣3(2ab 2﹣4a 2b+ab ),其中a =﹣1,b =2.18.解方程:(1)5(2)1x x --=;(2)21101211364x x x -++-=-.19.已知A =3x 2+2x ﹣1,B =﹣2x 2﹣3x+5.求:(1)A ﹣2B ;(2)若2A 与3B 互为相反数,求x 的值.20.如图,点A 在∠MON 的边OM 上,选择合适的画图工具按要求画图.(1)反向延长射线ON ,得到射线OP ,画∠MOP 的角平分线OQ ;(2)在射线OP 上取一点B ,使得OB =OA ;(3)在射线OQ 上作一点C ,使得CB+AC 最小,这样作图依据是;(4)过点O 画OD ⊥OQ ,垂足为点O ,用量角器量得∠NOD 的度数为°.21.下图是某几何体的表面展开图:(1)这个几何体的名称是;(2)若该几何体的主视图是正方形,请在网格中画出该几何体的左视图、俯视图;(3)若网格中每个小正方形的边长为1,则这个几何体的体积为.22.如图,点O在直线AB上,CO⊥AB,∠2﹣∠1=34°,OE是∠AOD的平分线,OF⊥OE.(1)求∠AOE的度数.(2)找出图中与∠BOF互补的角,并求出∠BOF补角的度数.23.某校需制作一块活动展板,请来师徒两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.(1)两个人合作需要多少天完成?(2)现由徒弟先做1天,师徒两人再合作完成这项工作,问:徒弟共做了几天?24.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数﹣2,点B表示的数4,下列各数,3,2,0所对应的点分别C1,C2,C3,其中是点A,B的“联盟点”的是;(2)点A表示数﹣10,点B表示的数30,P在为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“联盟点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P表示的数为.25.2016年元旦来临之前,为了迎新年,甲、乙两校联合准备文艺汇演,甲、乙两校共92人参加演出(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买演出服装(一人买一套),下面是某服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套及以上每套服装的价格60元50元40元如果两校分别单独购买服装,一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱;(2)甲、乙两校各有多少学生准备参加演出;(3)如果甲校有9名准备参加演出的同学抽调去参加科技创新比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱.参考答案1.B【分析】根据相反数的定义直接求解.,【详解】解:实数2022的相反数是2022故选:B.【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2.C【分析】根据直线和点的表示法即可判断.【详解】A.点只能用一个大写字母表示,不能用小写字母表示,故错误;B.点只能用一个大写字母表示,不能用小写字母表示,故错误;C.正确;D.直线能用两个大写字母表示或用一个小写字母表示,不能用两个小写字母表示,故错误;故选:C .【点睛】本题考查了直线和点的表示法,直线能用两个大写字母表示,用一个小写字母表示,点只能用一个大写字母表示.3.A【分析】根据立体几何的识别选出正确选项.【详解】A 选项是四棱锥;B 选项是圆柱;C 选项是四棱柱;D 选项是三棱柱.故选:A .【点睛】本题考查立体几何的识别,解题的关键是掌握四棱锥的定义.4.C【分析】根据同类项所含字母相同,相同字母也分别相同的项是同类项,合并同类项法则是只把相似相加减,字母与字母的指数不变对各选项进行一一判断即可.【详解】A.∵3x 与5y 不是同类项,不能合并,355x y xy +≠,故选项A 不正确;B.∵()2222757522y y y y -=-=≠,故选项B 不正确;C.∵()83835a a a a -=-=,故选项C 正确;D.∵25ab 与22a b 不是同类项,不能合并,222523ab a b ab -≠,故选项D 不正确.故选C .【点睛】本题考查同类项与合并同类项法则,掌握同类项概念与合并同类项法则是解题关键.5.C【分析】设■表示的数为a ,将x =﹣7代入方程2x -=■x+3求解即可.【详解】解:设■表示的数为a ,∵x =﹣7是方程2x -=■x+3的解,∴72a--=-7+3,∴a =1,即■处的数字应是1,故选:C .【点睛】本题考查解一元一次方程,熟练掌握该知识点是解题关键.6.B【分析】设这个角的度数为x .再用x 表示出这个角的余角和补角的度数,最后根据题意列出一元一次方程并求解即可.【详解】解:设这个角的度数为x ,则这个角的余角是90x ︒-,这个角的补角是180x ︒-.根据题意可得90°﹣x+180°﹣x =130°,解得:x =70°,所以这个角是70°故选:B .【点睛】本题考查余角的定义,补角的定义,一元一次方程的实际应用,综合应用这些知识点是解题关键.7.B【分析】由角平分线的定义可得,∠COM=12∠AOC ,∠NOC=12∠BOC ,再根据∠MON=∠MOC-∠NOC 解答即可.【详解】∵OM 平分AOC ∠,∴∠COM=12∠AOC ,∵ON 平分∠BOC ,∴∠NOC=12∠BOC ,∴∠MON=∠MOC-∠NOC=12(∠AOC-∠BOC)=12∠AOB=45°.故选B.【点睛】本题考查角的相关计算,解题的关键是通过角平分线的定义将所求的角转化已知角.8.B【分析】观察图形的变化找到规律,再代入求解即可.【详解】解:观察图形的变化可知.第1个图形中圆的个数为4;第2个图形中圆的个数为4+3=4+3×1=7;第3个图形中圆的个数为4+3+3=4+3×2=10;…则第n 个图形中圆的个数为4+3×(n ﹣1)=3n+1.当有604个圆时,得3n+1=604,解得:n =201.故选:B .9.4【详解】解:单项式33328xy xy -=-的次数是4.故答案为:4.10.111.02610⨯【详解】解:102600000000=111.02610⨯故答案为:111.02610⨯.11.2mn 【分析】根据单项式的定义、合并同类项法则解决此题.【详解】解:由题意得:212a ab -=⎧⎨=⎩12a b =⎧∴⎨=⎩∴这两个单项式的和为:22223mn mn mn -=+.故答案为:2mn .12.48.46【分析】根据角平分线的定义可得2BOD BOE ∠=∠,再根据对顶角相等解答.【详解】解:OE 平分BOD ∠,''''2224134848273648.46BOD BOE ∴∠=∠=⨯︒=︒=''︒,48.46AOC BOD ∴∠=∠=︒.故答案为:48.46.13.5或3【分析】分为两种情况,画出图形,结合图形求出AC和DC,即可求出答案.【详解】解:分为两种情况:①点C在线段AB上,如图所示:∵AB=8cm,BC=2cm,∴AC=AB﹣BC=6cm,∵点D是线段AC的中点,∴CD12=AC=3cm,∴BD=CD+BC=3+2=5cm;②点C在线段AB的延长线上,如图所示:∵AB=8cm,BC=2cm,∴AC=AB+BC=10cm,∵点D是线段AC的中点,∴AD12=AC=5cm,∴BD=CD﹣BC=5﹣2=3cm;即线段BD的长是5cm或3cm.故答案为:5或3.14.5【分析】根据主视图可判断组成该几何体的小正方体的最少个数的分布情况.【详解】解:根据题意,组成该几何体的小正方体的分布情况如下图所示,所以这样的几何体最少要5个小立方块.故答案为:5.15.2【分析】根据C队情况确定胜一场和负一场共积3分,然后设胜一场积x分,则负一场积(3﹣x)分,根据A队情况列出一元一次方程并求解即可.【详解】解:观察C队情况,可知胜一场和负一场的积分之和为27÷9=3分.设胜一场积x分,则负一场积(3﹣x)分.根据A队情况得14x+4(3﹣x)=32.解得x=2.∴胜一场积2分.故答案为:2.16.(1)0(2)-1060【解析】(1)解:原式=﹣3.2+12.5﹣16.8+7.5=(﹣3.2﹣16.8)+(12.5+7.5)=(﹣20)+20=0(2)解:原式=﹣125×(4+4)﹣300÷5=﹣125×8﹣300÷5=﹣1000﹣60=﹣106017.10a2b﹣ab;22【分析】先把整式去括号、合并同类项化简后,再代入计算即可.【详解】解:2(3ab2﹣a2b+ab)﹣3(2ab2﹣4a2b+ab)=6ab2﹣2a2b+2ab﹣6ab2+12a2b﹣3ab=10a2b﹣ab.当a=﹣1,b=2时,原式=10a2b﹣ab=10×(﹣1)2×2﹣(﹣1)×2=10×1×2﹣(﹣1)×2=20+2=22.18.(1)x=12;(2)x=16【分析】(1)先去括号,再合并解方程即可;(2)按照去分母、去括号、合并同类项、系数化为1的步骤解方程即可.【详解】(1)5x-2+x=1x=12;(2)4(2x-1)-2(10x+1)=3(2x+1)-128x-4-20x-2=6x+3-12-18x=-316x=.19.(1)7x2+8x﹣11(2)135 x=【分析】(1)根据整式的加减运算法则计算即可.(2)根据相反数的性质列出一元一次方程并求解即可.(1)解:∵A=3x2+2x﹣1,B=﹣2x2﹣3x+5,∴A﹣2B=(3x2+2x﹣1)﹣2(﹣2x2﹣3x+5)=3x2+2x﹣1+4x2+6x﹣10=7x2+8x﹣11.(2)解:∵2A与3B互为相反数,∴2A+3B=0.∵A=3x2+2x﹣1,B=﹣2x2﹣3x+5,∴2(3x2+2x﹣1)+3(﹣2x2﹣3x+5)=0.解得135x=.20.(1)见解析(2)见解析(3)两点之间线段最短(4)28或152【分析】(1)根据题意画出图形即可;(2)根据要求画出图形即可;(3)利用两点之间线段最短解决问题即可;(4)利用测量法解决问题.(1)解:如图,射线ON,射线OQ即为所求;(2)解:如图,线段OB即为所求;(3)解:如图,点C即为所求.作图依据:两点之间线段最短,故答案为:两点之间线段最短;(4)解:测量可知:∠DON=28°或152°,故答案为:28或152.21.(1)长方体;(2)作图见解析;(3)12.【分析】(1)展开图都是由3对长方形组成的,每对长方形的大小完全相同.(2)观察左视图,主视图以及俯视图即可判定.(3)根据长方体的体积公式求解.【详解】(1)由题目中的图可知为长方体.(2)∵该几何体的主视图是正方形,则主视图和俯视图如图:⨯⨯=.(3)体积=长⨯宽⨯高=32212【点睛】本题考查作图-三视图、解题的关键是学会观察、搞清楚三视图的定义,求长方体体积的计算公式.22.(1)59°(2)∠AOF;21°【分析】(1)根据垂线的定义确定∠COB=∠AOC=90°,进而得到∠1+∠2=90°,再根据∠2﹣∠1=34°用∠1表示∠2,进而可求出∠1的度数,根据角的和差关系求出∠AOD的度数,最后根据角平分线的定义即可求出∠AOE.(2)根据补角的定义即可得出图中与∠BOF互补的角.根据垂线的定义确定∠EOF=90°,再根据角的和差关系即可求出∠BOF补角的度数.(1)解:∵CO⊥AB,∴∠COB=∠AOC=90°.∴∠1+∠2=90°.∵∠2﹣∠1=34°,∴∠2=∠1+34°.∴∠1+∠1+34°=90°.∴∠1=28°.∴∠AOD =∠AOC+∠1=90°+28°=118°.∵OE 是∠AOD 的平分线,∴1592AOE AOD ∠=∠=︒.(2)解:点O 在直线AB 上,∴∠AOF+∠BOF=180°.∴图中与∠BOF 互补的角是∠AOF .∵OF ⊥OE ,∴∠EOF =90°.∴∠AOF =∠EOF ﹣∠AOE =21°.【点睛】本题考查垂线的定义,角的和差关系,角平分线的定义,补角的定义,熟练掌握这些知识点是解题关键.23.(1)两个人合作需要125天完成(2)3天【分析】(1)设两个人合作需要x 天完成,根据师傅完成的工作量+徒弟完成的工作量=总工作量,即可得出关于x 的一元一次方程,解之即可求出两个人合作完成这项工作所需时间;(2)设徒弟共做了y 天,则师傅做了(y ﹣1)天,根据师傅完成的工作量+徒弟完成的工作量=总工作量,即可得出关于y 的一元一次方程,解之即可求出徒弟共做的时间.(1)解:设两个人合作需要x 天完成,依题意得:46x x +=1,解得:x 125=.答:两个人合作需要125天完成.(2)设徒弟共做了y 天,则师傅做了(y ﹣1)天,依题意得:146y y -+=1,解得:y =3.答:徒弟共做了3天.【点睛】本题考查列一元一次方程解应用题,掌握列一元一次方程解应用题的方法与步骤是解题关键.24.(1)C2或C3(2)①103或503或﹣50;②70或50或110【分析】(1)根据“联盟点”的定义,分别验证C1,C2,C3三点即可.(2)①设点P在数轴上所表示的数为x.根据点P所处的位置进行分类讨论,根据“联盟点”的定义列出方程求解即可.②分三种情况进行解答,即点A是点P,点B的“联盟点”;点B是点A、点P的“联盟点”;点P是点A、点B的“联盟点”,然后根据“联盟点”的定义列出方程求解即可.(1)解:对于表示的数是3的C1来说.∵点A所表示的数为﹣2,点B所表示的数是4,∴AC1=5,BC1=1.∵AC1和BC1不满足2倍的数量关系,∴C1不是点A、点B的“联盟点”.对于表示的数是2的C2来说.∵点A所表示的数为﹣2,点B所表示的数是4,∴AC2=4,BC2=2.∵422=⨯,即AC2=2BC2,∴C2是点A、点B的“联盟点”.对于表示的数是0的C3来说.∵点A所表示的数为﹣2,点B所表示的数是4,∴AC3=2,BC3=4.∵422=⨯,即BC3=2AC3,∴C3是点A、点B的“联盟点”.故答案为:C2或C3.(2)解:①设点P在数轴上所表示的数为x.当点P 在线段AB 上,且PA =2PB 时.根据题意得()()10230x x --=-.解得503x =.当点P 在线段AB 上,且2PA =PB 时.根据题意得()21030x x --=-⎡⎤⎣⎦.解得103x =.当点P 在点A 的左侧时,且2PA =PB 时.根据题意得2(﹣10﹣x )=30﹣x .解得x =﹣50.综上所述,点P 表示的数为103或503或﹣50.②当点A 是点P ,点B 的“联盟点”时,有PA =2AB .根据题意得()()1023010x --=⨯--⎡⎤⎣⎦.解得x =70.当点B 是点A 、点P 的“联盟点”时,有AB =2PB 或2AB =PB .根据题意得()()3010230x --=-或()2301030x ⨯--=-⎡⎤⎣⎦.解得x =50或x =110.当点P 是点A 、点B 的“联盟点”时,有PA =2PB .根据题意得()()10230x x --=⨯-.解得x =70.所以此时点P 表示的数为70或50或110.故答案为:70或50或110.【点睛】本题考查数轴上两点间的距离,一元一次方程的实际应用,正确理解题意和应用分类讨论思想是解题关键.25.(1)1320元;(2)乙校40人,甲校52人;(3)两种,买91套最省钱.【分析】(1)根据表格可得两校合买40元/套,因此用5000减去92乘以40元每套即可;(2)首先讨论,如果两小都超过45人,花费应为50×92=4600元,4600<5000,因此甲校人数多余45,乙校人数少于46,再设乙校x 人,甲校(92﹣x )人,由题意得等量关系:甲校单独购买服装的花费+乙校单独购买服装的花费=5000元,根据等量关系列出方程,再解即可;(3)讨论买83套的花费和买91套的花费,然后进行比较即可.【详解】解:(1)5000﹣92×40=1320(元).答:比各自购买服装共可以节省1320元;(2)∵50×92=4600<5000,∴甲校人数多余45,乙校人数少于46,设乙校x人,甲校(92﹣x)人,由题意得:60x+50(92﹣x)=5000,解得:x=40,则92﹣40=52(人),答:乙校40人,甲校52人;(3)①如果买92﹣9=83套,则花费为:83×50=4150(元),②如果买91套,则花费:91×40=3640(元),∵3640<4200,∴买91套.答:两种购买方案,一种是购买83套,一种是购买91套,应买91套最省钱.【点睛】本题考查一元一次方程的应用,掌握题目中的等量关系是本题的解题关键.。

苏科版七年级上册数学期末考试试卷含答案

苏科版七年级上册数学期末考试试卷含答案

苏科版七年级上册数学期末考试试题一、单选题1.2022-的相反数是()A .12022-B .12022C .2022-D .20222.用科学记数法表示42000为()A .34210⨯B .44.210⨯C .54.210⨯D .54200010⨯3.下列图形绕图中的虚线旋转一周,能形成圆锥的是()A .B .C .D .4.下列运算中,正确的是()A .a+2a =3a 2B .2a ﹣a =1C .3ab 2﹣2b 2a =ab 2D .2a+b =2ab5.若关于x 的一元一次方程2x ﹣k+1=0的解是x =2,那么k 的值是()A .3B .4C .5D .66.若3xm +5y 2与23x 8yn +4的差是一个单项式,则代数式nm 的值为()A .﹣8B .6C .﹣6D .87.古代数学:现有一伙人共同买一个物品,每人出8钱,还余3钱;每人出7钱,还差4钱,问有人数、物价各是多少?设物价为x 钱,根据题意可列出方程()A .8374x x +=-B .3487x x +-=C .8374x x -=+D .3487x x -+=8.有下列说法:①射线AB 与射线BA 表示同一条直线;②若AB =BC ,则点B 是线段AC 的中点;③过一点有且只有一条直线与已知直线平行;④两点之间,线段最短;⑤已知三条射线OA ,OB ,OC ,若12AOC AOB ∠=∠,则射线OC 是∠AOB 的平分线;⑥在同一平面内,两条不重合的直线的位置关系只有两种:相交或平行.其中正确的有()A .1个B .2个C .3个D .4个二、填空题9.比0小4的数是_____.10.单项式﹣2πa2bc的次数为_____.11.已知∠α=32°24′,则∠α的补角是_____.12.如图,想在河堤两岸搭建一座桥,搭建方式最短的是线段_____.13.已知a﹣2b=1,那么代数式5﹣2a+4b的值是_____.14.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之积为24,则x﹣y=_____.15.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°,∠2=_____.16.某城市下水管道工程由甲、乙两个工程队单独铺设分别需要10天和15天完成,如果两队从两端同时施工2天,然后由乙单独完成,还需_____天完成.17.如图所示的运算程序中,若开始输入的x值为96,我们发现第一次输出的结果为48,第二次输出的结果为24,…,则第2022次输出的结果为_____.18.如图,在长方形ABCD中,AB=6cm,BC=8cm,点E是AB上的一点,且AE=2BE.点P从点C出发,以2cm/s的速度沿点C﹣D﹣A﹣E匀速运动,最终到达点E.设点P运动时间为ts,若三角形PCE的面积为18cm2,则t的值为_____.三、解答题19.计算:(1)132()12243-+-⨯;(2)2022211(3)|2|2-+-÷--.20.解方程:(1)2﹣3x =5﹣2x ;(2)121123x x +-=-.21.先化简,再求值:3(2a 2b ﹣ab 2)﹣3(ab 2﹣2a 2b ),其中21||(3)02a b -++=.22.在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD 的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)过点C 画AD 的平行线CE ;(2)过点B 画CD 的垂线,垂足为F .23.如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请在网格中画出几何体的主视图、左视图、俯视图;(2)图中共有个小正方体.(3)已知每个小正方体的棱长为1cm,则该几何体的表面积为cm2.24.如图,已知点D是线段AB上一点,点C是线段AB的中点,若AB=8cm,BD=3cm.(1)求线段CD的长;(2)若点E是线段AB上一点,且13BE BD,求线段AE的长.25.如图,直线AB、CD相交于点O,OE平分∠BOD,OE⊥OF.(1)若∠DOE=32°,求∠BOF的度数;(2)若∠COE:∠COF=8:3,求∠AOF的度数.26.某景区旅游团队的门票价格如下:购票人数不超过50人超过50人,但不超过100人超过100人门票价格100元/人80元/人60元/人(1)甲旅游团共有40人,则甲旅游团共付门票费元;(2)乙旅游团共付门票费7200元,则乙旅游团共有人;(3)丙,丁两个旅游团共有100人,其中丙旅游团人数不超过50人,两个旅游团先后共付门票费8600元,求丙、丁两个旅游团的人数.27.如图1:已知OB⊥OD,OA⊥OC,∠COD=40°,若射线OA绕O点以每秒30°的速度顺时针旋转,射线OC绕O点每秒10°的速度逆时针旋转,两条射线同时旋转,当一条射线与射线OD重合时,停止运动.(1)开始旋转前,∠AOB=.(2)若射线OB也绕O点以每秒20°的速度顺时针旋转,三条射线同时旋转,当一条射线与射线OD重合时,停止运动.当三条射线中其中一条射线是另外两条射线夹角的角平分线时,求旋转的时间.(3)【实际应用】从今天上午6时整开始到上午7时整结束的运动过程中,经过多少分钟时针与分针所形成的钝角等于120°(直接写出所有可能结果).参考答案1.D2.B3.B4.C5.C6.A7.B8.B9.-410.411.147°36′12.PN【分析】根据从直线外一点到这条直线上各点所连的线段中,垂线段最短可知搭建方式最短的是PN,理由垂线段最短.【详解】解:因为PN⊥MQ,垂足为N,则PN为垂线段,根据垂线段最短,可得线段PN最短,故答案为:PN.【点睛】本题考查了垂线段最短,利用垂线段的性质是解题关键.13.3【分析】已知a-2b的值,将原式变形后代入计算即可求出值.【详解】解:∵a-2b=1,∴5-2a+4b=5-2(a-2b)=5-2×1=3,故答案为:3.【点睛】本题考查了代数式求值,是基础题,整体思想的利用是解题的关键.14.6【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数之积为24,列出方程求出x、y的值,从而得到x-y的值.【详解】解:将题图中平面展开图按虚线折叠成正方体后,可知标有数字“2”的面和标有x的面是相对面,标有数字“4”的面和标有y的面是相对面,∵相对面上两个数之积为24,∴x=12,y=6,∴x-y=6.故答案为:6.【点睛】本题考查了正方体对面上的字,找出x、y的对面是解题的关键.15.57°##57度【分析】先利用∠1求出∠EAC的度数,再利用90°减去∠EAC即可解答.【详解】解:∵∠BAC=60°,∠1=27°,∴∠EAC=∠BAC-∠1=60°-27°=33°,∵∠EAD=90°,∴∠2=∠EAD-∠EAC=90°-33°=57°,故答案为:57°.【点睛】本题考查角的和差,题目较容易,根据已知求出∠EAC 便可求出答案.16.10【分析】由乙队单独施工,设还需x 天完成,题中的等量关系是:甲工程队2天完成的工作量+乙工程队(x+2)天完成的工作量=1,依此列出方程,解方程即可.【详解】解:由乙队单独施工,设还需x 天完成,根据题意得2211015x ++=,解得x=10.答:由乙队单独施工,还需10天完成,故答案为:10.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.17.6【分析】把x 的值代入程序中计算,以此类推得到一般性规律,即可得到第2022次输出结果.【详解】解:第一次输出结果为96×12=48,第二次输出结果为48×12=24,第三次输出结果为24×12=12,第四次输出结果为12×12=6,第五次输出结果为6×12=3,第六次输出结果为3+3=6,第七次输出结果为6×12=3,…,依此类推,得出规律:第四次后,偶数次时,输出结果为6;奇数次时,输出结果为3;第2022次输出结果为6,故答案为:6.【点睛】此题考查了代数式求值,数字型规律,弄清题中程序框图表示的意义是解本题的关键.18.94或6【分析】分下列三种情况讨论,如图1,当点P在CD上,即0<t≤3时,根据三角形的面积公式建立方程求出其解即可;如图2,当点P在AD上,即3<t≤7时,由S△PCE=S四边形AECD-S△PCD-S△PAE建立方程求出其解即可;如图3,当点P在AE上,即7<t≤9时,由S△PCE=12PE•BC=18建立方程求出其解即可.【详解】解:如图1,当点P在CD上,即0<t≤3时,∵四边形ABCD是长方形,∴AB=CD=6cm,AD=BC=8cm.∵CP=2t(cm),∴S△PCE=12×2t×8=18,∴t=9 4;如图2,当点P在AD上,即3<t≤7时,∵AE=2BE,∴AE=23AB=4.∵DP=2t-6,AP=8-(2t-6)=14-2t.∴S△PCE=12×(4+6)×8-12(2t-6)×6-12(14-2t)×4=18,解得:t=6;当点P在AE上,即7<t≤9时,PE=18-2t .∴S △CPE=12(18-2t )×8=18,解得:t=274<7(舍去).综上所述,当t=94或6时△APE 的面积会等于18.故答案为:94或6.【点睛】本题考查了一元一次方程的运用,三角形面积公式的运用,梯形面积公式的运用,动点问题,分类讨论等;解答时要运用分类讨论思想求解,避免漏解.19.(1)-5(2)15【分析】(1)利用乘法分配律展开计算即可;(2)先算乘方,和绝对值,再算除法,最后算加减.(1)解:13212243⎛⎫-+-⨯ ⎪⎝⎭=132121212243-⨯+⨯-⨯=698-+-=5-(2)2022211(3)22-+-÷--=2192-+⨯-=1182-+-=15【点睛】本题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(1)x=-3(2)x=11【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.(1)解:移项合并得:-x=3,解得:x=-3;(2)去分母得:()()312216x x +=--去括号得:33426x x +=--,移项合并得:11x -=-,解得:11x =.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.22126a b ab -,36-【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=22226336a b ab ab a b--+=22126a b ab -∵21||(3)02a b -++=,∴a=12,b=-3,则原式=()()22111236322⎛⎫⨯⨯--⨯⨯- ⎪⎝⎭=36-.【点睛】此题考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.(1)见解析;(2)见解析【分析】(1)根据要求作出图形即可.(2)根据要求作出图形即可.【详解】解:(1)根据题意得:AD是长为4,宽为3的长方形的对角线,所以在点C右上方长为4,宽为3的长方形的对角线所在的直线与AD平行,如图,直线CE即为所求作.(2)根据题意得:CD是长为6,宽为3的长方形的对角线,所以在点B右下方长为6,宽为3的长方形的对角线所在的直线与CD垂直,如图,直线BF即为所求作.【点睛】本题主要考查了画平行线和垂线,熟练掌握平行线和垂线的画法是解题的关键.23.(1)见解析(2)6(3)26【分析】(1)根据三视图的画法画出相应的图形即可;(2)观察几何体可得结果;(3)根据三视图的面积求出该几何体的表面积.(1)解:如图所示:(2)由图可知:图中共有6个小正方体;(3)(4+4+5)×2=26(cm 2)答:该几何体的表面积为26cm 2.【点睛】本题考查解答几何体的三视图,画三视图时应注意“长对正,宽相等,高平齐”.24.(1)1cm(2)9cm 或7cm【分析】(1)根据中点定义,求得BC 的长,再由线段的和差计算结果;(2)分两种情况:①当点E 在点B 的右侧时,②当点E 在点B 的左侧时,分别根据线段的和差计算即可.(1)解:∵点C 是线段AB 的中点,AB=8cm ,∴BC=12AB=4cm ,∴CD=BC-BD=4-3=1cm .(2)①当点E 在点B 的右侧时,如图:∵BD=3cm ,BE=13BD ,∴BE=1cm ,∴AE=AB+BE=8+1=9cm ;②当点E 在点B 的左侧时,如图:∵BD=3cm ,BE=BE=13BD ,∴BE=1cm ,∴AE=AB-BE=8-1=7cm ;综上,AE 的长为9cm 或7cm .【点睛】此题考查的是两点间的距离,掌握线段中点的定义是解决此题关键.25.(1)58°(2)126°【分析】(1)根据角平分线的定义求出∠BOE ,再根据垂线的定义求出∠EOF ,从而可得∠BOF ;(2)设∠DOE=x ,分别表示出∠COE 和∠COF ,根据∠COE :∠COF =8:3,列出方程,求出x 值,再根据∠AOF=∠COF+∠AOC=∠COF+∠BOD 求出结果.(1)解:∵OE 平分∠BOD ,∴∠DOE=∠BOE=32°,∵OE ⊥OF ,∴∠EOF=90°,∴∠BOF=90°-∠BOE=58°;(2)设∠DOE=x ,∵OE 平分∠BOD ,∴∠DOE=∠BOE=x ,∵OE ⊥OF ,∴∠COF=90°-x ,∴∠COE=90°-x+90°=180°-x ,∵∠COE :∠COF =8:3,∴()()318090:8:x x -=︒-︒,解得:36x =,∴∠AOF=∠COF+∠AOC=∠COF+∠BOD=90°-x+2x=126°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,比较简单,准确识图并熟记性质与概念是解题的关键.26.(1)4000(2)90或120(3)丙旅游团的人数为30人、丁旅游团的人数70人【分析】(1)由费用=单价×人数,可求解;(2)分两种情况讨论,由人数=费用÷单价,可求解;(3)设丙旅游团人数为x 人(0<x <50),由“两个旅游团先后共付门票费8600元”列出方程可求解.(1)解:甲旅游团共付门票费=40×100=4000(元),故答案为:4000;(2)当人数超过50人,但不超过100人,乙旅游团的人数=7200÷80=90(人数);当人数超过100人,乙旅游团的人数=7200÷60=120(人数);故答案为:90或120;(3)∵8600>80×100,∴丁旅游团人数小于100,设丙旅游团人数为x 人(0<x≤50),则丁旅游团人数为(100-x )人,由题意可得:100x+80(100-x )=8600,解得x=30,∴100-x=70(人),答:丙旅游团的人数为30人、丁旅游团的人数70人.【点睛】本题考查了一元一次方程的应用,理解题意,找出正确的相等关系是本题的关键.27.(1)40︒(2)4秒或2秒,53秒或135秒,12秒或94秒(3)12011分钟或60011分钟【分析】(1)根据同角的余角相等可得40AOB COD ∠=∠=︒;(2)根据路程等于速度乘以时间分别求得,,OA OC OB 运动到OD 所需要的时间,进而求得停止的时间,根据角度的和差可得,,AOD BOD COD ∠∠∠,根据角度的方向以及角平分线的定义,建立绝对值方程,解方程求解即可;(3)根据题意作出图形,类比(2)建立方程,在周角内求角度,进而解方程求解即可.(1)OB ⊥OD ,OA ⊥OC ,90AOC BOD ∴∠=∠=︒AOB BOC BOC COD∴∠+∠=∠+∠AOB COD∴∠=∠ ∠COD =40°40AOB ∴∠=︒故答案为:40︒(2)40AOB ∠=︒4090130AOD AOB BOD ∴∠=∠+∠=︒+︒=︒设旋转时间为t 秒,当OA 旋转至OD 所需要的时间为:13013303︒=︒(秒)当OC 旋转至OD 所需要的时间为:()3604010=32︒-︒÷︒(秒)当OB 旋转至OD 所需要的时间为:99020=2︒÷︒(秒)∴当OA 旋转至OD 时,其他线段都停止,则133t ≤,旋转t 秒后,()13030AOD t ∠=︒-︒,()9020BOD t ∠=︒-︒,()4010COD t ∠=︒+︒∴()4010AOB AOD BOD t ∠=∠-∠=︒-︒,()5030BOC BOD COD t ∠=∠-∠=︒-︒,()9040AOC AOD COD t ∠=∠-∠=︒-︒①当OB 平分AOC ∠时,AOB BOC ∠=∠,()4010t ︒-︒=()5030t ︒-︒即()4010t ︒-︒=()5030t ︒-︒或()4010t ︒-︒=()5030t -︒+︒解得:12t =或94t =②当OA 平分BOC ∠时,BOA AOC ∠=∠,()4010t ︒-︒=()9040t ︒-︒即()4010t ︒-︒=()9040t ︒-︒或()4010t ︒-︒=()9040t -︒+︒解得:53t =或135t =③当OC 平分AOB ∠时,AOC BOC ∠=∠,()9040t ︒-︒=()5030t ︒-︒即()9040t ︒-︒=()5030t ︒-︒或()9040t ︒-︒=()5030t -︒+︒解得:4t =或2t =综上所述,4t =或2t =,53t =或135t =,12t =或94t =(3)如图,根据题意,6时整时,180AOB ∠=︒,6时至7时,OA 旋转了30°,OB 旋转了360°则OA 的速度为301=602︒度/分钟,OB 的速度为360=660︒度/分钟,6点整之后,设()060m m <<分钟后,120AOB ∠=︒则1,62AOD m COB m ∠=︒∠=︒∴118018062AOB AOD COB m m ∠=︒+∠-∠=︒+︒-︒112018062m m ∴︒=︒+︒-︒112018062m m ∴︒=︒+︒-︒或112018062m m -︒=︒+︒-︒解得:12011m =或60011m =。

苏科版七年级上册数学期末考试试卷附答案

苏科版七年级上册数学期末考试试卷附答案

苏科版七年级上册数学期末考试试题一、单选题1.下列各数中最小的是()A .-1B .3C .0D .22.数据696000000这个数用科学记数法可表示为()A .0.696×109B .6.96×109C .6.96×108D .69.6×1073.下列方程中,是一元一次方程的是()A .0.3x=6B .2x 4x 3-=C .11x 3x-=-D .x=3y-54.下列立体图形中,有五个面的是()A .四棱锥B .五棱锥C .四棱柱D .五棱柱5.一个整式与x 2-y 2的和是x 2+y 2,则这个整式是()A .2x 2B .2y 2C .-2x 2D .-2y 26.下列关于多项式2a 2b+ab-1的说法中,正确的是()A .次数是5B .二次项系数是0C .最高次项是2a 2bD .常数项是17.在下列图形中,可围成正方体的是()A .B .C .D .8.已知30AOB ∠=︒,自AOB ∠顶点O 引射线OC ,若:4:3AOC AOB ∠∠=,那么BOC ∠的度数是()A .10°B .40°C .70°D .10°或70°9.某超市出售一种方便面,原价为每箱24元.现有三种调价方案:方案一,先提价20%,再降价20%;方案二,先降价20%,再提价20%;方案三,先提价15%,再降价15%.三种调价方案中,最终价格最高的是()A .方案一B .方案二C .方案三D .不确定10.有理数p ,q ,r ,s 在数轴上的对应点的位置如图所示.若10p r -=,12p s -=,9q s -=,则q r -的值是()A .5B .6C .7D .10二、填空题11.14的倒数是__________.12.已知∠A =40°,则它的补角等于___.13.若2x 3yn 与﹣5xmy 是同类项,则m +n =______.14.若x=2是关于x 的方程ax+3=5的解,则a=__________.15.如图,线段AB =12cm ,C 是线段AB 上任一点,M ,N 分别是AC ,BC 的中点,如AM =4cm ,则BN 的长为______cm .16.整式mx+n 的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值:x ﹣2﹣1012mx+n﹣12﹣8﹣44则关于x 的方程﹣mx+n =8的解为______.17.已知代数式2x y -的值是12,则代数式21x y -+-的值是______.18.一组“数值转换机”按下面的程序计算,如果输入的数是30,则输出的结果为56,要使输出的结果为60,则输入的最小正整数是_____.三、解答题19.计算:(1)20(14)(18)13-+----;(2)202221133(3)2--÷⨯--.20.解方程(1)532(5)x x +=-;(2)2151136x x +--=.21.先化简,再求值:4(3a 2b ﹣ab 2)﹣5(﹣ab 2+3a 2b ),其中a =2,b =﹣3.22.作图题(1)由大小相同的小立方块搭成的几何体如下图,请在右图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.23.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.△ABC 的顶点A 、B 、C 都在格点上.(1)过B 作AC 的平行线BD .(2)作出表示B 到AC 的距离的线段BE .(3)线段BE 与BC 的大小关系是:BE BC(填“>”、“<”、“=”).(4)△ABC 的面积为.24.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?25.如图,直线AB 与CD 相交于O ,OE ⊥AB ,OF ⊥CD .(1)图中与∠AOF 互余的角是______,与∠COE 互补的角是______;(把符合条件的角都写出来)(2)如果∠AOC=14∠EOF ,求∠EOF 的度数.26.已知A =a ﹣2ab+b 2,B =a+2ab+b 2.(1)求14(B ﹣A )的值;(2)若3A ﹣2B 的值与a 的取值无关,求b 的值.27.如图,将一张正方形纸片的4个角剪去4个大小一样的小正方形,然后折起来就可以制成一个无盖的长方体纸盒,设这个正方形纸片的边长为a ,这个无盖的长方体盒子高为h .(1)若a=18cm ,h=4cm ,则这个无盖长方体盒子的底面面积为;(2)用含a 和h 的代数式表示这个无盖长方体盒子的容积V=​;(3)若a=18cm ,试探究:当h 越大,无盖长方体盒子的容积V 就越大吗?请举例说明;这个无盖长方体盒子的最大容积是.28.对于数轴上的点M ,线段AB ,给出如下定义:P 为线段AB 上任意一点,如果M ,P 两点间的距离有最小值,那么称这个最小值为点M ,线段AB 的“近距”,记作1(,)d M AB 点线段;如果M ,P 两点间的距离有最大值,那么称这个最大值为点M ,线段AB的“远距”,记作2(,)d M AB 点线段.特别的,若点M 与点P 重合,则M ,P 两点间距离为0.已知点A 表示的数为2-,点B 表示的数为3.例如图,若点C 表示的数为5,则1(,)2d C AB =点线段,2(,)7d C AB =点线段.(1)若点D 表示的数为3-,则1(d 点D ,线段)AB =_____,2(d 点D ,线段)AB =______;(2)若点E 表示数为x ,点F 表示数为1x +.2(,)d F AB 点线段是1(,)d E AB 点线段的3倍.求x的值.参考答案1.A【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小,据此判断即可.【详解】解:∵-1<0<2<3,∴其中最小的为-1.故选:A.【点睛】本题主要考查了有理数大小比较,解答此题的关键是掌握有理数大小比较法则.2.C【详解】解:根据科学记数法的定义,696000000=6.96×108.故选:C.【点睛】本题考查科学记数法.3.A【分析】根据一元一次方程的定义解答即可.【详解】选项A,是一元一次方程;选项B,未知数的最高次数是2,不是一元一次方程;选项C,等号左边不是整式,不是一元一次方程;选项D,含有两个未知数,不是一元一次方程.故选A.【点睛】本题考查了一元一次方程,熟知含有一个未知数,并且未知数的最高次数为1的整式方程是一元一次方程是解决问题的关键.4.A【分析】要明确棱柱和棱锥的组成情况,棱柱有两个底面,棱锥有一个底面.【详解】解:A.四棱锥有一个底面,四个侧面组成,共5个面,符合题意.B.五棱锥有一个底面,五个侧面组成,共6个面,不符合题意.C.四棱柱有两个底面,四个侧面组成,共6个面,不符合题意.D.五棱柱有两个底面,五个侧面组成,共7个面,不符合题意.故选A.5.B【分析】知道和与一个加数,求另一个加数,用减法即可.【详解】解:根据题意得(x2+y2)-(x2-y2)=x2+y2-x2+y2=2y2.故选:B.【点睛】本题考查了整式的加减,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.6.C【分析】根据多项式的概念逐项分析即可.【详解】A.多项式2a2b+ab-1的次数是3,故不正确;B.多项式2a2b+ab-1的二次项系数是1,故不正确;C.多项式2a2b+ab-1的最高次项是2a2b,故正确;D.多项式2a2b+ab-1的常数项是-1,故不正确;故选:C.【点睛】本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.7.C【分析】根据正方体的11种平面展开图解题.【详解】解:由正方体的11种平面展开图可知,选项A、B、D均不符合题意,选项C符合题意,故选:C.【点睛】本题考查正方体展开图的识别,是基础考点,掌握相关知识是解题关键.8.D【分析】分为两种情况:①OC和OB在OA的两侧时,②OC和OB在OA的同侧时,分别进行求解即可.【详解】∵∠AOB=30°,∠AOC:∠AOB=4:3,∴∠AOC=40°,分为两种情况:当OC和OB在OA的两侧时,如图1∠BOC=∠AOB+∠AOC=30°+40°=70°②OC和OB在OA的同侧时,如图2∠BOC=∠AOC-∠AOB=40°-30°=10°故选:D.【点睛】考查了角的计算,解题关键是分两种情况:OC、OB在OA的两侧时和OC、OB 在OA的同侧时.9.C【分析】根据题意,算出每种方案的最终价格,然后比较即可.+-=元;【详解】解:方案一的最终价格为:24(120%)(120%)23.04-+=元;方案二的最终价格为:24(120%)(120%)23.04+-=元;方案三的最终价格为:24(115%)(115%)23.46>=,因为23.4623.0423.04则选方案三,故选:C【点睛】此题考查了列出代数式计算的能力,读懂题意,找出题中的数量关系,列出式子正确计算是解题的关键.10.C【分析】根据绝对值的几何意义,将|p−r|=10,|p−s|=12,|q−s|=9转化为两点间的距离,进而可得q 、r 两点间的距离,即可得答案.【详解】解:根据绝对值的几何意义,由|p−r|=10,|p−s|=12,|q−s|=9得:|p−q|=|p−s|-|q−s|=3,|r−s|=|p−s|-|p−r|=2∴|q−r|=|p−s|-|p−q|-|r−s|=12-3-2=7.故选:C .【点睛】本题考查了绝对值的几何意义,解题的关键是运用数形结合的数学思想表示出数轴上两点间的距离.11.4.【分析】根据倒数的定义即可求解.【详解】14的倒数是4.故答案是:4.【点睛】考查了倒数,关键是熟悉乘积是1的两数互为倒数.12.140°【分析】根据补角的和等于180︒计算即可.【详解】解:40A ∠=︒ ,∴它的补角18040140=-=︒︒︒.故答案为140︒.【点睛】本题考查了补角的知识,熟记互为补角的两个角的和等于180︒是解题的关键.13.4【分析】根据同类项的定义可求得m 和n 的值,再代入计算即可求解.【详解】解:∵2x 3yn 与﹣5xmy 是同类项,∴m=3,n=1∴m+n=3+1=4故答案为:4【点睛】本题考查了同类项,解决本题的关键是明确同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.注意只有同类项才能合并使它们的和是单项式.14.1【详解】解:将x=2代入得:2a+3=5,解得:a=1.故答案为:115.2【分析】根据线段中点的定义可得AC=8cm ,根据线段的和差可得BC=4cm ,再根据线段的中点可得答案.【详解】解:∵点M 是线段AC 的中点,∴AC=2AM=8cm ,∵AB=12cm ,∴BC=AB-AC=12-8=4cm ,∵点N 是线段BC 的中点,∴BN=12BC=2cm .故答案为:2.【点睛】本题考查两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.16.3x =-【分析】根据表格中的数据,求得m n ,的值,然后代入方程8mx n -+=,求解即可.【详解】解:根据表格的数据可得:4n m n =-⎧⎨+=⎩,解得44m n =⎧⎨=-⎩代入方程8mx n -+=,可得448x --=,解得3x =-,故答案为:3x =-【点睛】本题考查了解一元一次方程和解二元一次方程组,解题的关键是正确求得m n ,的值.17.32-## 1.5-【分析】利用已知将原式变形求出答案.【详解】解:∵代数式2x y -的值是12,∴代数式()132121122x y x y -+-=---=--=-.故答案为:32-.【点睛】本题主要考查代数式求值,正确将原式变形是解题的关键.18.11【分析】根据输出的结果确定出x 的所有可能值即可.【详解】解:当2x ﹣4=60时,x =32,当2x ﹣4=32时,x =18,当2x ﹣4=18时,x =11,当2x ﹣4=11时,x =152,不是整数;所以输入的最小正整数为11,故答案为11.【点睛】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.19.(1)29-;(2)2-.【分析】(1)根据有理数的加减运算求解即可;(2)根据有理数的乘方、乘除等运算求解即可.(1)解:20(14)(18)132014181329-+----=--+-=-;(2)202221133(3)2--÷⨯--111(93)23=--⨯⨯-1166=--⨯2=-【点睛】此题考查了有理数的乘方、绝对值、加减乘除等四则运算,解题的关键是熟练掌握有理数的有关运算.20.(1)1x =;(2)3x =-.【分析】(1)根据去括号,移项,合并同类项步骤求解即可;(2)去分母,去括号,移项,合并同类项等步骤求解即可.(1)解:532(5)x x +=-53102x x+=-55=x 1x =(2)2151136x x +--=2(21)(51)6x x +--=42516x x +-+=3x -=3x =-21.﹣3a 2b+ab 2,54.【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:原式=12a 2b ﹣4ab 2+5ab 2﹣15a 2b =﹣3a 2b+ab 2,当a =2,b =﹣3时,原式=36+18=54.22.(1)见解析;(2)57【分析】(1)从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最少和最多个数相加即可.(1)(2)由俯视图易得最底层有4个小立方块,第二层最少有1个小立方块,所以最少有5个小立方块;第二层最多有3个小立方块,所以最多有7个小立方块.故答案为:57.23.(1)见解析;(2)见解析;(3)<;(4)9【分析】(1)连接与点B 在同一水平线的格点即可得;(2)过点B 作AC 的垂线,交AC 于点E ,则BE 即为所求;(3)根据垂线段最短即可得;(4)根据三角形的面积公式可得12ABCS AC BE =⋅ .【详解】(1)如图BD 即为所求;(2)过点B 作AC 的垂线,交AC 于点E ,则BE 即为所求,如图所示:(3)由垂线段最短得:BE BC<故答案为:<;(4)ABC 的面积为1163922ABCS AC BE =⋅=⨯⨯= 故答案为:9.【点睛】本题考查了平行线与垂直的定义、垂线段最短等知识点,掌握理解平行线与相交线的相关概念是解题关键.24.先安排整理的人员有10人【详解】试题分析:等量关系为:所求人数1小时的工作量+所有人2小时的工作量=1,把相关数值代入即可求解.试题解析:设先安排整理的人员有x 人,依题意得,2(15)16060xx ++=解得,x=10.答:先安排整理的人员有10人.考点:一元一次方程25.(1)∠AOC 、∠BOD ;∠EOD 、∠BOF ;(2)∠EOF=144°.【分析】(1)根据互余及互补的定义,结合图形进行判断即可;(2)设∠AOC=x ,则∠BOD=x ,∠EOF=4x ,根据周角为360度,即可解出x .【详解】解:(1)图中与∠AOF 互余的角是:∠AOC 、∠BOD ;图中与∠COE 互补的角是:∠EOD 、∠BOF .(2)∵OE ⊥AB ,OF ⊥CD ,∴∠EOB=90°,∠FOD=90°,又∵∠AOC=14∠EOF ,设∠AOC=x ,则∠BOD=x ,∠EOF=4x ,根据题意可得:4x+x+90+90=360°,解得:x=36°.∴∠EOF=4x=144°.【点睛】本题考查了余角和补角的知识,注意结合图形进行求解.26.(1)ab ;(2)110b =【分析】(1)直接把A 、B 代入进行化简运算即可;(2)把A 、B 代入3A ﹣2B 求解,然后根据整式的无关型问题进行求解即可.【详解】解:(1)∵A =a ﹣2ab+b 2,B =a+2ab+b 2,∴()14B A -=()221224a ab b a ab b ++-+-=144ab⨯=ab ;(2)∵A =a ﹣2ab+b 2,B =a+2ab+b 2,∴32A B-=()()223222a ab b a ab b -+-++=22363242a ab b a ab b -+---=210a ab b -+=()2110b a b -+,∵3A ﹣2B 的值与a 的取值无关,∴1100b -=,∴110b =.【点睛】本题主要考查整式的加减,熟练掌握整式的加减运算是解题的关键.27.(1)100cm 2;(2)h (a ﹣2h )2cm 3;(3)432cm 3.【分析】(1)根据已知得出长方体底面的边长进而求出即可;(2)由于原来正方形的边长为a ,如果四个角上各剪去一个同样大小的正方形,那么无盖长方体的底面的长宽分别都是(a-2h),高是h ,由此即可表示这个无盖长方体的容积;(3)根据材料一定,长方体中体积最大与底面各积和高都有关进行解答即可.【详解】(1)∵a=18cm ,h=4cm ,∴这个无盖长方体盒子的底面面积为:(a ﹣2h)(a ﹣2h)=(18﹣2×4)×(18﹣2×4)=100(cm 2),故答案为100cm 2;(2)这个无盖长方体盒子的容积V=h(a ﹣2h)(a ﹣2h)=h(a ﹣2h)2(cm 3),故答案为h(a ﹣2h)2cm 3;(3)若a=18cm ,当h 越大,无盖长方体盒子的容积V 不一定就越大,如h=6时,体积V=216,h=8时,体积V=32;∵V=h(18﹣2h)2=4(9-h)(9-h)h=2(9-h)(9-h)2h9-h+9-h+2h=0,∴当9-h=2h 时,体积最大,即h=3时,此时体积最大,∴这个无盖长方体盒子的最大容积是:3×(18﹣6)2=432(cm 3),故答案为432cm 3.【点睛】本题考查了几何体的体积求法以及展开图面积问题,根据题意表示出长方体体积是解题关键.28.(1)1,6(2)4x =或6x =【分析】(1)根据已知定义,进行计算即可解答;(2)分两种情况,点E 在点A 的左侧,点E 在点B 的右侧.【详解】(1)解: 点D 表示的数为3-,∴1(d 点D ,线段)AB 2(3)231DA ==---=-+=∴2(d 点D ,线段)AB 3(3)336DB ==--=+=故答案为:1,6;(2)分两种情况:当点E 在点A 的左侧,2(d 点F ,线段)AB =BF=3-(x-1)=2-x1(d 点E ,线段)AB =AE=-2-x2(d 点F ,线段)AB 是1(d 点E ,线段)AB 的3倍,23(2)x x ∴-=--4x ∴=-点E 在点B 的右侧2(d 点F ,线段)AB =AF=x+1-(-2)=x+31(d 点E ,线段)AB =EB=x-32(d 点F ,线段)AB 是1(d 点E ,线段)AB 的3倍,33(3)x x ∴+=-综上所述,4x =或6x =.。

2023-2024学年苏科版七年级数学上学期期末考试卷(含解析)

2023-2024学年苏科版七年级数学上学期期末考试卷(含解析)

2023-2024学年苏科版七年级数学上学期期末考试卷学校:___________姓名:___________班级:___________考号:___________一、单选题(每小题3分,共24分)A .B .3.在,,…中,已知的最大整数,例如5-1x 2x 3x []2.62=A .1B .28.一副三角板ABC 、DBE ,如图1放置,①在图1的情况下,在内作②在旋转过程中,若平分,③在旋转过程中,两块三角板的边所在直线夹角成④的角度恒为.其中正确的结论个数为( )A .1个B .2个DBC ∠DBF ∠BM DBA ∠BN DBC ABE ∠+∠105︒15.已知直线与直线16.如图,AB OE AB ⊥三、解答题(共52分)(1)直接写出这个几何体的表面积;(2)按要求在方格中画出从这个几何体不同的方向看到的形状图.小墩从郑州西站开始乘坐地铁,在图中12个地铁站点做值勤志愿服务,到约定向郑州火车站方向为正,当天的乘车记录如下(单位:站):(1)请你通过计算说明A 站是哪一站?(2)已知相邻两站之间的平均距离为千米,求小墩在志愿者服务期间乘坐地铁行进的路程是多少千米?21.已知点在线段上,,点、在直线上,点(1)若,,线段在线段上移动.①如图1,当为中点时,求的长;(1)点表示的有理数是 ,点表示的有理数是 ,点1.5C AB 2AC BC =D E AB 18AB =8DE =DE AB E BC AD A C(1)如图1,,,请判断(2)若平分,且为的“分余线(3)如图2,,在的内部作射线的“分余线”.当为的“分余线”时,请直接写出70AOB ∠=︒50AOC ∠=︒OC AOB ∠OC AOB ∠155AOB ∠=︒AOB ∠OC MON ∠答案解析A.B.5-【答案】A【分析】本题考查了一元一次方程的应用,根据解题的关键.【详解】解:设每条边上四个数之和为则我们可以确定其中有三个数的边上的圆圈里的数,再求另外两个空圆圈里的数,,将其填入相应的圆圈中,如图,统计已填入的具体数有没有填入的数有:,2,(2)0(5)3m m ----+=-(2)(4)(6)4m m ---+--=6-5-A.1B.2【答案】D【分析】根据图形以及数字的摆放,第一图可得第二个图可知的下面是5,5的右边是2将正方形展开如图所示,∴的对面是,故选:D .【点睛】本题考查了正方体展开图,相对面上的字,注意数字的摆放是解题的关键.8.一副三角板ABC 、DBE ,如图1放置,(、),将三角板绕点B 逆时针旋转一定角度,如图2所示,且,有下列四个结论:①在图1的情况下,在内作,则平分;②在旋转过程中,若平分,平分,的角度恒为定值;③在旋转过程中,两块三角板的边所在直线夹角成的次数为3次;④的角度恒为.其中正确的结论个数为( )A .1个B .2个C .3个D .4个【答案】C【分析】结合图形根据题意正确进行角的和差计算即可判断.【详解】①如图可得,所以平分,①正确;②当时,设,∵平分,∴,∴ ,,45630D ∠=︒45BAC ∠=︒DBE 090CBE ︒<∠<︒DBC ∠DBF EBF ∠=∠BA DBF ∠BM DBA ∠BN EBC ∠MBN ∠90︒DBC ABE ∠+∠105︒15DBA ABF ∠=∠=︒BA DBF ∠045CBE ︒<∠<︒DBM x ∠=BM DBA ∠x ABM DBM ∠==∠602ABE x ∠=︒-()45602215EBC x x ∠=︒-︒-=-︒∴,当时,设,∵平分,∴,∴,∴,∴,∴,故②正确;③时,时,时故③正确;④当时,当时,故④错误;综上所述,正确的结论为①②③;故选:C .【点睛】本题主要考查了角的和差,角的平分线,旋转的性质,关键根据题意正确进行角的和差计算.二、填空题(每小题3分,共24分)【答案】/7.5EBN x ∠=-︒6027.552.5M BN x x x ∠=+︒-+-︒=︒4590CBE ︒<∠<︒DBM x ∠=BM DBA ∠x ABM DBM ∠==∠602ABE x ∠=︒-215EBC x ∠=-︒60M BE x∠=︒-7.5EBN C BN x ∠=∠=-︒607.552.5M BN x x ∠=︒-+-︒=︒30CBE ∠=︒BD BC ⊥45CBE ∠=︒AB DE ⊥75CBE ∠=︒DB AB ⊥045CBE ︒<∠<︒105D BC ABE ∠+∠=︒4590CBE ︒<∠<︒105D BC ABE ∠+∠>︒1b +1b+【答案】10【分析】本题主要考查了求圆柱的体积,先求出圆柱的底面积,再根据圆柱的体积【详解】解:一个高∴底面面积:102=5dm÷,,,;如图,,,.故答案为:或.【点睛】本题考查了垂线的性质及角的计算,EO CD ⊥ 90EOC ∴∠=︒60AOC ∠=︒ 906030AOE ∴∠=︒-︒=︒EO CD ⊥ 90EOC ∴∠=︒9060150AOE ∴∠=︒+︒=︒30︒150︒【答案】或【分析】分和,两种情况进行讨论求解即可.【详解】解:由题意,得:的运动时间为:秒,的运动时间为:秒;∴运动的时间相同;设运动时间为秒,则:,∵,∴,当时:,∴,,∴,∴,∴,即:;当,在上方时:如图,,2255x y +=2105x y -=90AOM ∠≤︒90AOM ∠>︒OM 180603︒÷︒=ON 90303︒÷︒=,OM ON t 60,30AOM t BON t ∠=︒∠=︒OE AB ⊥90AOE BOE ∠=∠=︒90AOM ∠≤︒COM AOM AOC AOM AOE COE ∠=∠+∠=∠+∠-∠6090156075x t t =+-=+NOE BOE BON ∠=∠-∠9030y t =-3090t y =-()29075x y =-+2255x y +=90AOM ∠>︒ON OD 1180COM BOM BOE EOC AOM AOE COE ∠=∠+∠+∠=︒-∠+∠+∠∴,,∴,∴,∴,即:;当,在下方时:如图2,,∴,,∴,∴,∴,即:;综上:与之间的数量关系为或;故答案为:或.【点睛】本题考查几何图形中角度的计算.正确的识图,理清角之间的和差关系,是解题的关键.三、解答题(共52分)18060901528560x t t =-++=-NOE BOE BON ∠=∠-∠9030y t =-3090t y =-()285290x y =--2105x y -=90AOM ∠>︒ON OD 180COM BOM BOE EOC AOM AOE COE ∠=∠+∠+∠=︒-∠+∠+∠18060901528560x t t =-++=-NOE BOE BON ∠=∠-∠9030y t =-3090t y =-()285290x y =--2105x y -=x y 2255x y +=2105x y -=2255x y +=2105x y -=移项得:,合并得:,解得:.19.如图是由棱长都为的6块小正方体搭成的简单几何体.(1)直接写出这个几何体的表面积;(2)按要求在方格中画出从这个几何体不同的方向看到的形状图.【答案】(1)(2)见解析【分析】本题考查求简单组合体的表面积,以及三视图.熟练掌握三视图的画法,是解题的关键.(1)先数出各个方向正方形的个数,相加后乘一个小正方形的面积即可求解..(2)从正面看得到从左往右4列正方形的个数依次为1,2,1,1;从左面看得到从左往右2列正方形的个数依次为2,1;从上面看得到从左往右4列正方形的个数依次为2,1,1,1,依此画出图形即可.【详解】(1),∴这个几何体的表面积为.(2)如图所示.20.郑州地铁10号线于2023年9月28日开通运营,起于荥阳市郑州西站,途经中原区,止于二七区郑州火车站,线路主要沿中原路、康复后街呈东西向布置,其中的12个站点如图所示.91014312y y -=-++1y -=1y =-1cm 226cm ()211665226cm⨯⨯⨯-⨯=226cm小墩从郑州西站开始乘坐地铁,在图中12个地铁站点做值勤志愿服务,到约定向郑州火车站方向为正,当天的乘车记录如下(单位:站):(1)请你通过计算说明A 站是哪一站?(2)已知相邻两站之间的平均距离为千米,求小墩在志愿者服务期间乘坐地铁行进的路程是多少千米?【答案】(1)A 站是郑州西站(2)小墩在志愿者服务期间乘坐地铁行进的路程是45千米(1)若,,线段在线段上移动.①如图1,当为中点时,求的长;1.518AB =8DE =DE AB E BC AD为中点,,E BC 3CE EF +=设,,则设,,则CE x =DC y =DE CE x =DC y =DE y =-(1)点表示的有理数是 ,点表示的有理数是 ,点A C元;当时,甲的用水量超过,乙的用水量超过但不超过,∴元,当时,甲的用水量超过,乙的用水量不超过,∴元;综上所述,当时,甲,乙两户一个月共缴纳的水费元;当时,甲,乙两户一个月共缴纳的水费元;当时,甲,乙两户一个月共缴纳的水费元.【点睛】本题主要考查了有理数的四则混合计算的实际应用,整式加减计算的实际应用,正确理解题意利用分类讨论的思想求解是解题的关键.24.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从地出发,晚上到达地,约定向东为正方向,当天的航行路程记录如下(单位:千米).,,,,,,,,.(1)请你帮忙确定地位于地的什么方向,距离地有多少千米?(2)救灾过程中,冲锋舟离出发点最远处有_____千米.(3)若冲锋舟每千米耗油0.5升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?【答案】(1)地位于地东方,距离地有22千米(2)25(3)8升【分析】(1)根据有理数的加法,可得和,再根据向东为正,结合和的符号可判定方向及距离;(2)首先计算每次行程后与出发点的距离,再比较有理数的大小,可得答案;(3)首先计算当天航行的总里程,进而可得当天耗油量,再根据耗油量与已有的油量,可得答案.【详解】(1)解:∵,∴地位于地东方,距离地有22千米;()116x =-2028x <<320m 312m 320m ()()()1222012 1.52202212240122 1.5x x ⨯+-⨯⨯+-⨯⨯+⨯+--⨯⨯242448024843x x=++-++-()76x =+2840x ≤≤320m 312m ()()()1222012 1.522022402x x ⨯+-⨯⨯+-⨯⨯+-⨯2424480802x x=++-+-()248x =+1220x <≤()116x -2028x <<()76x +2840x ≤≤()248x +A B 14+9-8+7-13+6-12+5-2+B A A A B A A (14)(9)(8)(7)(13)(6)(12)(5)(2)22++-+++-+++-+++-++=+B A A(1)如图1,,,请判断70AOB ∠=︒50AOC ∠=︒∴,∵,∴,即:,∴,此时:,故这种情况不存在;综上:当为的“分余线”时,或或100°.【点睛】本题考查角的和差计算.理解并掌握“分余线”的定义,是解题的关键.注意分类讨论.24∠∠=1234155AOB ∠=∠+∠+∠+∠=︒334155∠+∠=︒902434155︒-∠+∠=︒465∠=︒390240∠=︒-∠<︒OC MON ∠88AOC ∠=︒775︒.。

苏科版七年级上册数学期末考试试卷带答案

苏科版七年级上册数学期末考试试卷带答案

苏科版七年级上册数学期末考试试题一、单选题1.﹣3的相反数是()A .13-B .13C .3-D .32.下列各式中,不相等的是()A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32-3.下列是一元一次方程的是()A .2230x x --=B .25x y +=C .11x =D .=1x -4.如图数轴上的A 、B 两点分别表示有理数a 、b ,下列式子中不正确...的是()A .0a b +<B .0b a ->C .b a <-D .()0a b --<5.下列结论正确的是()A .﹣3ab 2和b 2a 是同类项B .2π不是单项式C .a 比﹣a 大D .2是方程2x+1=4的解6.如图,点A 、B 、C 在同一直线上,H 为AC 的中点,M 为AB 的中点,N 为BC 的中点,则下列说法:①MN=HC ;②MH=12(AH ﹣HB );③MN=12(AC+HB );④HN=12(HC+HB ),其中正确的是()A .①②B .①②④C .②③④D .①②③④7.如图,OA 方向是北偏西40°方向,OB 平分∠AOC ,则∠BOC 的度数为()A .50°B .55°C .60°D .65°8.如图所示的正方体,如果把它展开,可以是下列图形中的()A .B .C .D .二、填空题9.将5500万用科学记数法表示应为_______.10.下列三个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某名同学的跳远成绩.其中,可以用“两点之间线段最短”来解释的是________.(填序号)11.写出一个解是=1x -,未知数的系数为3,且等号左边为多项式的一元一次方程_______.12.已知()2|2|30a b -++=,则a b 的值等于_______.13.已知2∠是1∠的余角、3∠是1∠的补角,则3∠比2∠大________︒.14.如图1是边长为18cm 的正方形纸板,剪掉阴影部分后将其折叠成如图2所示的长方体盒子.已知该长方体的宽是高的2倍,则它的体积是______3cm .15.如图,如果圆环外圆的周长比内圆的周长长2m ,那么外圆的半径比内圆的半径大______m.(结果保留π)16.有一数值转换器,原理如图所示,如果开始输入x 的值是34,则第一次输出的结果是17,第二次输出的结果是52,……,那么第2022次输出的结果是_________.17.球赛入场券有10元、15元两种票价,老师用480元买了40张入场券,其中票价为10元的比票价为15元的多的张数是_________.18.一副三角板AOB 与COD 如图摆放,且∠A=∠C=90°,∠AOB=60°,∠COD=45°,ON 平分∠COB ,OM 平分∠AOD .当三角板COD 绕O 点顺时针旋转(从图1到图2).设图1、图2中的∠NOM 的度数分别为α,β,αβ+=______度.三、解答题19.计算:(1)()218(6)2⎛⎫-⨯-+- ⎪⎝⎭;(2)()411293⎛⎫-+-÷--- ⎪⎝⎭20.解方程:71132x x -+-=.21.已知3a ﹣7b =﹣3,求代数式2(2a+b ﹣1)+5(a ﹣4b )﹣3b 的值.22.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.()1过点C 画线段AB 的平行线CD ;()2过点A 画线段BC 的垂线,垂足为E ;()3过点A 画线段AB 的垂线,交线段CB 的延长线于点F ;()4线段AE 的长度是点______到直线______的距离;()5线段AE 、BF 、AF 的大小关系是______.(用“<”连接)23.在平整的地面上,由若干个完全相同的棱长为10cm的小正方体堆成一个几何体,如图所示.(1)请你在方格纸中分别画出这个几何体的主视..图;..图和左视(2)若现在手头还有一些相同的小正方体,如果保持这个几何体的主视图和俯视图不变,Ⅰ.在图中所示几何体上最多可以添加______个小正方体;Ⅱ.在图中所示几何体上最多可以拿走______个小正方体;24.“城有二姝,小艺与迎迎.小艺行八十步,迎迎行六十.今迎迎先行百步,小艺追之,问几何步及之?(改编自《九章算术》)”(步:古长度单位,1步约合今1.5米.)大意:在相同的时间里,小艺走80步,迎迎可走60步.现让迎迎先走100步,小艺开始追迎迎,问小艺需走多少步方可追上迎迎?(1)在相同的时间里:①若小艺走160步,则迎迎可走________步;②若小艺走a步,则迎迎可走_________步;(2)求小艺追上迎迎时所走的步数.25.如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数.解:因为∠BOC=3∠AOB,∠AOB=40°所以∠BOC=_____°,所以∠AOC=_____+_____=____°+_____°=______°,因为OD平分∠AOC,所以∠COD=12_____=_______°.26.如图,两条直线AB,CD相交于点O,且∠AOC=∠AOD,射线OM从OB开始绕O 点逆时针方向旋转,速度为15°/s,射线ON同时从OD开始绕O点顺时针方向旋转,速度为12°/s,运动时间为t秒(0<t<12,本题出现的角均小于平角)(1)图中一定有个直角;当t=2时,∠MON的度数为,∠BON的度数为;(2)若OE平分∠COM,OF平分∠NOD,当∠EOF为直角时,请求出t的值;(3)当射线OM在∠COB内部,且7COM2BONMON∠+∠∠是定值时,求t的取值范围,并求出这个定值.参考答案1.D2.A3.D4.D5.A6.B7.D8.B9.75.510⨯10.②11.330x +=(答案不唯一)【详解】解:根据题意可得,330x +=(答案不唯一),故答案为:330x +=(答案不唯一)【点睛】本题考查了一元一次方程的定义,熟记定义是解题的关键.12.9【分析】根据绝对值的非负性和平方运算的非负性,可求得a ,b 的值,再把a ,b 的值代入,即可求得.【详解】解:()22|03|a b -++= ,||02a ≥﹣,()230b +≥,20a ∴-=,30b +=,解得a=2,b=-3,()2=3=9a b ∴-,故答案为:9.【点睛】本题考查了绝对值的非负性和平方运算的非负性,代数式求值,熟练掌握和运用绝对值的非负性和平方运算的非负性是解决本题的关键.13.90【分析】先根据余角性质得出∠2=90°-∠1,再根据补角性质得出∠3=180°-∠1,根据两角差计算即可.【详解】解∵2∠是1∠的余角,∴∠2+∠1=90°,∴∠2=90°-∠1,∵3∠是1∠的补角,∴∠3+∠1=180°,∴∠3=180°-∠1,∴∠3-∠2=180°-∠1-(90°-∠1)=90°.故答案为:90.【点睛】本题考查余角性质,补角性质,角的和差,掌握余角性质,补角性质,角的和差是解题关键.14.216【分析】设该长方体的高为x,则长方体的宽为2x,利用展开图得到2x+2x+x+x=18,然后解方程得到x的值,从而得到该长方体的高、宽、长,于是可计算出它的体积.【详解】设该长方体的高为x,则长方体的宽为2x,2x+2x+x+x=18,解得x=3,所以该长方体的高为3,则长方体的宽为6,长为18−6=12,所以它的体积为3×6×12=216(cm3),故答案为216.【点睛】本题的主要目的是为了考查列一元一次方程解应用题,其关键是设出未知数,找到边的等量关系,从而得到方程,求出长、宽、高,从而得到体积.15.1π【分析】设内圆的周长为l,表示出外圆周长l2+,利用周长公式表示出两圆半径之差即可得到结果.【详解】解:设内圆的周长为l,则外圆周长l2+,根据题意得:l2l1 2π2ππ+-=则外圆的半径比内圆的半径长1m.π故答案为1π.【点睛】考查了代数式,熟练掌握圆的周长公式是解本题的关键.16.2【分析】根据第一次输出的结果是17,第二次输出的结果是52,…,总结出每次输出的结果的规律,求出2022次输出的结果是多少即可.【详解】第一次输出的结果是:12×34=17,第二次输出的结果是:3×17+1=52,第三次输出的结果是:12×52=26,第四次输出的结果是:12×26=13,第五次输出的结果是:3×13+1=40,第六次输出的结果是:12×40=20,第七次输出的结果是:12×20=10,第八次输出的结果是:12×10=5,第九次输出的结果是:3×5+1=16,第十次输出的结果是:12×16=8,第十一次输出的结果是:12×8=4,第十二次输出的结果是:12×4=2,第十三次输出的结果是:12×2=1,第十四次输出的结果是:3×1+1=4,…,∴从第十一次开始,输出的结果分别是4、2、1,…,不断循环出现,∵(2022−10)÷3=2012÷3=670…2,∴第2022次输出的结果是2.故答案为:2.【点睛】此题主要考查了代数式求值问题,数字的变化规律,解答的关键是通过计算找到数字的变化规律.17.8【分析】设票价为10元买了x张,根据用480元买了40张入场券可得10x+15(40-x)=480,即可解得x=24,从而得到答案.【详解】解:设票价为10元买了x张,则票价为15元买了(40-x)张,票价为10元的比票价为15元的多的张数是x-(40-x)=2x-40,根据题意得:10x+15(40-x)=480,解得x=24,∴票价为15元买了40-x=16(张),票价为10元的比票价为15元的多的张数是2x-40=2×24-40=8,答:票价为10元的比票价为15元的多的张数是8,故答案为:8.【点睛】本题考查了一次方程的应用,解题的关键是读懂题意,找出等量关系列方程.18.105【分析】图1中先设∠AOM=x=∠DOM,则∠BOM=60−x,根据∠BOD=∠DOM−∠BOM,得出∠BOD的度数,再根据∠COB=∠BOD+∠DOC,求出∠CON=∠BON,最后根据∠NOM=∠BOM+∠BON,即可得出α;图2中设∠AOM=∠DOM=x,∠CON=∠BON =y,则∠BOD=60−2x,根据∠AOB=60°,∠COD=45°,列出算式,求出x−y的度数,最后根据∠MON与各角之间的关系,【详解】解:图1中设∠AOM=x=∠DOM,∵∠AOB=60°,∴∠BOM=60°−x,∵∠BOD=∠DOM−∠BOM,∴∠BOD=x−(60°−x)=2x−60°,∵∠COB=∠BOD+∠DOC,∴∠COB=(2x−60°)+45°=2x−15°,∴∠CON=∠BON=12(2x−15°)=x−7.5°,∴α=∠NOM=∠BOM+∠BON=60°−x+x−7.5°=52.5°;图2中设∠AOM=∠DOM=x,∠CON=∠BON=y,则∠BOD=60°−2x,∵∠COD=45°,∴60−2x+2y=45°,即x−y=7.5°,∴β=∠MON=x+(60−2x)+y=60−(x−y)=52.5°,∴αβ+=52.5°+52.5°=105°,故答案为:105.【点睛】本题考查了角的计算,解题的关键是设一个未知数(或两个未知数),用代数方法解决几何问题.19.(1)40;(2)-4【分析】(1)先算乘方,再算乘法,最后算加法;(2)先算乘方,再算除法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【详解】解:(1)原式=4+36=40;(2)原式=-1+6-9=-4.【点睛】考查了有理数混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.x=-23【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:71132x x -+-=去分母得,2(x-7)-3(1+x )=6,去括号得,2x-14-3-3x=6,移项得,2x-3x=6+14+3,合并同类项得,-x=23,系数化为1得,x=-23.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.11【分析】去括号,合并同类项,整体代入求值.【详解】解:()()221543a b a b b+-+--=4225203a b a b b+-+--=9212a b --.37=3a b -- ,∴原式=9212a b --=()3372a b --=()332⨯--=92--=11-.22.(1)见解析(2)见解析(3)见解析(4)线段AE 的长度是点A 到直线BC 的距离(5)A ,BC ,AE AF BF<<【分析】()()()123利用网格的特点直接作出平行线及垂线即可;()4利用垂线段的性质直接回答即可;()5利用垂线段最短比较两条线段的大小即可.【详解】()1直线CD 即为所求;()2直线AE 即为所求;()3直线AF 即为所求;()4线段AE 的长度是点A 到直线BC 的距离;()5AE BE ⊥ ,AE AF ∴<,AF AB ⊥ ,BF AF ∴>,AE AF BF ∴<<.故答案为A ,BC ,AE AF BF <<.【点睛】考查了垂线段最短和点到直线的距离的知识,解题的关键是理解有关垂线段的性质及能进行简单的基本作图.23.(1)见解析(2)Ⅰ.添加2个小正方体;Ⅱ.拿走2个小正方体【分析】对于(1),画出从正面,左面看该组合体看到的图形即可;对于(2),Ⅰ从俯视图的相应位置增加小正方体,直至主视图不变;Ⅱ在俯视图的基础上减少小正方体,至主视图不变.(1)解:该组合体主视图,左视图如图所示.(2)解:Ⅰ在俯视图的相应位置最多相应数量的正方体,如图.故答案为:2.Ⅱ在俯视图的相应位置最多减少相应数量的正方体,如图.故答案为:2.【点睛】本题主要考查了几何体的三视图,掌握简答组合体的三视图的画法是解题的关键.24.(1)①120,②34a ;(2)400步.【分析】(1)根据题意,先表示出小艺走160步的时间,然后进一步求取迎迎的步数即可;(2)设小艺追上迎迎所走的步数为x 步,则迎迎在相同时间内走的步数为()100-x 步,据此进一步列出方程求解即可.【详解】(1)①若小艺走160步,则迎迎可走:1006012080⨯=(步),②若小艺走a 步,则迎迎可走:360804a a ⨯=(步),故答案为:①120,②34a ;(2)设小艺追上迎迎所走的步数为x 步,则迎迎在相同时间内走的步数为()100-x 步,则:1008060x x -=,解得:400x =,答:小艺追上迎迎时所走的步数为400步.【点睛】本题主要考查了一元一次方程的实际应用,熟练掌握相关方法是解题关键.25.120°,∠AOB ,∠BOC ,40°,120°,160°,∠AOC ,80°.【分析】先求出BOC ∠的度数,再求出AOC ∠的度数,根据角平分线定义求出即可.【详解】∵3BOC AOB ∠=∠,40AOB ∠=︒∴120BOC ∠=︒∴40120160AOC AOB BOC =+=︒+︒=︒∠∠∠∵OD 平分AOC∠∴111608022COD AOC ==⨯︒=︒∠∠故答案为:120°,∠AOB ,∠BOC ,40°,120°,160°,∠AOC ,80°.26.(1)4;144°,114°;(2)t 的值为10s ;(3)当射线OM 在∠COB 内部,且7COM 2BON MON ∠+∠∠是定值时,t 的取值范围为103<t <6,这个定值是3【分析】(1)由直线AB ,CD 相交于点O ,∠AOC =∠AOD 即可得到共4个直角;当t =2时求得∠BOM =30°,∠NON =24°,即可得到∠MON 、∠BON 的度数;(2)用t 分别表示出∠BOM =15t ,∠NOD =12t ,∠COM =15t ﹣90°,根据OE 平分∠COM ,OF 平分∠NOD ,分别求得∠COE 、∠DOF,由∠EOF 为直角即∠COE+∠DOF =90°,列出方程解答即可.(3)先确定∠MON =180°时,∠BOM =90°时t 的值,再分两种情况进行计算,得到0<t <103时7COM 2BON MON ∠+∠∠不是定值,当103<t <6时,7COM 2BON MON ∠+∠∠=3是定值.【详解】(1)如图所示,∵两条直线AB ,CD 相交于点O ,∠AOC =∠AOD ,∴∠AOC =∠AOD =90°,∴∠BOC =∠BOD =90°,∴图中一定有4个直角;当t =2时,∠BOM =30°,∠NON =24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°;故答案为:4;144°,114°;(2)如图所示,∠BOM=15t,∠NOD=12t,∠COM=15t﹣90°,∵OE平分∠COM,OF平分∠NOD,∴∠COE=12∠COM=12(15t﹣90°),∠DOF=12∠DON=12×12t,∵当∠EOF为直角时,∠COE+∠DOF=90°,∴12(15t﹣90°)=12×12t,解得t=10,∴当∠EOF为直角时,t的值为10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t+90°+12t=180°,解得t=10 3,当∠BOM=90°时,15t=90°,解得t=6,①如图所示,当0<t<103时,∠COM=90°﹣15t,∠BON=90°+12t,∠MON=∠BOM+∠BOD+∠DON=15t+90°+12t,∴7COM2BONMON∠+∠∠=9015)2(9012)81015901227079(t t tt t t︒+︒+︒+︒++=︒﹣﹣81,(不是定值)②如图所示,当103<t<6时,∠COM=90°﹣15t,∠BON=90°+12t,∠MON=360°﹣(∠BOM+∠BOD+∠DON)=360°﹣(15t+90°+12t)=270°﹣27t,∴7COM2BONMON∠+∠∠=9015)2(9012)8102707(2727027t t tt t︒+︒+︒︒︒=﹣﹣81﹣﹣=3,(是定值)综上所述,当射线OM在∠COB内部,且7COM2BONMON∠+∠∠是定值时,t的取值范围为103<t<6,这个定值是3.。

苏科版七年级上册数学期末考试试题带答案

苏科版七年级上册数学期末考试试题带答案

苏科版七年级上册数学期末考试试卷一、单选题1.13-的倒数是()A .3-B .13C .13-D .13±2.下列式子中,与2ab 是同类项的是()A .AbB .2a bC .2ab cD .22ab -3.下列语句中,不正确的是()A .0是单项式B .多项式222xyz y z x ++的次数是4C .1π2abc -的系数是1π2-D .a -的系数和次数都是14.已知关于x 的方程290x m +-=的解是3x =,则m 的值为()A .3B .4C .5D .65.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A .B .C .D .6.下列现象:①用两个钉子就可以把木条固定在墙上②从A 地到B 地架设电线,总是尽可能沿着线段AB 架设③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线④把弯曲的公路改直,就能缩短路程其中能用“两点之间线段最短”来解释的现象有()A .①④B .①③C .②④D .③④7.某车间有21名工人生产螺栓和螺母,每人每小时能生产螺栓12个或螺母18个,现分配x 名工人生产螺栓,其余的工人生产螺母,并使得每小时生产的螺栓和螺母可按1:2配套,则所列方程为()A .()121821x x =-B .()2121821x x ⨯=-C .()2181221x x ⨯=-D .()1221821x x =⨯-8.整式mx n -的值随x 取值的变化而变化,下表是当x 取不同值时对应的整式的值:x -10123mx n--8-4048则关于x 的方程8mx n -+=的解为()A .=1x -B .0x =C .1x =D .3x =二、填空题9.计算:12-=______.10.地球与月球的平均距离大约384000km ,用科学记数法表示这个距离为km .11.下列各数①-2.5,②0,③π3,④227,⑤()24-,⑥-0.52522252225…,是无理数的序号是______.12.如图,直线CD 经过点O ,若OC 平分∠AOB ,则AOD BOD ∠=∠,依据是______.13.若代数式2a b -的值是3,则多项式()638a b -+的值是______.14.比较大小:3x 2+5x +12x 2+5x ﹣1(用“>、=或<”填空)15.如图,用代数式表示图中阴影部分的面积为________________.16.如图,C 是线段AB 上一点,D 是线段CB 的中点,10AB =,7AD =.若点E 在线段AB 上,且2CE =,则BE =______.17.如图,直线AB 、CD 相交于点O ,∠AOC=70°,∠BOE=25°,则∠DOE=______18.如图,已知数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,C 为线段AB 的中点,且4AB =,如果原点在线段AC 上,那么22b c -+-=______.三、解答题19.计算:(1)()157242712⎛⎫+-⨯- ⎪⎝⎭;(2)()22253---÷-.20.先化简,再求值:25a -[23(23)4a a a --+],其中a=-2.21.解方程:(1)()8436x x --=;(2)232126x x +--=.22.如图,方格纸中每个小正方形的边长为1,点A 、B 、C 均为格点.(1)根据要求画图:①过点C 画MN AB ∥;②过点C 画EF AB ⊥,垂足为D ;(2)图中线段______的长度表示点A 到直线CD 的距离;(3)比较线段CA 、CD 的大小关系是______.23.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,且80AOD DOB ∠-∠=︒.求∠AOC 和∠DOE 的度数.24.如图是由10个边长为1的小正方体组合成的简单几何体.(1)画出该几何体的主视图、左视图和俯视图;(2)该几何体的表面积(含底面)是______.25.某商店用3700元购进A 、B 两种玻璃保温杯共80个,这两种玻璃保温杯的进价、标价如下表所示:价格\类型A 型B 型进价(元/个)3565标价(元/个)50100(1)这两种玻璃保温杯各购进多少个?(2)已知A 型玻璃保温杯按标价的8折出售,B 型玻璃保温杯按标价的7.5折出售.在运输过程中有2个A 型和1个B 型玻璃保温杯不慎损坏,不能销售,请问在其它玻璃保温杯全部售出的情况下,该商店共获利多少元?26.【数学概念】如图1,A、B为数轴上不重合的两个点,P为数轴上任意一点,我们比较线段PA和PB的长度,将较短线段的长度定义为点P到线段AB的“靠近距离”.特别地,若线段PA和PB的长度相等,则将线段PA或PB的长度定义为点P到线段AB的“靠近距离”.如图①,点A表示的数是-4,点B表示的数是2.(1)【概念理解】若点P表示的数是-2,则点P到线段AB的“靠近距离”为______;(2)【概念理解】若点P表示的数是m,点P到线段AB的“靠近距离”为3,则m的值为______(写出所有结果);(3)【概念应用】如图②,在数轴上,点P表示的数是-6,点A表示的数是-3,点B表示的数是2.点P以每秒2个单位长度的速度沿数轴向右运动,同时点B以每秒1个单位长度的速度沿数轴向右运动.设运动的时间为t秒,当点P到线段AB的“靠近距离”为2时,求t的值.参考答案1.A【分析】根据倒数定义解答.【详解】解:13 的倒数是-3,故选:A.【点睛】此题考查了倒数的定义,熟记定义是解题的关键.2.D【分析】根据同类项是字母相同,相同字母的指数也相同的两个单项式进行解答即可.【详解】解:A 、ab 与ab 2不是同类项,不符合题意;B 、a 2b 与ab 2不是同类项,不符合题意;C 、ab 2c 与ab 2不是同类项,不符合题意;D 、-2ab 2与ab 2是同类项,符合题意;故选:D .【点睛】本题考查同类项,理解同类项的概念是解答的关键.3.D【分析】分别根据单独一个数也是单项式、多项式中每个单项式的最高次数是这个多项式的次数、单项式中的数字因数是这个单项式的系数、单项式中所有字母的指数和是这个单项式的次数解答即可.【详解】解:A 、0是单项式,正确,不符合题意;B 、多项式222xyz y z x ++的次数是4,正确,不符合题意;C 、1π2abc -的系数是1π2-,正确,不符合题意;D 、a -的系数是-1,次数是1,错误,符合题意,故选:D .【点睛】本题考查单项式、单项式的系数和次数、多项式的次数,理解相关知识的概念是解答的关键.4.A【分析】利用方程的解的含义,把3x =代入:290x m +-=即可得到答案.【详解】解:把3x =代入:290x m +-=,690m ∴+-=,3.m ∴=故选A .【点睛】本题考查的是方程的解的含义,掌握方程的解的含义是解题的关键.5.C【详解】由四棱柱的四个侧面及底面可知,A 、B 、D 都可以拼成无盖的正方体,但C 拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C .故选:C .6.C【分析】直接利用直线的性质和线段的性质分别判断得出答案.【详解】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;②从A 地到B 地架设电线,总是尽可能沿着线段AB 架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.故选:C .【点睛】本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.7.B【分析】首先要根据“每天生产的螺栓和螺母按1:2配套”找出题中存在的等量关系:每天生产的螺母=每天生产的螺栓的2倍,从而列出方程.【详解】解:设x 名工人生产螺栓,则生产螺母的工人为(21-x )名.每天生产螺栓12x 个,生产螺母18×(26-x );根据“恰好每天生产的螺栓和螺母按1:2配套”,得出方程:2×12x=18(21-x )故选:B .【点睛】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.8.A【分析】根据等式的性质把8mx n -+=变形为8mx n -=-;再根据表格中的数据求解即可.【详解】解:关于x 的方程8mx n -+=变形为8mx n -=-,由表格中的数据可知,当8mx n -=-时,=1x -;故选:A .【点睛】本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解.9.-1【分析】根据有理数减法法则计算即可.【详解】解:121(2)1-=+-=-,故答案为:-1.【点睛】本题考查了有理数减法,解题关键是熟记有理数减法法则,准确计算.10.3.84×105【分析】根据科学记数法的概念可知:用科学记数法可将一个数表示10na⨯的形式.【详解】384000=3.84×105.故答案是:3.84×105.【点睛】考查科学记数法的表示方法.科学记数法的表示形式为10na⨯的形式,其中110a≤<,n为整数,表示时关键要正确确定a的值以及n的值.11.③【分析】根据无理数的定义逐个判断即可.【详解】解:-2.5,227是分数;-0.52522252225…是无限循环小数,是有理数;0,()24-是整数;无理数有π3,故答案为:③.【点睛】本题考查了无理数的定义,能熟记无理数的定义是解此题的关键,注意:无理数是指无限不循环小数,无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.12.等角的补角相等【分析】根据角平分线的定义和等角的补角相等解答即可.【详解】解:∵OC平分∠AOB,∴∠AOC=∠BOC,∵∠AOC+∠AOD=180°,∠BOC+∠BOD=180°,∴∠AOD=∠BOD(等角的补角相等),故答案为:等角的补角相等.【点睛】本题考查角平分线的定义、补角,熟知等角的补角相等是解答的关键.13.1【分析】先观察,再由已知求出6a-3b=9,然后整体代入求解即可.【详解】解:∵2a -b=3,∴6a -3b=9,∴6a -(3b+8)=(6a -3b )-8=9-8=1,故答案为:1.【点睛】本题考查代数式求值、整式的加减,利用整体代入求解是解答的关键.14.>【分析】利用作差法比较即可.【详解】解:(3x 2+5x+1)﹣(2x 2+5x ﹣1)=3x 2+5x+1﹣2x 2﹣5x+1=x 2+2,∵x 2≥0,∴x 2+2>0,∴3x 2+5x+1>2x 2+5x ﹣1,故答案为:>.【点睛】本题考查整式的加减,理解偶次幂的非负性,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.15.212ab bπ-【分析】阴影部分的面积等于长方形的面积减去两个小扇形的面积.【详解】解:长方形的面积是ab ,两个扇形的圆心角是90°,∴这两个扇形是分别是半径为b 的圆面积的四分之一.∴2211242ab b ab b ππ-⨯=-,故答案为:212ab b π-.【点睛】本题考查了列代数式,由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.理解图意得到阴影部分的面积等于长方形的面积减去2个14圆的面积是解题的关键.16.4或8【分析】先分别求出BD 、BC 的长度,再分点E 在点C 的左边和点E 在点C 的右边求解即可.【详解】解:∵AB=10,AD=7,∴BD=AB -AD=10-7=3,∵D 为CB 的中点,∴BC=2BD=6,当点E 在点C 的左边时,如图1,∵CE=2,∴BE=BC+CE=6+2=8;当点E 在点C 的右边时,如图2,则BE=BC -CE=6-2=4,综上,BE=4或8,故答案为:4或8.【点睛】本题考查线段的和与差、线段的中点,熟练掌握线段的运算,利用分类讨论思想求解是解答的关键.17.45°【详解】试题解析:∵∠AOC=70°,∴∠BOD=70°,∵∠BOE =25°,∴∠DOE =70°-25°=45°.故答案为45°.18.2【分析】根据中点的定义可知2AC BC ==,再由原点在线段AC 上,可判断22b c ≥≤,,再化简绝对值即可.【详解】解:∵C 为线段AB 的中点,且4AB =,∴2AC BC ==,即2b c -=,∵原点在线段AC 上,∴22b c ≥≤,,22222b c b c b c -+-=-+-=-=;故答案为:2.【点睛】本题考查了线段的中点和化简绝对值,解题关键是根据中点的定义和数轴确定22b c ≥≤,.19.(1)1067-(2)-3【分析】(1)直接利用乘法分配律计算得出答案;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.(1)原式=157(24)(24)(24)2712⨯-+⨯--⨯-=-12-1207+14=1067-;(2)原式=-4-3÷(-3)=-4+1=-3.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.a 2–a–3,3【分析】根据整式的加减,先去括号,再合并同类项,然后代入求值即可.【详解】25a -[()23234a a a --+]=52a -[3a -2a+3+42a ]=52a -a -3-42a =2a -a -3当a=-2时,原式=4+2-3=3.【点睛】本题考查了整式的混合运算及化简求值,解答这类题目的关键是把最后结果化到不能再合并,然后代入求值.21.(1)x=2;(2)x=-1【分析】(1)根据一元一次方程的解法解答即可;(2)根据一元一次方程的解法解答即可.(1)解:去括号,得:8-4x+12=6x,移项、合并同类项,得:-10x=-20,化系数为1,得:x=2;(2)解:去分母,得:3(2x+3)-(x-2)=6,去括号,得:6x+9-x+2=6,移项、合并同类项,得:5x=-5,化系数为1,得:x=-1;【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.22.(1)见解析(2)AD(3)CA大于CD【分析】(1)根据题意画图即可;(2)根据点A到直线CD的距离是垂线段AD长,即可填空;(3)根据垂线段最短即可填空.(1)解:①如图所示,直线MN即为所求②直线EF和点D即为所求;(2)解:点A到直线CD的距离是垂线段AD长,故答案为:AD.(3)解:根据垂线段最短可知,CA大于CD,故答案为:CA大于CD.23.50°,25°.【分析】根据邻补角的性质,可得∠AOD+∠BOD =180°,即180AOD BOD ︒∠=-∠,代入80AOD DOB ∠-∠=︒可得∠BOD ,根据对顶角的性质,可得∠∠AOC 的度数,根据角平分线的性质,可得∠DOE 的数.【详解】解:由邻补角的性质,得∠AOD+∠BOD =180°,即180AOD BOD ︒∠=-∠∵80AOD DOB ∠-∠=︒,∴18080BOD DOB ︒-∠-∠=︒.∴50DOB ∠=︒,∴∠AOC =∠BOD =50°,∵OE 平分∠BOD ,得∠DOE =12∠DOB =25°.24.(1)图见解析;(2)38【分析】(1)根据三视图的画法画出相应的图形即可;(2)根据三视图求解几何体表面积即可.(1)解:该几何体的主视图、左视图和俯视图如图所示:(2)解:该几何体的表面积为6×2+6×2+6×2+1+1=38,故答案为:38.25.(1)购进A 型玻璃保温杯50个,购进B 型玻璃保温杯30个;(2)该商店共获利395元【分析】(1)设购进A 型玻璃保温杯x 个,根据购进两个型号玻璃保温杯的总价钱是3700元列方程求解即可;(2)根据单件利润=售价-进价和总利润=单件利润×销量求解-损坏的成本即可.(1)解:设购进A型玻璃保温杯x个,则购进B型玻璃保温杯(80-x)个,根据题意,得:35x+65(80-x)=3700,解得:x=50,80-x=80-50=30(个),答:购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;(2)解:根据题意,总利润为(50×0.8-35)×(50-2)+(100×0.75-65)×(30-1)35265-´-=240+2907065--=395(元),答:该商店共获利395元.26.(1)2;(2)-7或-1或5;(3)t的值为12或52或6或10.【分析】(1)由“靠近距离”的定义,可得答案;(2)点P到线段AB的“靠近距离”为3时,有三种情况:①当点P在点A左侧时;②当点P在点A和点B之间时;③当点P在点B右侧时;(3)分四种情况进行讨论:①当点P在点A左侧,PA<PB;②当点P在点A右侧,PA<PB;③当点P在点B左侧,PB<PA;④当点P在点B右侧,PB<PA,根据点P到线段AB的“靠近距离”为2列出方程,解方程即可.(1)解:∵PA=-2-(-4)=2,PB=2-(-2)=4,PA<PB∴点P到线段AB的“靠近距离”为:2故答案为:2;(2)∵点A表示的数为-4,点B表示的数为2,∴点P到线段AB的“靠近距离”为3时,有三种情况:①当点P在点A左侧时,PA<PB,∵点A到线段AB的“靠近距离”为3,∴-4-m=3∴m=-7;②当点P在点A和点B之间时,∵PA=m+4,PB=2-m,如果m+4=3,那么m=-1,此时2-m=3,符合题意;∴m=-1;③当点P在点B右侧时,PB<PA,∵点P到线段AB的“靠近距离”为3,∴m-2=3,∴m=5,符合题意;综上,所求m的值为-7或-1或5.故答案为-7或-1或5;(3)分四种情况进行讨论:①当点P在点A左侧,PA<PB,∴-3-(-6+2t)=2,∴t=12;②当点P在点A右侧,PA<PB,∴(-6+2t)-(-3)=2,∴t=5 2;③当点P在点B左侧,PB<PA,10∴2+t-(-6+2t)=2,∴t=6;④当点P在点B右侧,PB<PA,∴(-6+2t)-(2+t)=2,∴t=10;综上,所求t的值为12或52或6或10.。

苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试题一、单选题1.2022的相反数是()A .2022B .2022-C .12022D .12022-2.下列计算正确的是()A .2m ﹣m =2B .2m+n =2mnC .2m 3+3m 2=5m 5D .m 3n ﹣nm 3=03.将一副三角尺按下列几种方式摆放,则能使αβ∠=∠的摆放方式为()A .B .C .D .4.小丽同学在做作业时,不小心将方程2(x -3)-■=x +1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x =9,请问这个被污染的常数■是()A .4B .3C .2D .15.马龙同学沿直线将一三角形纸板剪掉一个角,发现剩下纸板的周长比原纸板的周长要小,能正确解释这一现象的数学知识是()A .经过一点有无数条直线B .两点之间,线段最短C .经过两点,有且仅有一条直线D .垂线段最短6.若(﹣2x+a )(x ﹣1)的结果中不含x 的一次项,则a 的值为()A .1B .﹣1C .2D .﹣27.如图所示几何体的左视图是()A .B .C .D .8.如图,点A 表示的实数是()A 6B 5C .15D .169.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是()A .ab >0B .﹣a+b >0C .a+b <0D .|a|﹣|b|>010.如图,点O 在直线AB 上,∠AOC 与∠BOD 互余,∠AOD =148°,则∠BOC 的度数为()A .122°B .132°C .128°D .138°二、填空题11.﹣690000000用科学记数法表示_____.12.若单项式2xmy 5和﹣x 2yn 是同类项,则n ﹣3m 的值为______.13.若2|35|(3)0m n -++=,则()9m n -=________.14.根据数值转换机的示意图,输出的值为_____.15.如图所示,一块长为m ,宽为n 的长方形地板中间有一条裂缝,若把裂缝右边的一块向右平移距离为d 的长度,则由此产生的裂缝面积是______.16.一个立方体的表面展开图如图所示,将其折叠成立方体后,与“你”对面的字为______.17.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.设原有x 只鸽子,则可列方程_____.18.如图,已知图①是一块边长为1,周长记为C 1的等边三角形卡纸,把图①的卡纸剪去一个边长为12的等边三角形纸板后得到图②,然后沿同一底边再剪去一个边长为14的等边三角形后得到图③,依次剪去一个边长为18、116、132…的等边三角形后,得到图④、⑤、⑥、…,记图n (n≥3)中的卡纸的周长为Cn ,则Cn ﹣Cn ﹣1=_____.三、解答题19.计算:(1)31125(25)25()424⨯--⨯+⨯-;(2)201721(1)(132(3)2⎡⎤---÷⨯--⎣⎦.20.解方程:(1)2(1)25(2)x x -=-+(2)5172124x x ++-=21.先化简,再求值:2(x 2y+3xy )﹣3(x 2y ﹣1)﹣2xy ﹣2,其中x =﹣2,y =2.22.如图,网格线的交点叫格点,格点P 是AOB ∠的边OB 上的一点(请利用网格作图,保留作图痕迹).(1)过点P画OB的垂线,交OA于点C;(2)线段的长度是点O到PC的距离;<的理由是;(3)PC OC(4)过点C画OB的平行线;23.现规定一种新运算,规则如下:a※b ab a bx-=,求x的值.=++,已知3※32424.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)25.如图,C是线段AB上的一点,N是线段BC的中点.若AB=12,AC=8,求AN的长.26.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求△BOE的度数;(3)试判断OF是否平分∠AOC,请说明理由.27.若在一个两位正整数A的个位数字之后添上数字6,组成一个三位数,我们称这个三位数为A的“添彩数”,如78的“添彩数”为786,若将一个两位正整数B减去6得到一个新数,我们称这个新数为B的“减压数”,如78的“减压数”为72.(1)求证:对任意一个两位正整数M,其“添彩数”与“减压数”之和能被11整除.(2)对任意一个两位正整数N ,我们将其“添彩数”与“减压数”之比记作()f N ,若()f N 为整数且()18f N ≤,求出所有符合题意的N 的值.参考答案1.B【分析】根据相反数的定义直接求解.【详解】解:实数2022的相反数是2022-,故选:B .【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2.D【分析】根据合并同类项逐项分析判断即可【详解】A.2m ﹣m =m ,故该选项不正确,不符合题意;B.2m 与n 不是同类项,不能合并,故该选项不正确,不符合题意;C.2m 3与3m 2不是同类项,不能合并,故该选项不正确,不符合题意;D.m 3n ﹣nm 3=0,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项,掌握合并同类项是解题的关键.3.B【分析】根据三角板的特殊角分别进行判断即可;【详解】由图形摆放可知,αβ∠≠∠;由图形摆放可知,αβ∠=∠;由图形摆放可知,15α∠=︒,=30β∠︒,αβ∠≠∠;由图形摆放可知,180αβ∠+∠=︒,αβ∠≠∠;故答案选B .【点睛】本题主要考查了直角三角板的角度求解,准确分析判断是解题的关键.4.C【分析】把x=9代入原方程即可求解.【详解】把x=9代入方程2(x-3)-■=x+1得2×6-■=10∴■=12-10=2故选C.【点睛】此题主要考查方程的解,解题的关键是把方程的根代入原方程.5.B【分析】根据两点之间,线段最短进行解答即可.【详解】解:某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是:两点之间,线段最短.故选:B.【点睛】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.6.D【分析】根据多项式乘多项式的运算法则进行化简,然后令含x的一次项系数为零即可求出答案.【详解】解:(﹣2x+a)(x﹣1)=﹣22x+(a+2)x﹣a,∴a+2=0,∴a=﹣2,故选:D.【点睛】本题考查了整式的乘法中的不含某项的计算,正确理解题意是解题的关键.7.A【分析】视线从左面观察几何体所得的视图叫左视图,能够看到的线用实线,看不到的线用虚线.【详解】解:从左边看,底层是一个矩形,上层是一个直角三角形(三角形与矩形之间没有实线隔开),左齐.故选:A.【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.8.B【分析】利用勾股定理求出OA长度,然后得到A点表示的实数即可【详解】解:∵OA =∴点A 故选B .【点睛】本题考查勾股定理,能够灵活运用勾股定理解题是本题的关键9.B【分析】根据a ,b 两数在数轴上的位置确定它们的符号和绝对值的大小,再对各个选项逐一分析判断即可.【详解】解:A .由数轴可知,﹣1<a <0<1<b ,|b|>|a|,因为a <0,b >0,所以ab <0,故选项错误,不符合题意;B .因为a <0,所以﹣a >0,又因为b >0,所以﹣a+b >0,故选项错正确,符合题意;C .因为a <0,b >0,|b|>|a|,所以a+b >0,故选项错误,不符合题意;D .因为|b|>|a|,所以|a|﹣|b|<0,故选项错误,不符合题意.故选:B【点睛】本题考查了实数与数轴上点的对应关系,解题的关键是确定a ,b 的符号和绝对值的大小关系.10.A【分析】利用∠AOC 与∠BOD 互余得出∠AOC+∠BOD =90°,再由平角的定义求出∠COD ,即可求出答案.【详解】解:∵点O 在直线AB 上,∠AOC 与∠BOD 互余,∴∠AOC+∠BOD =90°,∴∠COD =180°﹣(∠AOC+∠BOD )=180°﹣90°=90°,∵∠AOD =148°,∴∠BOD =180°﹣∠AOD =180°﹣148°=32°,∴∠BOC =∠COD+∠BOD =90°+32°=122°,故选:A .11.﹣6.9×108【分析】用科学记数法表示绝对值大于1的数,形如,11001,n a n <⨯<为正整数,据此解答.【详解】解:﹣690000000用科学记数法表示为﹣6.9×108故答案为:﹣6.9×108.12.-1【详解】解:∵单项式2xmy 5和﹣x 2yn 是同类项,∴m =2,n =5,∴n ﹣3m =5﹣6=-1.故答案为:-1.13.-20【分析】利用非负性,确定m=53,n=-3,代入计算即可.【详解】∵2|35|(3)0m n -++=,∴m=53,n=-3,∴()59(12)3m n -=⨯-=-20,故答案为:-20.14.19【详解】解:当x =﹣3时,31+x =3﹣2=19,故答案为:19.15.dn【分析】根据平移后的图形面积-平移前的面积=裂缝面积列式即可计算出结果.【详解】裂缝面积=(m+d)n-mn=mn+dn-mn=dn .故答案为dn .16.顺【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“试”是相对面,“你”与“顺”是相对面,“考”与“利”是相对面.故答案为:顺.17.36x -=58x+【分析】直接利用鸽笼的数量不变得出方程,即可得出答案.【详解】解:设原有x 只鸽子,则可列方程:3568x x -+=.故答案为:3568x x -+=.18.112n -【分析】利用等边三角形的性质(三边相等)求出等边三角形的周长C 1,C 2,C 3,C 4,根据周长相减的结果能找到规律即可求出答案.【详解】解:∵C 1=1+1+1=3,C 2=1+1+12=52,C 3=1+1+14×3=114,C 4=1+1+14×2+18×3=238,…∴C 3﹣C 2=12,C 3﹣C 2=114﹣52=14=(12)2;C 4﹣C 3=238﹣114=18=(12)3,…则C n ﹣Cn ﹣1=(12)n ﹣1=112n -.故答案为:112n -.19.(1)25;(2)16【详解】解:(1)原式=311252525424⨯+⨯-⨯=31125(424⨯+-=25×1=25;(2)原式=111(29)23--⨯⨯-=111(7)23--⨯⨯-=716-+=16.20.(1)67x =-;(2)43x =【分析】(1)首先去括号,然后移项,合并同类项,系数化为1即可;(2)去分母,然后去括号,移项,合并同类项,系数化为1即可求解.【详解】(1)解:222510x x -=--,76x =-,67x =-;(2)102724x x +--=,34x =,43x =.21.﹣x 2y+4xy+1,-23【分析】原式去括号再合并即可得到最简结果,将x 与y 的值代入计算即可求出值.【详解】原式=2x 2y+6xy ﹣3x 2y+3﹣2xy ﹣2=﹣x 2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.22.(1)见解析;(2)OP ;(3)垂线段最短;(4)见解析【详解】试题分析:(1)先以点P 为圆心,以任意长为半径画弧,与OB 交于两点,然后再分别以这两点为圆心,作弧在OB 两侧交于两点,过这两点作直线即可;(2)根据点到直线的距离的概念即可得;(3)根据垂线段最短即可得;(4)根据“同位角相等,两直线平行”作∠BOA 的同位角即可得.试题解析:(1)如图所示:PC 即为所求作的;(2)根据点到直线的距离的定义可知线段OP 的长度是点O 到PC 的距离,故答案为OP ;(3)PC<OC 的理由是垂线段最短,故答案为垂线段最短;(4)如图所示.23.6x =【分析】根据题意,可得:3※333324x x x -=++-=,据此求出x 的值即可.【详解】解:a ※b ab a b =++,3∴※333324x x x -=++-=,32433x x ∴+=-+,424x ∴=,解得:6x =.【点睛】此题主要考查了解一元一次方程的方法,解题的关键是要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.AB 两地距离为252千米.【分析】根据路程、速度、时间之间的关系列出方程,解方程即可.【详解】设AB 两地距离为x 千米,则CB 两地距离为(x ﹣2)千米.根据题意,得238282x x -+=+-解得x =252.答:AB 两地距离为252千米.【点睛】考查了一元一次方程的应用,解题关键是理解题意找到等量关系,根据等量关系列出方程.25.10【分析】先根据已知求出BC的长,再根据N是线段BC的中点求出CN,从而求出AN.【详解】解:∵AB=12,AC=8,∴BC=AB﹣AC=12﹣8=4,∵N是线段BC的中点,∴CN=12BC=12×4=2,∴AN=AC+CN=8+2=10.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及中点的性质是解答此题的关键.26.(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF 平分∠AOC .【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.27.(1)证明见解析;(2)17.【分析】(1)设M 的十位数字为a ,个位数字为b ,分别写出M 的“添彩数”和“减压数”,求和,化简,表示出11的倍数,即可证明;【详解】(1)证明:设M 的十位数字为a ,个位数字为b则其“添彩数”与“减压数”分别为:100a+10b+6;10a+b-6它们的差为:100a+10b+6+(10a+b-6)=110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y-6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9,则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数∴N 的值为17.。

苏科版七年级上册数学期末考试试卷带答案

苏科版七年级上册数学期末考试试卷带答案

苏科版七年级上册数学期末考试试题一、单选题1.已知x+2y 与x+4互为相反数,则x+y 的值为()A .﹣4B .﹣1C .﹣2D .22.下面计算正确的是()A .2x 2﹣x 2=1B .4a 2+2a 3=6a 5C .5+m =5mD .10.2504ab ab -+=3.已知x =4是关于x 的方程2x+a =x ﹣3的解,则a 的值是()A .﹣7B .﹣6C .﹣5D .﹣44.下列代数式的值一定是正数的是()A .2x +B .3x C .2x D .2x +5.已知关于x 的方程290x m +-=的解是3x =,则m 的值为()A .3B .4C .5D .66.如图,是一个正方体的展开图,把展开图折叠成正方体后,与“春”这个汉字相对的面上的汉字是()A .正B .斗C .奋D .青7.如图,OA 是表示北偏东x ︒的一条射线,OB 是表示北偏西()90y -︒的一条射线,若AOC AOB ∠=∠,则OC 表示的方向是()A .北偏东()903x -︒B .北偏东()90x y +-︒C .北偏东()902x y +-︒D .北偏东()90x y --︒8.如图,已知∠AOB :∠BOC =2:3,∠AOC =75°,那么∠AOB =()A .20°B .30°C .35°D .45°二、填空题9.单项式3237a b -的次数是__________.10.﹣690000000用科学记数法表示_____.11.若()2230x y -++=,则x y =______.12.如图,从学校A 到书店B 有①②共2条路线,最短的是①号路线,得出这个结论的根据是:______.13.如图所示,已知∠ACB =90°,若BC =8cm ,AC =6cm ,AB =10cm ,则点A 到BC 的距离是_____,点C 到AB 的距离是_____.14.已知代数式22433A x xy y =+-+,22B x xy -=+,若2A B -的值与y 的取值无关,则x 的值为______.15.把方程2y ﹣6=y +7变形为2y ﹣y =7+6,这种变形叫_____,根据是_____.16.如图,三个一样大小的小长方形沿“横-竖-横”排列在一个长为10,宽为8的大长方形中,则图中一个小长方形的面积等于______.17.如图,已知线段AC =7cm ,AD =2cm ,C 为线段DB 的中点,则线段AB =_____cm .18.已知∠AOB 与∠BOC 互为邻补角,OD 平分∠BOC ,OE ⊥OB 于点O ,若∠AOD =4∠BOC ,则∠DOE =_____.三、解答题19.计算:(1)31125(25)25()424⨯--⨯+⨯-;(2)201721(1)(132(3)2⎡⎤---÷⨯--⎣⎦.20.解方程:(1)2(1)25(2)x x -=-+(2)5172124x x ++-=21.先化简,再求值:()223233()a ab a b ab b ⎡⎤---++⎣⎦,其中3a =-,13b =.22.如图是由10个大小相同的小立方体搭建的几何体,其中每个小立方体的棱长为1厘米.(1)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图;(2)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加个小正方体(直接填空).23.某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元;经粗加工后销售,每吨利润4000元;经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果对蔬菜进行精加工,每天可加工6吨;但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,请说说理由.24.解方程3157146y y---=.25.一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,求∠ABC的度数:解:(根据图形填射线BF的画法),因为CD∥AE,所以 ().26.如图,直线AB,CD相交于点O,若∠1比∠2的2倍多33°,求∠1,∠2的度数.27.已知数轴上有A、B两个点.(1)如图1,若AB=a,M是AB的中点,C为线段AB上的一点,且34ACCB ,则AC=,CB=,MC=(用含a的代数式表示);(2)如图2,若A、B、C三点对应的数分别为﹣40,﹣10,20.①当A、C两点同时向左运动,同时B点向右运动,已知点A、B、C的速度分别为8个单位长度/秒、4个单位长度/秒、2个单位长度/秒,点M为线段AB的中点,点N为线段BC 的中点,在B、C相遇前,在运动多少秒时恰好满足:MB=3BN.②现有动点P、Q都从C点出发,点P以每秒1个单位长度的速度向终点A移动;当点P 移动到B点时,点Q才从C点出发,并以每秒3个单位长度的速度向左移动,且当点P到达A点时,点Q也停止移动(若设点P的运动时间为t).当PQ两点间的距离恰为18个单位时,求满足条件的时间t值.参考答案1.C2.D3.A4.D5.A6.B7.C8.B9.510.﹣6.9×10811.912.两点之间,线段最短13.6cm 4.8cm14.1 215.移项等式基本性质116.817.12【分析】根据题意,AC,AD可求得CD的长,在根据中点的性质即可求得答案.【详解】解:∵AC=7cm,AD=2cm,∴CD=AC﹣AD=5cm,∵C为线段DB的中点,∴BC=CD=5cm,∴AB=AC+BC=7+5=12(cm),答:线段AB=12cm,故答案为:12.【点睛】本题考查了中点的性质,本题属于基础题,掌握中点的性质是解题的关键.18.110°或70°【分析】根据题意,讨论当E在OB的左侧时,当E在OB的右侧时,利用数形结合即可求得答案.【详解】解:①当E在OB的左侧时,如下图,设∠COD=α,∵OD平分∠BOC,∴∠BOD=∠COD=α,∴∠BOC=∠BOD+∠COD=2α,∵∠AOD=4∠BOC,∴∠AOD=8α,∵∠AOD+∠COD=180°,∴8α+α=180°,∴α=20°,∴∠BOD=20°,∵OE⊥OB,∴∠BOE=90°,∴∠DOE=∠BOE+∠BOD=110°,②当E在OB的右侧时,如下图,设∠COD=α,∵OD平分∠BOC,∴∠BOD=∠COD=α,∴∠BOC=∠BOD+∠COD=2α,∵∠AOD=4∠BOC,∴∠AOD=8α,∵∠AOD+∠COD=180°,∴8α+α=180°,∴α=20°,∴∠BOD=20°,∵OE⊥OB,∴∠BOE =90°,∴∠DOE =∠BOE ﹣∠BOD =70°,故答案为:110°或70°.【点睛】本题考查了邻补角、角平分线的性质,根据数学结合思想讨论是解题的关键.19.(1)25;(2)16【详解】解:(1)原式=311252525424⨯+⨯-⨯=31125(424⨯+-=25×1=25;(2)原式=111(29)23--⨯⨯-=111(7)23--⨯⨯-=716-+=16.【点睛】本题考查有理数的混合运算.掌握有理数的混合运算的运算顺序和每一步的运算法则是解题关键,适当的运用运算律是解题关键.20.(1)67x =-;(2)43x =【分析】(1)首先去括号,然后移项,合并同类项,系数化为1即可;(2)去分母,然后去括号,移项,合并同类项,系数化为1即可求解.【详解】(1)解:222510x x -=--,76x =-,67x =-;(2)102724x x +--=,34x =,43x =.【点睛】本题考查了一元一次方程的解法,关键是注意去括号时的符号变号问题.21.229a ab -;27【分析】先去括号,再合并同类项,然后将值代入计算即可.【详解】解:原式2236333a ab a b ab b=--+--229a ab=-当3a =-,13b =时,原式212(3)9(3)3=⨯--⨯-⨯27=.【点睛】本题考查整式的加减.去括号时,注意要正确运用去括号法则考虑括号内的符号是否变号.22.(1)见解析;(2)4【分析】(1)主视图有3列,每列小正方形数目分别为3,1,2;左视图3列,每列小正方形数目分别为3,2,1;俯视图有3列,每行小正方形数目分别为3,2,1;(2)保持俯视图和左视图不变,得到最多可得到小正方形的个数,与原图形比较即可得出添加的小正方形个数.【详解】(1)如图所示:(2)若保持俯视图和左视图不变,则做多可有多少个小正方形如图:与原图比较,则每列小正方形添加数目分别:0+3+1=4(个)故答案为:4【点睛】本题考查作图−三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.选择方案三【分析】方案(1)和方案(2)的获利情况可直接算出,方案三:设精加工x 吨,本题中的相等关系是:精加工的天数+粗加工的天数15=天.即:14015616-+=精加工的吨数精加工的吨数,就可以列出方程.求出精加工和粗加工个多少,从而求出获利.然后比较可得出答案.【详解】解:方案一:4000140560000⨯=(元);方案二:1567000(140156)1000680000⨯⨯+-⨯⨯=(元);方案三:设精加工x 吨,则14015616x x-+=;解得:60x =,7000604000(14060)740000⨯+⨯-=(元);740000680000560000>> 答:选择方案三.【点睛】本题考查了列方程解应用题,解题的关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.24.1y =-【分析】根据去分母,去括号,移项,合并,化系数为1的步骤求解即可.【详解】解:去分母得:93121014y y --=-,移项合并同类项得:1y -=,解得:1y =-.25.过点B 作BF CD ,BF ,CD ,AE ,平行于同一条直线的两条直线平行;120°【分析】根据平行于同一条直线的两条直线平行和平行线的判定与性质即可求∠ABC 的度数.【详解】解:如图,过点B 作BF CD ,因为CD AE (已知),所以BF CD AE(平行于同一条直线的两条直线平行),所以∠CBF+∠BCD=180°,∠FBA+∠BAE=180°,(两条直线平行,同旁内角互补),因为∠BCD=150°,∠BAE=90°,所以∠CBF=30°,∠FBA=90°,所以∠ABC=∠CBF+∠FBA=120°.答:∠ABC的度数为120°.故答案为:过点B作BF∥CD,BF,CD,AE,平行于同一条直线的两条直线平行.26.∠1=131°;∠2=49°【详解】解:由题意得:∠1=2∠2+33°.∵∠1与∠2是邻补角,∴∠1+∠2=180°.∴2∠2+33°+∠2=180°.∴∠2=49°.∴∠1=2∠2+33°=131°.27.(1)37a,47a,114a;(2)2秒时恰好满足MB=3BN;(3)当t为18秒、36秒和54秒时,P、Q两点相距18个单位长度.【分析】(1)根据题意中的等量关系用a表示出AC,CB,MC即可;(2)①假设x秒C在B右边时,恰好满足MB=3BN,据此得出方程,求出x的值即可;②点P表示的数为20﹣t,点Q表示的数为20﹣3(t﹣30),再分情况推论①当点P移动18秒时,②点Q在点P的右侧,③当点Q在点P的左侧,即可得出结论.【详解】解:(1)∵AB=a,C为线段AB上的一点,且=,∴AC=AB=a,CB=AB=a,∵M是AB的中点,∴MC=AB﹣AB=a,故答案为a,a,a;(2)∵若A、B、C三点对应的数分别为﹣40,﹣10,20,∴AB=BC=30,设x秒时,C在B右边时,恰好满足MB=3BN,∵BM=(8x+4x+30),BN=(30﹣4x﹣2x),∴当MB=3BN时,(8x+4x+30)=3×(30﹣4x﹣2x),解得:x=2,∴2秒时恰好满足MB=3BN;(3)点P表示的数为20﹣t,点Q表示的数为20﹣3(t﹣30),①当点P移动18秒时,点Q没动,此时,PQ两点间的距离恰为18个单位;②点Q在点P的右侧,∴20﹣3(t﹣30)﹣(20﹣t)=18,解答:t=36,③当点Q在点P的左侧,∴20﹣t﹣[20﹣3(t﹣30)]=18,解答:t=54;综上所述:当t为18秒、36秒和54秒时,P、Q两点相距18个单位长度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


苏科版初一期末数学试卷
一、填空题:(本大题共12题,每空2分,共28分;只需填写结果,不必填写过程) 1.-3的相反数是________.
2.单项式-2xy 的系数是________,次数为________.
3.若-2
3x m +4y 3与4xy 5+n 是同类项,则n +m =________.
4.已知x =2是关于x 的方程2x -k =1的解,则k 的值是________. 5. 某校共有m 名学生,其中男生人数占51%,则该校有 名女生.

6.写出一个小于-的整数为 . 7.若∠α的余角是38°52′,则∠α的补角为 . 8.若x -3y =-2,那么3-x +3y 的值是 . 9.将一张长方形纸片按如图所示的方式折叠,BD 、BE 为折痕,若∠ABE=35°则∠DBC 为 度.
10.如图,若添上一个正方形,使之能折叠成一个正方体,且使相对面上的两个数字之和相等,则添上的正方形上的数字应为 ,共有 种不同添加的方法.
11.元旦期间,商业大厦推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了 折优惠.
12. 在迎新春活动中,甲、乙、丙、丁围成一圈依序报数,规定:①甲、乙、丙、丁首次报的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报的数比前一位同学报的数大1,当报的数是50时,报数结束;②若报出的数为3的倍数,则报该数的同学需拍手一次,在这个活动中,甲同学需要拍手的次数为 .

二、选择题:(本大题共8题,每小题3分,共24分)
13.下列算式中,运算结果为负数的是……………………………………………( )
A. -32
B.||-3
C. -(-3)
D.(-3)2
14.无锡地铁2号线已开工,全长约33200 m ,将33200 用科学记数法表示应为( )
A .×105
B .×104
C .×103
D .332×102
15.下列各式中,运算正确的是…………………………………………………… ( )
A. 3a 2+2a 2=5a 4 +a 2=a 4
C. 6a -5a =1
D.3a 2b -4ba 2=-a 2b
`
16.关于x 的方程2x -3=1的解为…………………………………………… ( )
A .-1
B .1
C .2
D .-2
17. 下列结论中,不正确...
的是……………………………………………………… ( ) A .两点确定一条直线 B .两点之间,直线最短
C .等角的余角相等
D .两直线和第三条直线都平行,则这两直线也平行 18. 实数a 、b 在数轴上的位置如图所示,则化简a b a +-的结果为……………( ) A. b B. b - C. b a --2 D. b a -2
19. 如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中: ①90°-∠β;②∠α-90°;③180°-∠α;④
1
2
(∠α-∠β).正确的是:…………( ) A.①②③④ B. ①②④ C. .①②③ D. ①②
20. 钟面角是指时钟的时针与分针所成的角,如果时间从下午1点整到下午4点整,钟面角为90°的情况有…………………………………………………………………( ) A .有一种 B .有四种 C . 有五种 D .有六种

三、解答题:(本大题共8题,共48分) 21.计算 (每题3分,共6分) (1) 45)5
33291(⨯+-; (2)[]
24)3(361
1-+-⨯--
22.解关于x 的方程: (每题3分,共6分)

(1)()x x -=-234 (2)
13
3221=--+x x
[
b
a
23.(本题5分)先化简,再求值:
2x 2+(-x 2-2xy +2y 2)-3(x 2-xy +2y 2),其中x =2,y =-1
2.
24.(本题7分)如图,所有小正方形的边长都为1,A 、B 、C 都在格点上.
*
(1)过点C 画直线AB 的平行线(不写作法,下同); (2)过点A 画直线BC 的垂线,并注明垂足为G ; 过点A 画直线AB 的垂线,交BC 于点H. (3)线段 的长度是点A 到直线BC 的距离,
线段AH 的长度是点 到直线 的距离.
(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段AG 、AH 的大小关系为AG AH.
*
25. (本题6分)
(1)由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图.
(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要_______个小立方块,最多要_______个小立方块.
26.(本题5分)如图,已知线段AB =12cm,点C 是AB 的中点,点D 在直线AB 上,
且AB =4BD . 求线段CD 的长.

27.(本题7分)如图,直线AB 与CD 相交于O ,OE ⊥AB ,OF ⊥CD . (1)图中与∠AOF 互余的角是 ;
与∠COE 互补的角是 .
(把符合条件的角都写出来)
(2)如果∠AOC =1
4∠EOF ,求∠AOC 的度数.

28.(本题6分) 我国某部边防军小分队成一列在野外行军,通讯员在队伍中,数了一下他前后的人数,发现前面人数是后面的两倍,他往前超了6位战士,发现前面的人数和后面的人数一样. (1)这列队伍一共有多少名战士
(2)这列队伍要过一座320米的大桥,为安全起见,相邻两个战士保持相同的一定间距,行军速度为5米/秒,从第一位战士刚上桥到全体通过大桥用了100秒时间,请问相邻两个战士间距离为多少米(不考虑战士身材的大小)
第一学期期末考试 初一数学试卷答案

22.解关于x 的方程: (每题3分,共6分)
(1)()x x -=-234 (2)
13
3221=--+x
x . 解:4-x =6-3x ……………1分 解:3(x +1)-2(2-3x )=6………1分
3x -x =6-4 ………………2分 3x +3-4+6x =6
2x =2 9x =7…………………2分 x =1………………………3分 x =9
7
…………………3分
~
23.(本题5分)先化简,再求值:
2x 2+(-x 2-2xy +2y 2)-3(x 2-xy +2y 2),其中x =2,y =-1
2. 解:2x 2+(-x 2-2xy +2y 2)-3(x 2-xy +2y 2)
=—2x 2+xy -4y 2 ………………………………………………3分
当x =2,y =-1
2时,原式=—10 ………………………………5分
24.(1)画对……1分 (2)画对……3分

(3)AG ,H 、AB ,……6分 (4) <……7分
25. (1)
……………………4分
{
(2)5,7……………………………………………………6分
26.∵ AB =12cm ,AB =4BD ∴BD =3 cm ……………………1分 当点D 在线段AB 上时,CD =3cm……………………3分
[
当点D 在线段AB 的延长线上时,CD =9cm……………………5分 (两种情况均需画出点,写出求解过程)
27. (1) 图中与∠AOF 互余的角是∠ AOC 、∠BOD . ………1分
图中与∠COE 互补的角是∠ EOD 、∠BOF ; ………3分
(2)∵OE ⊥AB ,OF ⊥CD
∴∠EOB =90° ∠FOD =90°

∵∠AOC =1
4∠EOF ………………………………5分
∴设∠AOC =x ,则∠BOD =x ,∠EOF =4x 4x +x +90+90=360 x =36
∴∠AOC =36°……………………………………7分
D
O
F
E
C
B
A 左视图
俯视图
28. (1)解:设这支队伍有x 人,根据题意得
11
62(6)22
x x --+=-……………………………………2分 解得x =37………………………………………………3分 (2)解:设相邻两个战士间距离为y 米…………………4分 队伍全部通过所经过的路程为(320+36y )米 ∴ (320+36y)/5=100 解得:y =5…………6分
答:(1)这列队伍一共有37名战士 (2)相邻两个战士间距离为5米.。

相关文档
最新文档