苏科版七年级上册数学试卷
苏科版七年级上册数学期末考试试卷带答案

苏科版七年级上册数学期末考试试题一、单选题1.2022的相反数是()A .2022B .2022-C .12022D .12022-2.下列写法正确的是()A .直线AB 、CD 交于点m B .直线a 、b 交于点mC .直线a 、b 交于点MD .直线ab 、cd 交于点M3.下列四个几何体中,是四棱锥的是()A .B .C .D .4.下列各式的计算结果正确的是()A .355x y xy +=B .22752y y -=C .835a a a -=D .222523ab a b ab -=5.课本习题中有一方程2x -=■x+3,其中一个数字被污渍盖住了,书后该方程的答案为x =﹣7,那么■处的数字应是()A .﹣5B .﹣1C .1D .56.一个角的余角与这个角的补角之和为130°,这个角的度数是()A .60°B .70°C .75°D .80°7.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是()A .30°B .45°C .50°D .60°8.如图所示的图形是由正方形和相同大小的圆按照一定规律摆放而成,按此规律,若要得到604个圆,则为第()个图形.A.200B.201C.202D.302二、填空题9.单项式﹣23xy3的次数是_____.10.将102600000000这个数据用科学记数法表示正确的是_____________.11.关于m、n的单项式﹣2manb与3m2a﹣1n2的和仍为单项式,则这两个单项式的和为_____.12.如图,直线AB、CD相交于点O,OE平分∠BOD,∠BOE=24°13′48″,则∠AOC=_____°.13.已知点C在直线AB上,线段AB=8cm,BC=2cm,点D是线段AC的中点,则线段BD的长为_____cm.14.用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要_____个小立方块.15.某次篮球联赛共有十支队伍参赛,部分积分表如下表:比赛场队名胜场负场积分次A1814432B1811729C189927根据表格提供的信息,可知胜一场积_____分.三、解答题16.计算:(1)(﹣3.2)+12.5+(﹣16.8)﹣(﹣7.5);(2)﹣53×[4﹣(﹣4)]﹣300÷5.17.先化简,再求值:2(3ab 2﹣a 2b+ab )﹣3(2ab 2﹣4a 2b+ab ),其中a =﹣1,b =2.18.解方程:(1)5(2)1x x --=;(2)21101211364x x x -++-=-.19.已知A =3x 2+2x ﹣1,B =﹣2x 2﹣3x+5.求:(1)A ﹣2B ;(2)若2A 与3B 互为相反数,求x 的值.20.如图,点A 在∠MON 的边OM 上,选择合适的画图工具按要求画图.(1)反向延长射线ON ,得到射线OP ,画∠MOP 的角平分线OQ ;(2)在射线OP 上取一点B ,使得OB =OA ;(3)在射线OQ 上作一点C ,使得CB+AC 最小,这样作图依据是;(4)过点O 画OD ⊥OQ ,垂足为点O ,用量角器量得∠NOD 的度数为°.21.下图是某几何体的表面展开图:(1)这个几何体的名称是;(2)若该几何体的主视图是正方形,请在网格中画出该几何体的左视图、俯视图;(3)若网格中每个小正方形的边长为1,则这个几何体的体积为.22.如图,点O在直线AB上,CO⊥AB,∠2﹣∠1=34°,OE是∠AOD的平分线,OF⊥OE.(1)求∠AOE的度数.(2)找出图中与∠BOF互补的角,并求出∠BOF补角的度数.23.某校需制作一块活动展板,请来师徒两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.(1)两个人合作需要多少天完成?(2)现由徒弟先做1天,师徒两人再合作完成这项工作,问:徒弟共做了几天?24.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数﹣2,点B表示的数4,下列各数,3,2,0所对应的点分别C1,C2,C3,其中是点A,B的“联盟点”的是;(2)点A表示数﹣10,点B表示的数30,P在为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“联盟点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P表示的数为.25.2016年元旦来临之前,为了迎新年,甲、乙两校联合准备文艺汇演,甲、乙两校共92人参加演出(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买演出服装(一人买一套),下面是某服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套及以上每套服装的价格60元50元40元如果两校分别单独购买服装,一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱;(2)甲、乙两校各有多少学生准备参加演出;(3)如果甲校有9名准备参加演出的同学抽调去参加科技创新比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱.参考答案1.B【分析】根据相反数的定义直接求解.,【详解】解:实数2022的相反数是2022故选:B.【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2.C【分析】根据直线和点的表示法即可判断.【详解】A.点只能用一个大写字母表示,不能用小写字母表示,故错误;B.点只能用一个大写字母表示,不能用小写字母表示,故错误;C.正确;D.直线能用两个大写字母表示或用一个小写字母表示,不能用两个小写字母表示,故错误;故选:C .【点睛】本题考查了直线和点的表示法,直线能用两个大写字母表示,用一个小写字母表示,点只能用一个大写字母表示.3.A【分析】根据立体几何的识别选出正确选项.【详解】A 选项是四棱锥;B 选项是圆柱;C 选项是四棱柱;D 选项是三棱柱.故选:A .【点睛】本题考查立体几何的识别,解题的关键是掌握四棱锥的定义.4.C【分析】根据同类项所含字母相同,相同字母也分别相同的项是同类项,合并同类项法则是只把相似相加减,字母与字母的指数不变对各选项进行一一判断即可.【详解】A.∵3x 与5y 不是同类项,不能合并,355x y xy +≠,故选项A 不正确;B.∵()2222757522y y y y -=-=≠,故选项B 不正确;C.∵()83835a a a a -=-=,故选项C 正确;D.∵25ab 与22a b 不是同类项,不能合并,222523ab a b ab -≠,故选项D 不正确.故选C .【点睛】本题考查同类项与合并同类项法则,掌握同类项概念与合并同类项法则是解题关键.5.C【分析】设■表示的数为a ,将x =﹣7代入方程2x -=■x+3求解即可.【详解】解:设■表示的数为a ,∵x =﹣7是方程2x -=■x+3的解,∴72a--=-7+3,∴a =1,即■处的数字应是1,故选:C .【点睛】本题考查解一元一次方程,熟练掌握该知识点是解题关键.6.B【分析】设这个角的度数为x .再用x 表示出这个角的余角和补角的度数,最后根据题意列出一元一次方程并求解即可.【详解】解:设这个角的度数为x ,则这个角的余角是90x ︒-,这个角的补角是180x ︒-.根据题意可得90°﹣x+180°﹣x =130°,解得:x =70°,所以这个角是70°故选:B .【点睛】本题考查余角的定义,补角的定义,一元一次方程的实际应用,综合应用这些知识点是解题关键.7.B【分析】由角平分线的定义可得,∠COM=12∠AOC ,∠NOC=12∠BOC ,再根据∠MON=∠MOC-∠NOC 解答即可.【详解】∵OM 平分AOC ∠,∴∠COM=12∠AOC ,∵ON 平分∠BOC ,∴∠NOC=12∠BOC ,∴∠MON=∠MOC-∠NOC=12(∠AOC-∠BOC)=12∠AOB=45°.故选B.【点睛】本题考查角的相关计算,解题的关键是通过角平分线的定义将所求的角转化已知角.8.B【分析】观察图形的变化找到规律,再代入求解即可.【详解】解:观察图形的变化可知.第1个图形中圆的个数为4;第2个图形中圆的个数为4+3=4+3×1=7;第3个图形中圆的个数为4+3+3=4+3×2=10;…则第n 个图形中圆的个数为4+3×(n ﹣1)=3n+1.当有604个圆时,得3n+1=604,解得:n =201.故选:B .9.4【详解】解:单项式33328xy xy -=-的次数是4.故答案为:4.10.111.02610⨯【详解】解:102600000000=111.02610⨯故答案为:111.02610⨯.11.2mn 【分析】根据单项式的定义、合并同类项法则解决此题.【详解】解:由题意得:212a ab -=⎧⎨=⎩12a b =⎧∴⎨=⎩∴这两个单项式的和为:22223mn mn mn -=+.故答案为:2mn .12.48.46【分析】根据角平分线的定义可得2BOD BOE ∠=∠,再根据对顶角相等解答.【详解】解:OE 平分BOD ∠,''''2224134848273648.46BOD BOE ∴∠=∠=⨯︒=︒=''︒,48.46AOC BOD ∴∠=∠=︒.故答案为:48.46.13.5或3【分析】分为两种情况,画出图形,结合图形求出AC和DC,即可求出答案.【详解】解:分为两种情况:①点C在线段AB上,如图所示:∵AB=8cm,BC=2cm,∴AC=AB﹣BC=6cm,∵点D是线段AC的中点,∴CD12=AC=3cm,∴BD=CD+BC=3+2=5cm;②点C在线段AB的延长线上,如图所示:∵AB=8cm,BC=2cm,∴AC=AB+BC=10cm,∵点D是线段AC的中点,∴AD12=AC=5cm,∴BD=CD﹣BC=5﹣2=3cm;即线段BD的长是5cm或3cm.故答案为:5或3.14.5【分析】根据主视图可判断组成该几何体的小正方体的最少个数的分布情况.【详解】解:根据题意,组成该几何体的小正方体的分布情况如下图所示,所以这样的几何体最少要5个小立方块.故答案为:5.15.2【分析】根据C队情况确定胜一场和负一场共积3分,然后设胜一场积x分,则负一场积(3﹣x)分,根据A队情况列出一元一次方程并求解即可.【详解】解:观察C队情况,可知胜一场和负一场的积分之和为27÷9=3分.设胜一场积x分,则负一场积(3﹣x)分.根据A队情况得14x+4(3﹣x)=32.解得x=2.∴胜一场积2分.故答案为:2.16.(1)0(2)-1060【解析】(1)解:原式=﹣3.2+12.5﹣16.8+7.5=(﹣3.2﹣16.8)+(12.5+7.5)=(﹣20)+20=0(2)解:原式=﹣125×(4+4)﹣300÷5=﹣125×8﹣300÷5=﹣1000﹣60=﹣106017.10a2b﹣ab;22【分析】先把整式去括号、合并同类项化简后,再代入计算即可.【详解】解:2(3ab2﹣a2b+ab)﹣3(2ab2﹣4a2b+ab)=6ab2﹣2a2b+2ab﹣6ab2+12a2b﹣3ab=10a2b﹣ab.当a=﹣1,b=2时,原式=10a2b﹣ab=10×(﹣1)2×2﹣(﹣1)×2=10×1×2﹣(﹣1)×2=20+2=22.18.(1)x=12;(2)x=16【分析】(1)先去括号,再合并解方程即可;(2)按照去分母、去括号、合并同类项、系数化为1的步骤解方程即可.【详解】(1)5x-2+x=1x=12;(2)4(2x-1)-2(10x+1)=3(2x+1)-128x-4-20x-2=6x+3-12-18x=-316x=.19.(1)7x2+8x﹣11(2)135 x=【分析】(1)根据整式的加减运算法则计算即可.(2)根据相反数的性质列出一元一次方程并求解即可.(1)解:∵A=3x2+2x﹣1,B=﹣2x2﹣3x+5,∴A﹣2B=(3x2+2x﹣1)﹣2(﹣2x2﹣3x+5)=3x2+2x﹣1+4x2+6x﹣10=7x2+8x﹣11.(2)解:∵2A与3B互为相反数,∴2A+3B=0.∵A=3x2+2x﹣1,B=﹣2x2﹣3x+5,∴2(3x2+2x﹣1)+3(﹣2x2﹣3x+5)=0.解得135x=.20.(1)见解析(2)见解析(3)两点之间线段最短(4)28或152【分析】(1)根据题意画出图形即可;(2)根据要求画出图形即可;(3)利用两点之间线段最短解决问题即可;(4)利用测量法解决问题.(1)解:如图,射线ON,射线OQ即为所求;(2)解:如图,线段OB即为所求;(3)解:如图,点C即为所求.作图依据:两点之间线段最短,故答案为:两点之间线段最短;(4)解:测量可知:∠DON=28°或152°,故答案为:28或152.21.(1)长方体;(2)作图见解析;(3)12.【分析】(1)展开图都是由3对长方形组成的,每对长方形的大小完全相同.(2)观察左视图,主视图以及俯视图即可判定.(3)根据长方体的体积公式求解.【详解】(1)由题目中的图可知为长方体.(2)∵该几何体的主视图是正方形,则主视图和俯视图如图:⨯⨯=.(3)体积=长⨯宽⨯高=32212【点睛】本题考查作图-三视图、解题的关键是学会观察、搞清楚三视图的定义,求长方体体积的计算公式.22.(1)59°(2)∠AOF;21°【分析】(1)根据垂线的定义确定∠COB=∠AOC=90°,进而得到∠1+∠2=90°,再根据∠2﹣∠1=34°用∠1表示∠2,进而可求出∠1的度数,根据角的和差关系求出∠AOD的度数,最后根据角平分线的定义即可求出∠AOE.(2)根据补角的定义即可得出图中与∠BOF互补的角.根据垂线的定义确定∠EOF=90°,再根据角的和差关系即可求出∠BOF补角的度数.(1)解:∵CO⊥AB,∴∠COB=∠AOC=90°.∴∠1+∠2=90°.∵∠2﹣∠1=34°,∴∠2=∠1+34°.∴∠1+∠1+34°=90°.∴∠1=28°.∴∠AOD =∠AOC+∠1=90°+28°=118°.∵OE 是∠AOD 的平分线,∴1592AOE AOD ∠=∠=︒.(2)解:点O 在直线AB 上,∴∠AOF+∠BOF=180°.∴图中与∠BOF 互补的角是∠AOF .∵OF ⊥OE ,∴∠EOF =90°.∴∠AOF =∠EOF ﹣∠AOE =21°.【点睛】本题考查垂线的定义,角的和差关系,角平分线的定义,补角的定义,熟练掌握这些知识点是解题关键.23.(1)两个人合作需要125天完成(2)3天【分析】(1)设两个人合作需要x 天完成,根据师傅完成的工作量+徒弟完成的工作量=总工作量,即可得出关于x 的一元一次方程,解之即可求出两个人合作完成这项工作所需时间;(2)设徒弟共做了y 天,则师傅做了(y ﹣1)天,根据师傅完成的工作量+徒弟完成的工作量=总工作量,即可得出关于y 的一元一次方程,解之即可求出徒弟共做的时间.(1)解:设两个人合作需要x 天完成,依题意得:46x x +=1,解得:x 125=.答:两个人合作需要125天完成.(2)设徒弟共做了y 天,则师傅做了(y ﹣1)天,依题意得:146y y -+=1,解得:y =3.答:徒弟共做了3天.【点睛】本题考查列一元一次方程解应用题,掌握列一元一次方程解应用题的方法与步骤是解题关键.24.(1)C2或C3(2)①103或503或﹣50;②70或50或110【分析】(1)根据“联盟点”的定义,分别验证C1,C2,C3三点即可.(2)①设点P在数轴上所表示的数为x.根据点P所处的位置进行分类讨论,根据“联盟点”的定义列出方程求解即可.②分三种情况进行解答,即点A是点P,点B的“联盟点”;点B是点A、点P的“联盟点”;点P是点A、点B的“联盟点”,然后根据“联盟点”的定义列出方程求解即可.(1)解:对于表示的数是3的C1来说.∵点A所表示的数为﹣2,点B所表示的数是4,∴AC1=5,BC1=1.∵AC1和BC1不满足2倍的数量关系,∴C1不是点A、点B的“联盟点”.对于表示的数是2的C2来说.∵点A所表示的数为﹣2,点B所表示的数是4,∴AC2=4,BC2=2.∵422=⨯,即AC2=2BC2,∴C2是点A、点B的“联盟点”.对于表示的数是0的C3来说.∵点A所表示的数为﹣2,点B所表示的数是4,∴AC3=2,BC3=4.∵422=⨯,即BC3=2AC3,∴C3是点A、点B的“联盟点”.故答案为:C2或C3.(2)解:①设点P在数轴上所表示的数为x.当点P 在线段AB 上,且PA =2PB 时.根据题意得()()10230x x --=-.解得503x =.当点P 在线段AB 上,且2PA =PB 时.根据题意得()21030x x --=-⎡⎤⎣⎦.解得103x =.当点P 在点A 的左侧时,且2PA =PB 时.根据题意得2(﹣10﹣x )=30﹣x .解得x =﹣50.综上所述,点P 表示的数为103或503或﹣50.②当点A 是点P ,点B 的“联盟点”时,有PA =2AB .根据题意得()()1023010x --=⨯--⎡⎤⎣⎦.解得x =70.当点B 是点A 、点P 的“联盟点”时,有AB =2PB 或2AB =PB .根据题意得()()3010230x --=-或()2301030x ⨯--=-⎡⎤⎣⎦.解得x =50或x =110.当点P 是点A 、点B 的“联盟点”时,有PA =2PB .根据题意得()()10230x x --=⨯-.解得x =70.所以此时点P 表示的数为70或50或110.故答案为:70或50或110.【点睛】本题考查数轴上两点间的距离,一元一次方程的实际应用,正确理解题意和应用分类讨论思想是解题关键.25.(1)1320元;(2)乙校40人,甲校52人;(3)两种,买91套最省钱.【分析】(1)根据表格可得两校合买40元/套,因此用5000减去92乘以40元每套即可;(2)首先讨论,如果两小都超过45人,花费应为50×92=4600元,4600<5000,因此甲校人数多余45,乙校人数少于46,再设乙校x 人,甲校(92﹣x )人,由题意得等量关系:甲校单独购买服装的花费+乙校单独购买服装的花费=5000元,根据等量关系列出方程,再解即可;(3)讨论买83套的花费和买91套的花费,然后进行比较即可.【详解】解:(1)5000﹣92×40=1320(元).答:比各自购买服装共可以节省1320元;(2)∵50×92=4600<5000,∴甲校人数多余45,乙校人数少于46,设乙校x人,甲校(92﹣x)人,由题意得:60x+50(92﹣x)=5000,解得:x=40,则92﹣40=52(人),答:乙校40人,甲校52人;(3)①如果买92﹣9=83套,则花费为:83×50=4150(元),②如果买91套,则花费:91×40=3640(元),∵3640<4200,∴买91套.答:两种购买方案,一种是购买83套,一种是购买91套,应买91套最省钱.【点睛】本题考查一元一次方程的应用,掌握题目中的等量关系是本题的解题关键.。
苏科版七年级上册数学期末考试试卷含答案

苏科版七年级上册数学期末考试试题一、单选题1.2022-的相反数是()A .12022-B .12022C .2022-D .20222.用科学记数法表示42000为()A .34210⨯B .44.210⨯C .54.210⨯D .54200010⨯3.下列图形绕图中的虚线旋转一周,能形成圆锥的是()A .B .C .D .4.下列运算中,正确的是()A .a+2a =3a 2B .2a ﹣a =1C .3ab 2﹣2b 2a =ab 2D .2a+b =2ab5.若关于x 的一元一次方程2x ﹣k+1=0的解是x =2,那么k 的值是()A .3B .4C .5D .66.若3xm +5y 2与23x 8yn +4的差是一个单项式,则代数式nm 的值为()A .﹣8B .6C .﹣6D .87.古代数学:现有一伙人共同买一个物品,每人出8钱,还余3钱;每人出7钱,还差4钱,问有人数、物价各是多少?设物价为x 钱,根据题意可列出方程()A .8374x x +=-B .3487x x +-=C .8374x x -=+D .3487x x -+=8.有下列说法:①射线AB 与射线BA 表示同一条直线;②若AB =BC ,则点B 是线段AC 的中点;③过一点有且只有一条直线与已知直线平行;④两点之间,线段最短;⑤已知三条射线OA ,OB ,OC ,若12AOC AOB ∠=∠,则射线OC 是∠AOB 的平分线;⑥在同一平面内,两条不重合的直线的位置关系只有两种:相交或平行.其中正确的有()A .1个B .2个C .3个D .4个二、填空题9.比0小4的数是_____.10.单项式﹣2πa2bc的次数为_____.11.已知∠α=32°24′,则∠α的补角是_____.12.如图,想在河堤两岸搭建一座桥,搭建方式最短的是线段_____.13.已知a﹣2b=1,那么代数式5﹣2a+4b的值是_____.14.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之积为24,则x﹣y=_____.15.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°,∠2=_____.16.某城市下水管道工程由甲、乙两个工程队单独铺设分别需要10天和15天完成,如果两队从两端同时施工2天,然后由乙单独完成,还需_____天完成.17.如图所示的运算程序中,若开始输入的x值为96,我们发现第一次输出的结果为48,第二次输出的结果为24,…,则第2022次输出的结果为_____.18.如图,在长方形ABCD中,AB=6cm,BC=8cm,点E是AB上的一点,且AE=2BE.点P从点C出发,以2cm/s的速度沿点C﹣D﹣A﹣E匀速运动,最终到达点E.设点P运动时间为ts,若三角形PCE的面积为18cm2,则t的值为_____.三、解答题19.计算:(1)132()12243-+-⨯;(2)2022211(3)|2|2-+-÷--.20.解方程:(1)2﹣3x =5﹣2x ;(2)121123x x +-=-.21.先化简,再求值:3(2a 2b ﹣ab 2)﹣3(ab 2﹣2a 2b ),其中21||(3)02a b -++=.22.在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD 的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)过点C 画AD 的平行线CE ;(2)过点B 画CD 的垂线,垂足为F .23.如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请在网格中画出几何体的主视图、左视图、俯视图;(2)图中共有个小正方体.(3)已知每个小正方体的棱长为1cm,则该几何体的表面积为cm2.24.如图,已知点D是线段AB上一点,点C是线段AB的中点,若AB=8cm,BD=3cm.(1)求线段CD的长;(2)若点E是线段AB上一点,且13BE BD,求线段AE的长.25.如图,直线AB、CD相交于点O,OE平分∠BOD,OE⊥OF.(1)若∠DOE=32°,求∠BOF的度数;(2)若∠COE:∠COF=8:3,求∠AOF的度数.26.某景区旅游团队的门票价格如下:购票人数不超过50人超过50人,但不超过100人超过100人门票价格100元/人80元/人60元/人(1)甲旅游团共有40人,则甲旅游团共付门票费元;(2)乙旅游团共付门票费7200元,则乙旅游团共有人;(3)丙,丁两个旅游团共有100人,其中丙旅游团人数不超过50人,两个旅游团先后共付门票费8600元,求丙、丁两个旅游团的人数.27.如图1:已知OB⊥OD,OA⊥OC,∠COD=40°,若射线OA绕O点以每秒30°的速度顺时针旋转,射线OC绕O点每秒10°的速度逆时针旋转,两条射线同时旋转,当一条射线与射线OD重合时,停止运动.(1)开始旋转前,∠AOB=.(2)若射线OB也绕O点以每秒20°的速度顺时针旋转,三条射线同时旋转,当一条射线与射线OD重合时,停止运动.当三条射线中其中一条射线是另外两条射线夹角的角平分线时,求旋转的时间.(3)【实际应用】从今天上午6时整开始到上午7时整结束的运动过程中,经过多少分钟时针与分针所形成的钝角等于120°(直接写出所有可能结果).参考答案1.D2.B3.B4.C5.C6.A7.B8.B9.-410.411.147°36′12.PN【分析】根据从直线外一点到这条直线上各点所连的线段中,垂线段最短可知搭建方式最短的是PN,理由垂线段最短.【详解】解:因为PN⊥MQ,垂足为N,则PN为垂线段,根据垂线段最短,可得线段PN最短,故答案为:PN.【点睛】本题考查了垂线段最短,利用垂线段的性质是解题关键.13.3【分析】已知a-2b的值,将原式变形后代入计算即可求出值.【详解】解:∵a-2b=1,∴5-2a+4b=5-2(a-2b)=5-2×1=3,故答案为:3.【点睛】本题考查了代数式求值,是基础题,整体思想的利用是解题的关键.14.6【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数之积为24,列出方程求出x、y的值,从而得到x-y的值.【详解】解:将题图中平面展开图按虚线折叠成正方体后,可知标有数字“2”的面和标有x的面是相对面,标有数字“4”的面和标有y的面是相对面,∵相对面上两个数之积为24,∴x=12,y=6,∴x-y=6.故答案为:6.【点睛】本题考查了正方体对面上的字,找出x、y的对面是解题的关键.15.57°##57度【分析】先利用∠1求出∠EAC的度数,再利用90°减去∠EAC即可解答.【详解】解:∵∠BAC=60°,∠1=27°,∴∠EAC=∠BAC-∠1=60°-27°=33°,∵∠EAD=90°,∴∠2=∠EAD-∠EAC=90°-33°=57°,故答案为:57°.【点睛】本题考查角的和差,题目较容易,根据已知求出∠EAC 便可求出答案.16.10【分析】由乙队单独施工,设还需x 天完成,题中的等量关系是:甲工程队2天完成的工作量+乙工程队(x+2)天完成的工作量=1,依此列出方程,解方程即可.【详解】解:由乙队单独施工,设还需x 天完成,根据题意得2211015x ++=,解得x=10.答:由乙队单独施工,还需10天完成,故答案为:10.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.17.6【分析】把x 的值代入程序中计算,以此类推得到一般性规律,即可得到第2022次输出结果.【详解】解:第一次输出结果为96×12=48,第二次输出结果为48×12=24,第三次输出结果为24×12=12,第四次输出结果为12×12=6,第五次输出结果为6×12=3,第六次输出结果为3+3=6,第七次输出结果为6×12=3,…,依此类推,得出规律:第四次后,偶数次时,输出结果为6;奇数次时,输出结果为3;第2022次输出结果为6,故答案为:6.【点睛】此题考查了代数式求值,数字型规律,弄清题中程序框图表示的意义是解本题的关键.18.94或6【分析】分下列三种情况讨论,如图1,当点P在CD上,即0<t≤3时,根据三角形的面积公式建立方程求出其解即可;如图2,当点P在AD上,即3<t≤7时,由S△PCE=S四边形AECD-S△PCD-S△PAE建立方程求出其解即可;如图3,当点P在AE上,即7<t≤9时,由S△PCE=12PE•BC=18建立方程求出其解即可.【详解】解:如图1,当点P在CD上,即0<t≤3时,∵四边形ABCD是长方形,∴AB=CD=6cm,AD=BC=8cm.∵CP=2t(cm),∴S△PCE=12×2t×8=18,∴t=9 4;如图2,当点P在AD上,即3<t≤7时,∵AE=2BE,∴AE=23AB=4.∵DP=2t-6,AP=8-(2t-6)=14-2t.∴S△PCE=12×(4+6)×8-12(2t-6)×6-12(14-2t)×4=18,解得:t=6;当点P在AE上,即7<t≤9时,PE=18-2t .∴S △CPE=12(18-2t )×8=18,解得:t=274<7(舍去).综上所述,当t=94或6时△APE 的面积会等于18.故答案为:94或6.【点睛】本题考查了一元一次方程的运用,三角形面积公式的运用,梯形面积公式的运用,动点问题,分类讨论等;解答时要运用分类讨论思想求解,避免漏解.19.(1)-5(2)15【分析】(1)利用乘法分配律展开计算即可;(2)先算乘方,和绝对值,再算除法,最后算加减.(1)解:13212243⎛⎫-+-⨯ ⎪⎝⎭=132121212243-⨯+⨯-⨯=698-+-=5-(2)2022211(3)22-+-÷--=2192-+⨯-=1182-+-=15【点睛】本题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(1)x=-3(2)x=11【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.(1)解:移项合并得:-x=3,解得:x=-3;(2)去分母得:()()312216x x +=--去括号得:33426x x +=--,移项合并得:11x -=-,解得:11x =.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.22126a b ab -,36-【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=22226336a b ab ab a b--+=22126a b ab -∵21||(3)02a b -++=,∴a=12,b=-3,则原式=()()22111236322⎛⎫⨯⨯--⨯⨯- ⎪⎝⎭=36-.【点睛】此题考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.(1)见解析;(2)见解析【分析】(1)根据要求作出图形即可.(2)根据要求作出图形即可.【详解】解:(1)根据题意得:AD是长为4,宽为3的长方形的对角线,所以在点C右上方长为4,宽为3的长方形的对角线所在的直线与AD平行,如图,直线CE即为所求作.(2)根据题意得:CD是长为6,宽为3的长方形的对角线,所以在点B右下方长为6,宽为3的长方形的对角线所在的直线与CD垂直,如图,直线BF即为所求作.【点睛】本题主要考查了画平行线和垂线,熟练掌握平行线和垂线的画法是解题的关键.23.(1)见解析(2)6(3)26【分析】(1)根据三视图的画法画出相应的图形即可;(2)观察几何体可得结果;(3)根据三视图的面积求出该几何体的表面积.(1)解:如图所示:(2)由图可知:图中共有6个小正方体;(3)(4+4+5)×2=26(cm 2)答:该几何体的表面积为26cm 2.【点睛】本题考查解答几何体的三视图,画三视图时应注意“长对正,宽相等,高平齐”.24.(1)1cm(2)9cm 或7cm【分析】(1)根据中点定义,求得BC 的长,再由线段的和差计算结果;(2)分两种情况:①当点E 在点B 的右侧时,②当点E 在点B 的左侧时,分别根据线段的和差计算即可.(1)解:∵点C 是线段AB 的中点,AB=8cm ,∴BC=12AB=4cm ,∴CD=BC-BD=4-3=1cm .(2)①当点E 在点B 的右侧时,如图:∵BD=3cm ,BE=13BD ,∴BE=1cm ,∴AE=AB+BE=8+1=9cm ;②当点E 在点B 的左侧时,如图:∵BD=3cm ,BE=BE=13BD ,∴BE=1cm ,∴AE=AB-BE=8-1=7cm ;综上,AE 的长为9cm 或7cm .【点睛】此题考查的是两点间的距离,掌握线段中点的定义是解决此题关键.25.(1)58°(2)126°【分析】(1)根据角平分线的定义求出∠BOE ,再根据垂线的定义求出∠EOF ,从而可得∠BOF ;(2)设∠DOE=x ,分别表示出∠COE 和∠COF ,根据∠COE :∠COF =8:3,列出方程,求出x 值,再根据∠AOF=∠COF+∠AOC=∠COF+∠BOD 求出结果.(1)解:∵OE 平分∠BOD ,∴∠DOE=∠BOE=32°,∵OE ⊥OF ,∴∠EOF=90°,∴∠BOF=90°-∠BOE=58°;(2)设∠DOE=x ,∵OE 平分∠BOD ,∴∠DOE=∠BOE=x ,∵OE ⊥OF ,∴∠COF=90°-x ,∴∠COE=90°-x+90°=180°-x ,∵∠COE :∠COF =8:3,∴()()318090:8:x x -=︒-︒,解得:36x =,∴∠AOF=∠COF+∠AOC=∠COF+∠BOD=90°-x+2x=126°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,比较简单,准确识图并熟记性质与概念是解题的关键.26.(1)4000(2)90或120(3)丙旅游团的人数为30人、丁旅游团的人数70人【分析】(1)由费用=单价×人数,可求解;(2)分两种情况讨论,由人数=费用÷单价,可求解;(3)设丙旅游团人数为x 人(0<x <50),由“两个旅游团先后共付门票费8600元”列出方程可求解.(1)解:甲旅游团共付门票费=40×100=4000(元),故答案为:4000;(2)当人数超过50人,但不超过100人,乙旅游团的人数=7200÷80=90(人数);当人数超过100人,乙旅游团的人数=7200÷60=120(人数);故答案为:90或120;(3)∵8600>80×100,∴丁旅游团人数小于100,设丙旅游团人数为x 人(0<x≤50),则丁旅游团人数为(100-x )人,由题意可得:100x+80(100-x )=8600,解得x=30,∴100-x=70(人),答:丙旅游团的人数为30人、丁旅游团的人数70人.【点睛】本题考查了一元一次方程的应用,理解题意,找出正确的相等关系是本题的关键.27.(1)40︒(2)4秒或2秒,53秒或135秒,12秒或94秒(3)12011分钟或60011分钟【分析】(1)根据同角的余角相等可得40AOB COD ∠=∠=︒;(2)根据路程等于速度乘以时间分别求得,,OA OC OB 运动到OD 所需要的时间,进而求得停止的时间,根据角度的和差可得,,AOD BOD COD ∠∠∠,根据角度的方向以及角平分线的定义,建立绝对值方程,解方程求解即可;(3)根据题意作出图形,类比(2)建立方程,在周角内求角度,进而解方程求解即可.(1)OB ⊥OD ,OA ⊥OC ,90AOC BOD ∴∠=∠=︒AOB BOC BOC COD∴∠+∠=∠+∠AOB COD∴∠=∠ ∠COD =40°40AOB ∴∠=︒故答案为:40︒(2)40AOB ∠=︒4090130AOD AOB BOD ∴∠=∠+∠=︒+︒=︒设旋转时间为t 秒,当OA 旋转至OD 所需要的时间为:13013303︒=︒(秒)当OC 旋转至OD 所需要的时间为:()3604010=32︒-︒÷︒(秒)当OB 旋转至OD 所需要的时间为:99020=2︒÷︒(秒)∴当OA 旋转至OD 时,其他线段都停止,则133t ≤,旋转t 秒后,()13030AOD t ∠=︒-︒,()9020BOD t ∠=︒-︒,()4010COD t ∠=︒+︒∴()4010AOB AOD BOD t ∠=∠-∠=︒-︒,()5030BOC BOD COD t ∠=∠-∠=︒-︒,()9040AOC AOD COD t ∠=∠-∠=︒-︒①当OB 平分AOC ∠时,AOB BOC ∠=∠,()4010t ︒-︒=()5030t ︒-︒即()4010t ︒-︒=()5030t ︒-︒或()4010t ︒-︒=()5030t -︒+︒解得:12t =或94t =②当OA 平分BOC ∠时,BOA AOC ∠=∠,()4010t ︒-︒=()9040t ︒-︒即()4010t ︒-︒=()9040t ︒-︒或()4010t ︒-︒=()9040t -︒+︒解得:53t =或135t =③当OC 平分AOB ∠时,AOC BOC ∠=∠,()9040t ︒-︒=()5030t ︒-︒即()9040t ︒-︒=()5030t ︒-︒或()9040t ︒-︒=()5030t -︒+︒解得:4t =或2t =综上所述,4t =或2t =,53t =或135t =,12t =或94t =(3)如图,根据题意,6时整时,180AOB ∠=︒,6时至7时,OA 旋转了30°,OB 旋转了360°则OA 的速度为301=602︒度/分钟,OB 的速度为360=660︒度/分钟,6点整之后,设()060m m <<分钟后,120AOB ∠=︒则1,62AOD m COB m ∠=︒∠=︒∴118018062AOB AOD COB m m ∠=︒+∠-∠=︒+︒-︒112018062m m ∴︒=︒+︒-︒112018062m m ∴︒=︒+︒-︒或112018062m m -︒=︒+︒-︒解得:12011m =或60011m =。
2024-2025学年苏科版七年级数学上册期中复习卷(含答案)

期中复习卷-2024-2025学年数学七年级上册苏科版(2024)一.选择题(共8小题)1.在下列数,+1,6.7,0,,﹣5,25%中整数有( )A.2个B.3个C.4个D.5个2.能源产业已成为云南省第一大支柱产业,目前正在推进的3000000千瓦光伏项目,将带动光伏、储能绿色能源装备的发展.3000000用科学记数法可以表示为( )A.0.3×108B.3×106C.30×105D.30×1063.我国部分地区的日温差较大,“早穿棉袄午穿纱”这句谚语描绘的就是某地这种奇妙的气温变化现象.若某市某日上午温度上升15℃记作+15℃,那么傍晚温度下降10℃记作( )A.﹣15℃B.+15℃C.﹣10℃D.+10℃4.﹣1.2﹣0.8=( )A.﹣2B.﹣0.4C.0.4D.25.如果x为有理数,式子2023﹣|x﹣2023|存在最大值,这个最大值是( )A.2023B.4046C.20D.06.如果单项式与x3y b是同类项,则a、b的值分别是( )A.2,2B.﹣3,2C.2,3D.3,27.当x=2时,代数式px3+qx+1的值等于2024,那么当x=﹣2时,代数式px3+qx+1的值为( )A.2024B.﹣2024C.2022D.﹣20228.小亮按如图所示的程序输入一个数x等于10,最后输出的结果为( )A.51B.251C.256D.255二.填空题(共8小题)9.计算:(1)﹣2﹣1= ;(2)(﹣2.1)+(+3.9)= ;(3)(﹣4)×6= ;10.数轴上表示﹣5与1这两个数对应的点之间的距离是 .11.已知|a|=3,,且a<0<b,则ab= .12.如图所示的数轴被墨迹盖住了一部分,则被遮住的所有整数个数为 .13.有理数a,b在数轴上的位置如图所示,若表示数b与﹣b的点相距36个单位长度,a与原点的距离是|b|的,则a= .14.已知单项式﹣2ab3与4a n b m+1是同类项,则m+n= .15.如果(k﹣2)x3+(|k|﹣2)x2﹣5是关于x的三次二项式,则k的值为 .16.某公园准备修建一块长方形草坪,长为35m,宽为25m.并在草坪上修建如图所示的十字路,已知十字路宽x m,则修建的十字路的面积是 m2.(用含x的代数式表示)三.解答题(共8小题)17.计算:(1)﹣6+3+2﹣1(2)(3)(4)18.已知,求ab﹣(a+b)c的值.19.先化简,再求值:2(ab2+3a2b)﹣3(ab2+a2b)﹣a2b,其中,b=2.20.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?21.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快着获胜,可以得到一个奖品.F面我们用四个卡片代表四名同学(如图):列式,并计算:(1)﹣3经过A、B、C、D的顺序运算后,结果是多少?(2)5经过B、C、A、D的顺序运算后,结果是多少?22.某同学做一道数学题,已知两个多项式A、B,其中B=2x2y﹣3xy+2x+5,试求A+B.这位同学把A+B 误看成A﹣B,结果求出的答案为4x2y+xy﹣x﹣4.(1)请你替这位同学求出A+B的正确答案;(2)若A﹣3B的值与x的取值无关,求y的值.23.阅读下列材料,我们知道,5x+3x﹣4x=(5+3﹣4)x=4x,类似的,我们把(a+b)看成一个整体,则5(a+b)+3(a+b)﹣4(a+b)=(5+3﹣4)(a+b)=4(a+b),“整体思想“是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用;(1)把(a﹣b)2看成一个整体,合并2(a﹣b)2+6(a﹣b)2﹣3(a﹣b)2的结果 .(2)已知m+n=15,3a﹣2b=11,求2m+6a﹣(4b﹣2n)的值.(3)拓展探索:已知a﹣3b=4,3b﹣c=﹣3,c﹣d=11,求(a﹣c)+(3b﹣d)﹣(3b﹣c)的值.24.如图,通过观察,小丽同学发现可以用这样的方法确定每个图形中黑色和白色小正方形的总个数:图(1)中共有1个黑色小正方形,图(2)中共有1+3=22个黑白小正方形,图(3)中共有1+3+5=32个黑白小正方形,图(4)中共有1+3+5+7=42个黑白小正方形,回答下列问题.(1)根据前四个图中计算黑白小正方形的总个数的方法和规律,则第(5)个图中计算小正方形个数的等式是: ;(2)根据规律,第50个图比第49个图多 个小正方形;(3)根据每个图中计算黑白小正方形总个数的方法和规律,计算:①1+3+5+…+197+199;②201+203+205+…+297+299.期中复习卷-2024-2025学年数学七年级上册苏科版(2024)参考答案与试题解析一.选择题(共8小题)1.在下列数,+1,6.7,0,,﹣5,25%中整数有( )A.2个B.3个C.4个D.5个【解答】解:,+1,6.7,0,,﹣5,25%中整数有:+1,0,﹣5,共3个,故选:B.2.能源产业已成为云南省第一大支柱产业,目前正在推进的3000000千瓦光伏项目,将带动光伏、储能绿色能源装备的发展.3000000用科学记数法可以表示为( )A.0.3×108B.3×106C.30×105D.30×106【解答】解:3000000=3×106,故选:B.3.我国部分地区的日温差较大,“早穿棉袄午穿纱”这句谚语描绘的就是某地这种奇妙的气温变化现象.若某市某日上午温度上升15℃记作+15℃,那么傍晚温度下降10℃记作( )A.﹣15℃B.+15℃C.﹣10℃D.+10℃【解答】解:温度上升15℃记作+15℃,那么傍晚温度下降10℃记作﹣10℃,故选:C.4.﹣1.2﹣0.8=( )A.﹣2B.﹣0.4C.0.4D.2【解答】解:﹣1.2﹣0.8=﹣1.2+(﹣0.8)=﹣2,故选:A.5.如果x为有理数,式子2023﹣|x﹣2023|存在最大值,这个最大值是( )A.2023B.4046C.20D.0【解答】解:∵绝对值具有非负性,∴|x﹣2023|≥0,∵2023﹣|x﹣2023|有最大值,∴当|x﹣2023|=0时,式子有最大值,此时的值是2023,故A正确.故选:A.6.如果单项式与x3y b是同类项,则a、b的值分别是( )A.2,2B.﹣3,2C.2,3D.3,2【解答】解:由同类项定义可知a=3,b=2.故选:D.7.当x=2时,代数式px3+qx+1的值等于2024,那么当x=﹣2时,代数式px3+qx+1的值为( )A.2024B.﹣2024C.2022D.﹣2022【解答】解:当x=2时,px3+qx+1=8p+2q+1=2024,∴4p+q=,∴当x=﹣2时,px3+qx+1=﹣8p﹣2q+1=﹣2(4p+q)+1=﹣+1=﹣2022.故选:D.8.小亮按如图所示的程序输入一个数x等于10,最后输出的结果为( )A.51B.251C.256D.255【解答】解:当x=10时,5x+1=51<200,此时输入的数为51,5x+1=256>200,所以输出的结果为256.故选:C.二.填空题(共8小题)9.计算:(1)﹣2﹣1= ﹣3 ;(2)(﹣2.1)+(+3.9)= 1.8 ;(3)(﹣4)×6= ﹣24 ;【解答】解:(1)原式=﹣3,故答案为:﹣3;(2)原式=1.8,故答案为:1.8;(3)原式=﹣24,故答案为:﹣24.10.数轴上表示﹣5与1这两个数对应的点之间的距离是 6 .【解答】解:如图,点A所表示的数是﹣5,点B所表示的数是1,所以AB=|1﹣(﹣5)|=6,故答案为:6.11.已知|a|=3,,且a<0<b,则ab= ﹣1 .【解答】解:∵|a|=3,,a<0<b,∴,∴,∴.故答案为:﹣1.12.如图所示的数轴被墨迹盖住了一部分,则被遮住的所有整数个数为 13 .【解答】解:根据题意得:被盖住的整数为﹣10,﹣9,﹣8,﹣7,﹣6,﹣5,7,8,9,10,11,12,13,∴被盖住的整数的个数为13,故答案为:13.13.有理数a,b在数轴上的位置如图所示,若表示数b与﹣b的点相距36个单位长度,a与原点的距离是|b|的,则a= 6 .【解答】解:∵表示数b与﹣b的点相距36个单位长度,∴,∵a与原点的距离是|b|的,∴|a|=6,∴a=±6,由数轴得:a>0,∴a=6.故答案为:6.14.已知单项式﹣2ab3与4a n b m+1是同类项,则m+n= 3 .【解答】解:由同类项定义可知n=1,m+1=3,解得m=2,n=1,∴m+n=2+1=3.故答案为:3.15.如果(k﹣2)x3+(|k|﹣2)x2﹣5是关于x的三次二项式,则k的值为 ﹣2 .【解答】解:∵多项式(k﹣2)x3+(|k|﹣2)x2﹣5是三次二项式,∴|k|﹣2=0,k﹣2≠0,∴k=﹣2.故答案为:﹣2.16.某公园准备修建一块长方形草坪,长为35m,宽为25m.并在草坪上修建如图所示的十字路,已知十字路宽x m,则修建的十字路的面积是 (60x﹣x2) m2.(用含x的代数式表示)【解答】解:由图可得,修建的十字路的面积是:35x+25x﹣x2=(60x﹣x2)m2,故答案为:(60x﹣x2).三.解答题(共8小题)17.计算:(1)﹣6+3+2﹣1(2)(3)(4)【解答】解:(1)原式=﹣3+2﹣1=﹣1﹣1=﹣2;(2)原式===;(3)原式==﹣1﹣5﹣3=﹣9;(4)==﹣20+8﹣9=﹣21.18.已知,求ab﹣(a+b)c的值.【解答】解:∵,∴a+1=0,2b﹣5=0,=0,∴a=﹣1,b=,c=,∴ab﹣(a+b)c=.19.先化简,再求值:2(ab2+3a2b)﹣3(ab2+a2b)﹣a2b,其中,b=2.【解答】解:原式=2ab2+6a2b﹣3ab2﹣3a2b﹣a2b=﹣ab2+2a2b,当a=﹣,b=2时,原式=﹣(﹣)×22+2×(﹣)2×2=2+1=3.20.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?【解答】解:(1)如图,;(2)数b与其相反数相距20个单位长度,则b表示的点到原点的距离为10,所以b表示的数是﹣10;(3)因为﹣b表示的点到原点的距离为10,而数a表示的点与数b的相反数表示的点相距5个单位长度,所以a表示的点到原点的距离为5,所以a表示的数是5.21.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快着获胜,可以得到一个奖品.F面我们用四个卡片代表四名同学(如图):列式,并计算:(1)﹣3经过A、B、C、D的顺序运算后,结果是多少?(2)5经过B、C、A、D的顺序运算后,结果是多少?【解答】解:(1)[(﹣3)×2﹣(﹣5)]÷3+6=(﹣6+5)÷3+6==;(2)[5﹣(﹣5)]÷3×2+6=(5+5)÷3×2+6==.22.某同学做一道数学题,已知两个多项式A、B,其中B=2x2y﹣3xy+2x+5,试求A+B.这位同学把A+B 误看成A﹣B,结果求出的答案为4x2y+xy﹣x﹣4.(1)请你替这位同学求出A+B的正确答案;(2)若A﹣3B的值与x的取值无关,求y的值.【解答】解:(1)由题意可得,A﹣B=4x2y+xy﹣x﹣4,∴A=4x2y+xy﹣x﹣4+(2x2y﹣3xy+2x+5)=4x2y+xy﹣x﹣4+2x2y﹣3xy+2x+5=6x2y﹣2xy+x+1,∴A+B=6x2y﹣2xy+x+1+(2x2y﹣3xy+2x+5)=6x2y﹣2xy+x+1+2x2y﹣3xy+2x+5=8x2y﹣5xy+3x+6;(2)A﹣3B=6x2y﹣2xy+x+1﹣3(2x2y﹣3xy+2x+5),=6x2y﹣2xy+x+1﹣6x2y+9xy﹣6x﹣15,=7xy﹣5x﹣14,=(7y﹣5)x﹣14,∵A﹣3B的值与x的取值无关,∴7y﹣5=0,∴.23.阅读下列材料,我们知道,5x+3x﹣4x=(5+3﹣4)x=4x,类似的,我们把(a+b)看成一个整体,则5(a+b)+3(a+b)﹣4(a+b)=(5+3﹣4)(a+b)=4(a+b),“整体思想“是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用;(1)把(a﹣b)2看成一个整体,合并2(a﹣b)2+6(a﹣b)2﹣3(a﹣b)2的结果 5(a﹣b)2 .(2)已知m+n=15,3a﹣2b=11,求2m+6a﹣(4b﹣2n)的值.(3)拓展探索:已知a﹣3b=4,3b﹣c=﹣3,c﹣d=11,求(a﹣c)+(3b﹣d)﹣(3b﹣c)的值.【解答】解:(1)2(a﹣b)2+6(a﹣b)2﹣3(a﹣b)2=(2+6﹣3)(a﹣b)2=5(a﹣b)2.故答案为:5(a﹣b)2.(2)2m+6a﹣(4b﹣2n)=2(m+n)+2(3a﹣2b),∵m+n=15,3a﹣2b=11,∴2(m+n)+2(3a﹣2b)=2×15+2×11,=52.(3)∵a﹣3b=4,3b﹣c=﹣3,c﹣d=11,∴(a﹣c)+(3b﹣d)﹣(3b﹣c),=a﹣c+3b﹣d﹣3b+c,=a﹣d,=4+3b﹣(c﹣11),=4+3b﹣c+11,=4+(3b﹣c)+11,=4﹣3+11,=12.24.如图,通过观察,小丽同学发现可以用这样的方法确定每个图形中黑色和白色小正方形的总个数:图(1)中共有1个黑色小正方形,图(2)中共有1+3=22个黑白小正方形,图(3)中共有1+3+5=32个黑白小正方形,图(4)中共有1+3+5+7=42个黑白小正方形,回答下列问题.(1)根据前四个图中计算黑白小正方形的总个数的方法和规律,则第(5)个图中计算小正方形个数的等式是: 1+3+5+7+9=52 ;(2)根据规律,第50个图比第49个图多 99 个小正方形;(3)根据每个图中计算黑白小正方形总个数的方法和规律,计算:①1+3+5+…+197+199;②201+203+205+…+297+299.【解答】解:(1)图(1)中共有12个黑色小正方形,图(2)中共有22个黑白小正方形,图(3)中共有32个黑白小正方形,图(4)中共有42个黑白小正方形,∴图(5)中共有52个黑白小正方形,故答案为:1+3+5+7+9=52;(2)∵图(1)中共有1个黑色小正方形,图(2)中共有1+3=22个黑白小正方形,图(3)中共有1+3+5=32个黑白小正方形,图(4)中共有1+3+5+7=42个黑白小正方形,⋯,则图(n)中共有1+3+5+7+9+(2n﹣1)=n2个黑白小正方形,∴第50个图比第49个图多502﹣492=99(个),故答案为:99;(3)由(2)得图(n)中共有1+3+5+7+9+(2n﹣1)=n2个黑白小正方形,∴①2n﹣1=199,解得:n=100,∴1+3+5+⋯+197+199=1002=10000;②2n﹣1=99,解得:n=50,∴201+203+205+⋯+297+299=200×100+(1+3+5+7⋯+97+99)=20000+502=22500.。
苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试题一、单选题1.2022的相反数是()A .2022B .2022-C .12022D .12022-2.下列计算正确的是()A .2m ﹣m =2B .2m+n =2mnC .2m 3+3m 2=5m 5D .m 3n ﹣nm 3=03.将一副三角尺按下列几种方式摆放,则能使αβ∠=∠的摆放方式为()A .B .C .D .4.小丽同学在做作业时,不小心将方程2(x -3)-■=x +1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x =9,请问这个被污染的常数■是()A .4B .3C .2D .15.马龙同学沿直线将一三角形纸板剪掉一个角,发现剩下纸板的周长比原纸板的周长要小,能正确解释这一现象的数学知识是()A .经过一点有无数条直线B .两点之间,线段最短C .经过两点,有且仅有一条直线D .垂线段最短6.若(﹣2x+a )(x ﹣1)的结果中不含x 的一次项,则a 的值为()A .1B .﹣1C .2D .﹣27.如图所示几何体的左视图是()A .B .C .D .8.如图,点A 表示的实数是()A 6B 5C .15D .169.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是()A .ab >0B .﹣a+b >0C .a+b <0D .|a|﹣|b|>010.如图,点O 在直线AB 上,∠AOC 与∠BOD 互余,∠AOD =148°,则∠BOC 的度数为()A .122°B .132°C .128°D .138°二、填空题11.﹣690000000用科学记数法表示_____.12.若单项式2xmy 5和﹣x 2yn 是同类项,则n ﹣3m 的值为______.13.若2|35|(3)0m n -++=,则()9m n -=________.14.根据数值转换机的示意图,输出的值为_____.15.如图所示,一块长为m ,宽为n 的长方形地板中间有一条裂缝,若把裂缝右边的一块向右平移距离为d 的长度,则由此产生的裂缝面积是______.16.一个立方体的表面展开图如图所示,将其折叠成立方体后,与“你”对面的字为______.17.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.设原有x 只鸽子,则可列方程_____.18.如图,已知图①是一块边长为1,周长记为C 1的等边三角形卡纸,把图①的卡纸剪去一个边长为12的等边三角形纸板后得到图②,然后沿同一底边再剪去一个边长为14的等边三角形后得到图③,依次剪去一个边长为18、116、132…的等边三角形后,得到图④、⑤、⑥、…,记图n (n≥3)中的卡纸的周长为Cn ,则Cn ﹣Cn ﹣1=_____.三、解答题19.计算:(1)31125(25)25()424⨯--⨯+⨯-;(2)201721(1)(132(3)2⎡⎤---÷⨯--⎣⎦.20.解方程:(1)2(1)25(2)x x -=-+(2)5172124x x ++-=21.先化简,再求值:2(x 2y+3xy )﹣3(x 2y ﹣1)﹣2xy ﹣2,其中x =﹣2,y =2.22.如图,网格线的交点叫格点,格点P 是AOB ∠的边OB 上的一点(请利用网格作图,保留作图痕迹).(1)过点P画OB的垂线,交OA于点C;(2)线段的长度是点O到PC的距离;<的理由是;(3)PC OC(4)过点C画OB的平行线;23.现规定一种新运算,规则如下:a※b ab a bx-=,求x的值.=++,已知3※32424.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)25.如图,C是线段AB上的一点,N是线段BC的中点.若AB=12,AC=8,求AN的长.26.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求△BOE的度数;(3)试判断OF是否平分∠AOC,请说明理由.27.若在一个两位正整数A的个位数字之后添上数字6,组成一个三位数,我们称这个三位数为A的“添彩数”,如78的“添彩数”为786,若将一个两位正整数B减去6得到一个新数,我们称这个新数为B的“减压数”,如78的“减压数”为72.(1)求证:对任意一个两位正整数M,其“添彩数”与“减压数”之和能被11整除.(2)对任意一个两位正整数N ,我们将其“添彩数”与“减压数”之比记作()f N ,若()f N 为整数且()18f N ≤,求出所有符合题意的N 的值.参考答案1.B【分析】根据相反数的定义直接求解.【详解】解:实数2022的相反数是2022-,故选:B .【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2.D【分析】根据合并同类项逐项分析判断即可【详解】A.2m ﹣m =m ,故该选项不正确,不符合题意;B.2m 与n 不是同类项,不能合并,故该选项不正确,不符合题意;C.2m 3与3m 2不是同类项,不能合并,故该选项不正确,不符合题意;D.m 3n ﹣nm 3=0,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项,掌握合并同类项是解题的关键.3.B【分析】根据三角板的特殊角分别进行判断即可;【详解】由图形摆放可知,αβ∠≠∠;由图形摆放可知,αβ∠=∠;由图形摆放可知,15α∠=︒,=30β∠︒,αβ∠≠∠;由图形摆放可知,180αβ∠+∠=︒,αβ∠≠∠;故答案选B .【点睛】本题主要考查了直角三角板的角度求解,准确分析判断是解题的关键.4.C【分析】把x=9代入原方程即可求解.【详解】把x=9代入方程2(x-3)-■=x+1得2×6-■=10∴■=12-10=2故选C.【点睛】此题主要考查方程的解,解题的关键是把方程的根代入原方程.5.B【分析】根据两点之间,线段最短进行解答即可.【详解】解:某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是:两点之间,线段最短.故选:B.【点睛】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.6.D【分析】根据多项式乘多项式的运算法则进行化简,然后令含x的一次项系数为零即可求出答案.【详解】解:(﹣2x+a)(x﹣1)=﹣22x+(a+2)x﹣a,∴a+2=0,∴a=﹣2,故选:D.【点睛】本题考查了整式的乘法中的不含某项的计算,正确理解题意是解题的关键.7.A【分析】视线从左面观察几何体所得的视图叫左视图,能够看到的线用实线,看不到的线用虚线.【详解】解:从左边看,底层是一个矩形,上层是一个直角三角形(三角形与矩形之间没有实线隔开),左齐.故选:A.【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.8.B【分析】利用勾股定理求出OA长度,然后得到A点表示的实数即可【详解】解:∵OA =∴点A 故选B .【点睛】本题考查勾股定理,能够灵活运用勾股定理解题是本题的关键9.B【分析】根据a ,b 两数在数轴上的位置确定它们的符号和绝对值的大小,再对各个选项逐一分析判断即可.【详解】解:A .由数轴可知,﹣1<a <0<1<b ,|b|>|a|,因为a <0,b >0,所以ab <0,故选项错误,不符合题意;B .因为a <0,所以﹣a >0,又因为b >0,所以﹣a+b >0,故选项错正确,符合题意;C .因为a <0,b >0,|b|>|a|,所以a+b >0,故选项错误,不符合题意;D .因为|b|>|a|,所以|a|﹣|b|<0,故选项错误,不符合题意.故选:B【点睛】本题考查了实数与数轴上点的对应关系,解题的关键是确定a ,b 的符号和绝对值的大小关系.10.A【分析】利用∠AOC 与∠BOD 互余得出∠AOC+∠BOD =90°,再由平角的定义求出∠COD ,即可求出答案.【详解】解:∵点O 在直线AB 上,∠AOC 与∠BOD 互余,∴∠AOC+∠BOD =90°,∴∠COD =180°﹣(∠AOC+∠BOD )=180°﹣90°=90°,∵∠AOD =148°,∴∠BOD =180°﹣∠AOD =180°﹣148°=32°,∴∠BOC =∠COD+∠BOD =90°+32°=122°,故选:A .11.﹣6.9×108【分析】用科学记数法表示绝对值大于1的数,形如,11001,n a n <⨯<为正整数,据此解答.【详解】解:﹣690000000用科学记数法表示为﹣6.9×108故答案为:﹣6.9×108.12.-1【详解】解:∵单项式2xmy 5和﹣x 2yn 是同类项,∴m =2,n =5,∴n ﹣3m =5﹣6=-1.故答案为:-1.13.-20【分析】利用非负性,确定m=53,n=-3,代入计算即可.【详解】∵2|35|(3)0m n -++=,∴m=53,n=-3,∴()59(12)3m n -=⨯-=-20,故答案为:-20.14.19【详解】解:当x =﹣3时,31+x =3﹣2=19,故答案为:19.15.dn【分析】根据平移后的图形面积-平移前的面积=裂缝面积列式即可计算出结果.【详解】裂缝面积=(m+d)n-mn=mn+dn-mn=dn .故答案为dn .16.顺【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“试”是相对面,“你”与“顺”是相对面,“考”与“利”是相对面.故答案为:顺.17.36x -=58x+【分析】直接利用鸽笼的数量不变得出方程,即可得出答案.【详解】解:设原有x 只鸽子,则可列方程:3568x x -+=.故答案为:3568x x -+=.18.112n -【分析】利用等边三角形的性质(三边相等)求出等边三角形的周长C 1,C 2,C 3,C 4,根据周长相减的结果能找到规律即可求出答案.【详解】解:∵C 1=1+1+1=3,C 2=1+1+12=52,C 3=1+1+14×3=114,C 4=1+1+14×2+18×3=238,…∴C 3﹣C 2=12,C 3﹣C 2=114﹣52=14=(12)2;C 4﹣C 3=238﹣114=18=(12)3,…则C n ﹣Cn ﹣1=(12)n ﹣1=112n -.故答案为:112n -.19.(1)25;(2)16【详解】解:(1)原式=311252525424⨯+⨯-⨯=31125(424⨯+-=25×1=25;(2)原式=111(29)23--⨯⨯-=111(7)23--⨯⨯-=716-+=16.20.(1)67x =-;(2)43x =【分析】(1)首先去括号,然后移项,合并同类项,系数化为1即可;(2)去分母,然后去括号,移项,合并同类项,系数化为1即可求解.【详解】(1)解:222510x x -=--,76x =-,67x =-;(2)102724x x +--=,34x =,43x =.21.﹣x 2y+4xy+1,-23【分析】原式去括号再合并即可得到最简结果,将x 与y 的值代入计算即可求出值.【详解】原式=2x 2y+6xy ﹣3x 2y+3﹣2xy ﹣2=﹣x 2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.22.(1)见解析;(2)OP ;(3)垂线段最短;(4)见解析【详解】试题分析:(1)先以点P 为圆心,以任意长为半径画弧,与OB 交于两点,然后再分别以这两点为圆心,作弧在OB 两侧交于两点,过这两点作直线即可;(2)根据点到直线的距离的概念即可得;(3)根据垂线段最短即可得;(4)根据“同位角相等,两直线平行”作∠BOA 的同位角即可得.试题解析:(1)如图所示:PC 即为所求作的;(2)根据点到直线的距离的定义可知线段OP 的长度是点O 到PC 的距离,故答案为OP ;(3)PC<OC 的理由是垂线段最短,故答案为垂线段最短;(4)如图所示.23.6x =【分析】根据题意,可得:3※333324x x x -=++-=,据此求出x 的值即可.【详解】解:a ※b ab a b =++,3∴※333324x x x -=++-=,32433x x ∴+=-+,424x ∴=,解得:6x =.【点睛】此题主要考查了解一元一次方程的方法,解题的关键是要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.AB 两地距离为252千米.【分析】根据路程、速度、时间之间的关系列出方程,解方程即可.【详解】设AB 两地距离为x 千米,则CB 两地距离为(x ﹣2)千米.根据题意,得238282x x -+=+-解得x =252.答:AB 两地距离为252千米.【点睛】考查了一元一次方程的应用,解题关键是理解题意找到等量关系,根据等量关系列出方程.25.10【分析】先根据已知求出BC的长,再根据N是线段BC的中点求出CN,从而求出AN.【详解】解:∵AB=12,AC=8,∴BC=AB﹣AC=12﹣8=4,∵N是线段BC的中点,∴CN=12BC=12×4=2,∴AN=AC+CN=8+2=10.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及中点的性质是解答此题的关键.26.(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF 平分∠AOC .【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.27.(1)证明见解析;(2)17.【分析】(1)设M 的十位数字为a ,个位数字为b ,分别写出M 的“添彩数”和“减压数”,求和,化简,表示出11的倍数,即可证明;【详解】(1)证明:设M 的十位数字为a ,个位数字为b则其“添彩数”与“减压数”分别为:100a+10b+6;10a+b-6它们的差为:100a+10b+6+(10a+b-6)=110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y-6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9,则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数∴N 的值为17.。
2024-2025学年苏科版七年级上册第一次月考数学试卷

2024-2025学年苏科版七年级上册第一次月考数学试卷一、单选题1.2020-的倒数的相反数是( ) A .2020B .12020C .12020-D .2020±2.设a 为最小的正整数,b 为最大的负整数,c 是绝对值最小的有理数,则a c b +-的值为( ) A .0B .2C .0或2D .2-3.若0a ≠,0b ≠,则代数式||||||a b ab a b ab ++的取值共有( ) A .1个B .2个C .3个D .4个4.冬季某天我国三个城市的最高气温分别是-13℃,1℃,-3℃,它们任意两城市中最大的温差是( ) A .12℃B .16℃C .10℃D .14℃5.下面算式与11152234-+的值相等的是( )A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭B .11133234⎛⎫--+ ⎪⎝⎭C .111227234⎛⎫+-+ ⎪⎝⎭D .11143234⎛⎫--+ ⎪⎝⎭6.实数a ,b 在数轴上的位置如图所示,且a b >,则化简a b +的结果为( )A .a b +B .a b -+C .bD .a b --二、填空题7.比较大小:()22-π-(填“>”,“<”或“=”).8.桌子上有8只杯口朝上的茶杯,每次翻转3只,经过n 次翻转可使这8只杯子的杯口全部朝下,则n 的最小值为.9.用[]x 表示不超过x 的整数中的最大整数,如[2.23]2=,[ 3.24]4-=-,则计算[3.5][3]+-的值为.10.一个动点P 从数轴上的原点O 出发开始移动,第1次向右移动1个单位长度到达点1P ,第2次向右移动2个单位长度到达点2P ,第3次向左移动3个单位长度到达点3P ,第4次向左移动4个单位长度到达点4P ,第5次向右移动5个单位长度到达点5P L L ,点P 按此规律移动,则移动158次后到达的点在数轴上表示的数是.11.数轴上,点A 、点B 分别表示有理数a 、b ,则表示点A 和点B 之间的距离AB a b =-.若有理数a 、b 、c 满足2a b -=,6b c -=,则a c -=.12.用计算器计算一个有理数的混合运算时,依次按键正确计算后,计算器显示的小数结果是0.048148148……,再按计算器的转换键显示的分数结果是.(参考数据提示:9992737=⨯,4811337=⨯)13.如图,若输入5x =,按图中的程序计算,则输出的结果是.14.定义一种新运算()a b ,,若c a b =,则()a b c =,,例()283=,,()3814=,.已知()()()48474x +=,,,,则x 的值为 .三、解答题 15.计算:(1)(8)(10)(2)3++----;(2)()10022228133⎛⎫--+-⨯+- ⎪⎝⎭.16.将下列有理数填入适当的集合内:2-,5,12-,32,0.05-,143,0,|3|--,8,312⎛⎫- ⎪⎝⎭. 正有理数集合:{____________…}; 整数集合:{____________…}; 负分数集合:{____________…}; 非负整数集合:{____________…}.17.有以下个数:5-,2-,4, 3.5-,2-,32-.(1)画出数轴,在数轴上画出表示各数的点;(2)用“<”号把它们接起来;(3)取其中4个整数,用运算符号(含括号)连接起来,使得运算的结果是24. 18.【情景创设】12,16,112,120,130…是一组有规律的数,我们如何求这些连续数的和呢? 【探索活动】(1)根据规律第6个数是______,1132是第______个数; 【阅读理解】111111111111111511122334455622334455666++++=-+-+-+-+-=-=⨯⨯⨯⨯⨯ 【实践应用】根据上面获得的经验完成下面的计算: (2)11112612132+++⋅⋅⋅+;(3)11111232343458910+++⋅⋅⋅+⨯⨯⨯⨯⨯⨯⨯⨯.19.如图,若点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB .则A B a b =-.所以式子3x -的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.根据上述材料,解答下列问题: (1)若12x -=,则x =; (2)若51x x -=+,则x =; (3)式子32x x -++的最小值为; (4)若327x x -++=,则x =;(5)式子213x x x ++-+-的最小值为,此时x =.20.某射击运动员进行射击训练,射击成绩以10环为基准,记录相对环数,超过10环记为正,不足10环记为负,他的前9次射击成绩(单位:环)的相对环数记录如表,第10次射击成绩为9.6环.(1)第10次射击成绩的相对环数应记为________环;(2)这10次射击中,与10环偏差最大的是第________次射击;(填序号) (3)计算这10次射击的平均成绩.21.已知数轴上的点A 、B 、C 、D 分别表示3-、 1.5-、0、4(1)请在数轴上标出A 、B 、C 、D 四个点; (2)B 、D 两点之间的距离是;(3)如果把数轴的原点取在点B 处,其余条件都不变,那么点A 、C 、D 分别表示的数是. 22.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但受种种因素影响,实际每天的生产量与计划量相比有出入,如表记录了该厂某周的生产情况(单位:辆),其中,超过计划量记为正,少于计划量记为负.(1)该厂这周实际生产自行车多少辆?(2)该厂实行计件工资制,工人每生产一辆自行车可得60元,若超额完成任务,则每超出一辆另奖15元.该厂工人这一周的工资总额是多少元?23.我们知道,||a 可以理解为|0|a -,它表示:数轴上表示数a 的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点,A B ,分别用数,a b 表示,那么,A B 两点之间的距离为||||AB a b =-,反过来,式子||-a b 的几何意义是:数轴上表示数a 的点和表示数b 的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数1-的点和表示数3-的点之间的距离是__________.(2)数轴上点A 用数a 表示,若||5a =,那么a 的值为_________. (3)数轴上点A 用数a 表示:①若|3|5a -=,那么a 的值是________.②当|2||3|5a a ++-=时,数a 的取值范围是________,这样的整数a 有________个. ③|3||2017|a a -++有最小值,最小值是___________.24.已知数轴上点A 、B 分别表示的数是a 、b ,记A 、B 两点间的距离为AB (1) 若a =6,b =4,则AB =;若a =-6,b =4,则AB =;(2) 若A 、B 两点间的距离记为d ,试问d 和a 、b 有何数量关系?(3)写出所有符合条件的整数点P ,使它到5和-5的距离之和为10,并求所有这些整数的和.(4)|x -1|+|x +2|取得的值最小为,|x -1|-|x +2|取得最大值为.。
苏科版数学七年级上册苏科版数学期末试卷及答案百度文库

苏科版数学七年级上册苏科版数学期末试卷及答案百度文库一、选择题1.3的相反数是( )A. 13B. -13C. -3D. 3【答案】C【解析】【分析】相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【详解】解:3的相反数是-3.故答案为:C.【点睛】此题主要考查了相反数,正确把握定义是解题关键.2.下列计算正确的是()A. 7a+a=7a2B. 5y﹣3y=2C. 3x2y﹣2yx2=x2yD. 3a+2b=5ab【答案】C【解析】【分析】根据合并同类项法则和同类项的定义逐一判断即可.【详解】A.7a+a=(7+1)a=8a,故本选项错误;B.5y﹣3y= (5﹣3)y=2y,故本选项错误;C.3x2y﹣2yx2=(3﹣2)x2y=x2y,故本选项正确;D.3a和2b不是同类项,不能合并,故本选项错误.故选C.【点睛】此题考查的是同类项的判断和合并同类项,掌握合并同类项法则和同类项的定义是解决此题的关键.3.已知下列方程:①22xx-=;②0.3x=1;③512xx=+;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()A. 2B. 3C. 4D. 5 【答案】B【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.【详解】解:①x−2=2x 是分式方程,故①错误; ②0.3x=1,即0.3x-1=0,符合一元一次方程的定义.故②正确; ③2x =5x+1,即9x+2=0,符合一元一次方程的定义.故③正确; ④x 2-4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误;⑤x=6,即x-6=0,符合一元一次方程的定义.故⑤正确;⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误.综上所述,一元一次方程的个数是3个.故选B .【点睛】本题考查了一元一次方程的一般形式,掌握只含有一个未知数,且未知数的指数是1,一次项系数不是0是关键.4.小明同学用手中一副三角尺想摆成α∠与β∠互余,下面摆放方式中符合要求的是( ).A. B.C. D.【答案】A【解析】试题解析:A 、∠α+∠β=180°-90°=90°,则∠α与∠β互余,选项正确;B 、∠α与∠β不互余,故本选项错误;C 、∠α与∠β不互余,故本选项错误;D 、∠α和∠β互补,故本选项错误.5.已知关于x 的多项式()3222691353-x x x ax x +++--+的取值不含x 2项,那么a 的值是( )A. -3B. 3C. -2D. 2 【答案】D【解析】【分析】先去括号、合并同类项化简,然后根据题意令x 2的系数为0即可求出a 的值.【详解】解:()3222691353-x x x ax x +++--+=3222691353-x x x ax x +++-+-=()32263142-x a x x +-+- ∵关于x 的多项式()3222691353-x x x ax x +++--+的取值不含x 2项,∴630a -=解得:2a =故选D .【点睛】此题考查的是整式的加减:不含某项的问题,掌握去括号法则、合并同类项法则和不含某项即化简后,令其系数为0是解决此题的关键.6.若1x =是方程260x m +-=的解,则m 的值是( )A. ﹣4B. 4C. ﹣8D. 8 【答案】B【解析】根据方程的解,把x=1代入2x+m-6=0可得2+m-6=0,解得m=4.故选B.7.画如图所示物体的主视图,正确的是( )A.B. C. D. 【答案】A【分析】直接利用三视图解题即可【详解】解:从正面看得到的图形是A .故选:A .【点睛】本题考查三视图,基础知识扎实是解题关键8.有理数a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A. ab >0B. |b|<|a|C. b <0<aD. a+b >0【答案】C【解析】【分析】根据a 与b 在数轴上的位置即可判断.【详解】解:由数轴可知:b <-1<0<a <1,且|a|<1<|b|;∴A 、 ab<0.故本选项错误;B 、|b|>|a|. 故本选项错误;C 、b <0<a . 故本选项正确;D 、a+b<0 . 故本选项错误;故选C.【点睛】此题考查了数轴的有关知识,利用数形结合思想是解题关键.9.如果a 和14-b 互为相反数,那么多项式()()2210723b a a b -++--的值是 ( )A. -4B. -2C. 2D. 4 【答案】A【解析】【分析】根据相反数的性质并整理可得a 4b -=-1,然后去括号、合并同类项,再利用整体代入法求值即可.【详解】解:∵a 和14b -互为相反数,∴a +14b -=0整理,得a 4b -=-1 ()()2210723b a a b -++--=242071421b a a b -++--=3121a b --=()341a b --=()311⨯--=-4故选A .【点睛】此题考查的是相反数的性质和整式的化简求值题,掌握相反数的性质、去括号法则和合并同类项法则是解决此题的关键.10.甲、乙两人在长为25米泳池内始终以匀速游泳,两人同时从起点出发,触壁后原路返回,如是往返;甲的速度是1米/秒,乙的速度是0.6米/秒,那么第十次迎面相遇时他们离起点( )A. 7.5米B. 10米C. 12米D. 12.5米 【答案】D【解析】【分析】根据题意,画出图形,即可发现,甲乙每迎面相遇一次,两人共行驶50米,从而求出第十次迎面相遇时的总路程,然后除以速度和即可求出甲行驶的时间,从而求出甲行驶的路程,然后计算出甲行驶了几个来回即可判断.【详解】解:根据题意,画出图形可知:甲乙每迎面相遇一次,两人共行驶25×2=50米,∴第十次迎面相遇时的总路程为50×10=500米∴甲行驶时间为500÷(1+0.6)=12504s ∴甲行驶的路程为12504×1=12504米 ∵一个来回共50米 ∴12504÷50≈6个来回 ∴此时距离出发点12504-50×6=12.5米故选D .【点睛】此题考查的是行程问题,掌握行程问题中的各个量之间的关系是解决此题的关键.二、填空题11.比较大小: -0.4________12-. 【答案】>【解析】【分析】根据负数的比较大小方法:绝对值大的反而小,即可判断. 【详解】解:∵0.40.4-=,10.52-=,0.40.5< ∴10.42->- 故答案为:>.【点睛】此题考查的是有理数的比较大小,掌握负数的比较大小方法:绝对值大的反而小是解决此题的关键.12.计算t 3t t --=________.【答案】-3t【解析】【分析】根据合并同类项法则合并同类项即可.【详解】解:()t 31313t t t t --=--=-故答案为:-3t .【点睛】此题考查的是合并同类项,掌握合并同类项法则是解决此题的关键.13.科学家们测得光在水中的速度约为225000000米/秒,数字225000000用科学计数法表示为___________.【答案】2.25×108 【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:225000000=82.2510⨯故答案为:82.2510⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.14.若代数式m 42a b 与2n 15a b +-是同类项,则n m =______.【答案】8【解析】【分析】根据同类项的概念即可求出答案.【详解】解:由题意可知:m=2,4=n+1∴m=2,n=3,∴m n =23=8,故答案为8【点睛】本题考查同类项的概念,涉及有理数的运算,属于基础题型.15.若72α∠=︒,则α∠的补角为_________°.【答案】108【解析】【分析】根据互补的定义即可求出α∠的补角.【详解】解:∵72α∠=︒∴α∠的补角为180°-108α∠=︒故答案为:108.【点睛】此题考查是求一个角的补角,掌握互补的定义是解决此题的关键.16.在同一平面内,150,110AOB BOC ∠=︒∠=︒,则AOC ∠的度数为_____________.【答案】40º或100º【解析】【分析】根据OC 所在的位置分类讨论:①当OC 在∠AOB 内部时,画出对应的图形,结合已知条件即可求出∠AOC ;②当OC 不在∠AOB 内部时,画出对应的图形,结合已知条件即可求出∠AOC .【详解】解:①当OC 在∠AOB 内部时,如下图所示∵150,110AOB BOC ∠=︒∠=︒∴∠AOC=∠AOB -∠BOC=40°②当OC 不在∠AOB 内部时,如下图所示∵150,110AOB BOC ∠=︒∠=︒∴∠AOC=360°-∠AOB -∠BOC=100°综上所述:∠AOC=40°或100°故答案为:40°或100°.【点睛】此题考查的是角的和与差,掌握各角之间的关系和分类讨论的数学思想是解决此题的关键. 17.如果关于x 方程ax b 0+=的解是x=0.5,那么方程bx 0a -=的解是____________.【答案】-2【解析】【分析】解方程0ax b +=可得b x a =-,然后根据方程的解即可得出0.5b a-=,变形可得0.5b a =-,然后将0.5b a =-代入方程0bx a -=中,即可求出方程的解.【详解】解:由0ax b += 解得:b x a=- ∵关于x 方程0ax b +=的解为0.5x = ∴0.5b a-= 变形得:0.5b a =-将0.5b a =-代入方程0bx a -=中,0.50ax a --=解得: 2x =-故答案为:2x =-.【点睛】此题考查的是解含参数的方程,根据已知方程找到参数之间的关系是解决此题的关键. 18.如图,每一幅图中均含有若干个正方形,第1幅图中有2个正方形;第2幅图中有8个正方形;…按这样的规律下去,第7幅图中有___个正方形.【答案】168【解析】【分析】根据已知图形找出每幅图中正方形个数的变化规律,即可计算出第7幅图中正方形的个数.【详解】解:第1幅图中有2=2×1个正方形;第2幅图中有8=(3×2+2×1)个正方形;第3幅图中有20=(4×3+3×2+2×1)个正方形;∴第7幅图中有8×7+7×6+6×5+5×4+4×3+3×2+2×1=168个正方形故答案为:168.【点睛】此题考查的是探索规律题,找出正方形个数的变化规律是解决此题的关键.三、解答题19.计算:(1)(3)74--+-- (2)211()(6)5()32-⨯-+÷- 【答案】(1)6;(2)22【解析】试题分析:(1)先去括号、去绝对值,然后进行加减运算即可;(2)先计算乘法,再计算乘方,然后将除法变为乘法,最后进行加减运算即可.试题解析:(1)原式=3+7-4=6;(2)原式=2+5÷14=2+5×4=22.点睛:掌握有理数混合运算法则.20.解下列方程(1)235x +=;(2) 913.7-(12)-4.37x -=.【答案】(1)x=1;(2)x=132-【解析】【分析】 (1)移项、合并同类项、系数化1即可; (2)去分母、去括号、移项、合并同类项、系数化1即可. 【详解】解:(1)235x += 移项、合并同类项,得22x = 系数化1,得1x = (2) ()913.712 4.37x --=- 去分母,得()95.991230.1x --=- 去括号,得95.991830.1x -+=- 移项,得1830.1995.9x =-+- 合并同类项,得18117x =- 系数化1,得132x =- 【点睛】此题考查的是解一元一次方程,掌握解一元一次方程的一般步骤是解决此题的关键. 21.先化简,再求值:()()22225343a b ab ab a b ---+,其中a=-2,b=12; 【答案】3a 2b-ab 2,132【解析】【分析】 先根据去括号法则和合并同类项法则将整式化简,然后代入求值即可.【详解】解:()()22225343a b ab ab a b ---+=2222155412a b ab ab a b -+- =223a b ab - 将a=-2,b=12代入,得 原式=()()221113322222⎛⎫⨯-⨯--⨯=⎪⎝⎭【点睛】此题考查的是整式的化简求值题,掌握去括号法则和合并同类项法则是解决此题的关键. 22.已知高铁的速度比动车的速度快50 km /h ,小路同学从苏州去北京游玩,本打算乘坐动车,需要6h 才能到达;由于得知开通了高铁,决定乘坐高铁,她发现乘坐高铁比乘坐动车节约72 min .求高铁的速度和苏州与北京之间的距离.【答案】250千米/时,1200千米 【解析】 【分析】先统一单位,设高铁的速度为xkm/h ,则动车的速度为(x -50)km/h ,根据作高铁和动车行驶的路程相等列方程即可求出结论. 【详解】解:72 min =1.2h设高铁的速度为xkm/h ,则动车的速度为(x -50)km/h 根据题意可得(6-1.2)x=6(x -50) 解得:x=250∴苏州与北京之间的距离为250×(6-1.2)=1200千米答:高铁的速度为250千米/时,苏州与北京之间的距离为1200千米.【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.23.(1)如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站C ,使它到A 、B 两村庄的距离的和最小,请在图中画出点C 的位置,并保留作图痕迹.【探索】(2)如图,C 、B 两个村庄在一条笔直的马路的两端,村庄A 在马路外,要在马路上建一个垃圾站O ,使得AO +BO +CO 最小,请在图中画出点O 的位置.(3)如图,现有A、B、C、D四个村庄,如果要建一个垃圾站O,使得AO+BO+CO+DO最小,请在图中画出点O的位置.【答案】(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据两点之间线段最短,连接AB,交l于点C即可;(2)根据BO+CO=BC为定长,故需保证AO最小即可,根据垂线段最短,过点A作AO⊥BC于O即可;(3)根据两点之间线段最短,故连接AC、BD交于点O即可.【详解】解:(1)连接AB,交l于点C,此时AC+BC=AB,根据两点之间线段最短,AB即为AC+BC 的最小值,如下图所示:点C即为所求;(2)∵点O在BC上∴BO+CO=BC∴AO+BO+CO=AO+BC,而BC为定长,∴当AO+BO+CO最小时,AO也最小过点A作AO⊥BC于O,根据垂线段最短,此时AO最小,AO+BO+CO也最小,如下图所示:点O即为所求;(3)根据两点之间线段最短,若使AO +CO 最小,连接AC ,点O 应在线段AC 上;若使BO +DO 最小,连接BD ,点O 应在线段BD 上, ∴点O 应为AC 和BD 的交点 如下图所示:点O 即为所求.【点睛】此题考查的是两点之间线段最短和垂线段最短的应用,掌握根据两点之间线段最短和垂线段最短,找出最值所需点是解决此题的关键.24.如图,点C 是线段AB 的中点,6AC =.点D 在线段AB 上,且12BD AD =,求线段CD 的长.【答案】CD=2 【解析】 【分析】因为点C 是线段AB 的中点,6AC =,所以12AB =. 由12BD AD =,得到13BD AB ==4,即可列式CD BC BD =-计算得到答案.【详解】解:点C 是线段AB 的中点,6AC =,12AB ∴=.12BD AD =, 13BD AB ∴==4. 642CD BC BD AC BD ∴=-=-=-=.【点睛】本题考查线段的和差分倍,解题的关键是掌握线段的和差分倍计算方法.25.下图是用10块完全相同的小正方体搭成的几何体.(1)请在方格中画出它的三个视图;(2)如果只看三视图,这个几何体还有可能是用块小正方体搭成的.【答案】(1)见解析;(2)9【解析】【分析】(1)根据主视图、左视图和俯视图的定义和几何体的特征画出三视图即可;(2)根据三视图的特征分析该几何体的层数和每层小正方体的个数,然后将每层小正方体的个数求和即可判断.【详解】解:(1)根据几何体的特征,画三视图如下:(2)从主视图看,该几何体有3层,从俯视图看,该几何体的最底层有6个小正方体;结合主视图和左视图看,中间层有2个或3个小正方体,最上层只有1个小正方体,故该几何体有6+2+1=9个小正方体或有6+3+1=10个小正方体,如果只看三视图,这个几何体还有可能是用9块小正方体搭成的,故答案为:9.【点睛】此题考查的是画三视图和根据三视图还原几何体,掌握三视图的定义、三视图的特征和几何体的特征是解决此题的关键.26.如图,直线AB,CD 交于点O ,OE 平分COB ∠,OF 是EOD ∠的角平分线.(1)说明: 2AOD COE ∠=∠;(2)若50AOC ∠=︒,求EOF ∠的度数; (3)若15BOF =︒∠,求AOC ∠的度数. 【答案】(1)见解析;(2)57.5º;(3)40º 【解析】 【分析】(1)根据角平分线的定义可得∠COB=2∠COE ,然后根据对顶角相等可得∠AOD=∠COB ,从而证出结论;(2)根据对顶角相等和平角的定义即可求出∠BOD 和∠COB ,然后根据角平分线的性质即可求出∠EOB ,从而求出∠EOD ,再根据角平分线的定义即可求出∠EOF ;(3)设∠AOC=x °,根据对顶角相等可得∠BOD=∠AOC=x °,利用角的关系和角平分线的定义分别用x 表示出∠DOF 、∠EOF 、∠EOB 、∠COB ,然后利用∠AOC +∠COB=180°列方程即可求出∠AOC . 【详解】解:(1)∵OE 平分COB ∠, ∴∠COB=2∠COE ∵∠AOD=∠COB ∴∠AOD=2∠COE (2)∵50AOC ∠=︒,∴∠BOD=∠AOC=50°,∠COB=180°-∠AOC=130° ∵OE 平分COB ∠, ∴∠EOB=12∠COB=65° ∴∠EOD=∠EOB +∠BOD=115°∵OF 是EOD ∠的角平分线 ∴∠EOF=12∠EOD=57.5︒ (3)设∠AOC=x ° ∴∠BOD=∠AOC=x °∴∠DOF=∠BOD +∠BOF=(x +15)° ∵OF 是EOD ∠的角平分线 ∴∠EOF=∠DOF= (x +15)° ∴∠EOB= ∠EOF +∠BOF=(x +30)° ∵OE 平分COB ∠,∴∠COB=2∠EOB=(2x +60)° ∵∠AOC +∠COB=180° ∴x +(2x +60)=180 解得x=40 ∴∠AOC=40°【点睛】此题考查的是角的和与差,掌握各角的关系、角平分线的定义和对顶角相等是解决此题的关键. 27.数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴时,我们发现有许多重要的规律:例如,若数轴上点 A , B 表示的数分别为 a , b ,则 A , B 两点之间的距离AB=a-b ,线段 AB 的中点M 表示的数为2a b+.如图,在数轴上,点A,B,C 表示的数分别为-8,2,20.(1)如果点A 和点C 都向点B 运动,且都用了4秒钟,那么这两点的运动速度分别是点A 每秒_______个单位长度、点C 每秒______个单位长度;(2)如果点A 以每秒1个单位长度沿数轴的正方向运动,点C 以每秒3个单位长度沿数轴的负方向运动,设运动时间为t 秒,请问当这两点与点B 距离相等的时候,t 为何值?(3)如果点A 以每秒1个单位长度沿数轴正方向运动,点B 以每秒3个单位长度沿数轴的正方向运动,且当它们分别到达C 点时就停止不动,设运动时间为t 秒,线段AB 的中点为点P ; ① t 为何值时PC=12; ② t 为何值时PC=4.【答案】(1)2.5;4.5;(2)t=4或7;(3)①112;②20【解析】【分析】(1)根据数轴上两点之间的距离公式求出AB的长和BC的长,然后根据速度=路程÷时间即可得出结论;(2)分点A和点C相遇前AB=BC、相遇时AB=BC和相遇后AB=BC三种情况,分别画出对应的图形,然后根据AB=BC列出方程求出t的即可;(3)①分点B到达点C之前和点B到达点C之后且点A到点C之前两种情况,分别画出对应的图形,利用中点公式、两点之间的距离公式和PC=12列方程即可求出t的值;②分点B到达点C之前和点B到达点C之后且点A到点C之前两种情况,分别画出对应的图形,利用中点公式、两点之间的距离公式和PC=12列方程即可求出t的值;【详解】解:(1)∵点A,B,C表示的数分别为-8,2,20.∴AB=2-(-8)=10,BC=20-2=18∵点A和点C都向点B运动,且都用了4秒钟,∴点A的速度为每秒:AB÷4=2.5个单位长度,点C的速度为每秒:BC÷4=4.5个单位长度,故答案为:2.5;4.5.(2)AC=20-(-8)=28∴点A和点C相遇时间为AC÷(1+3)=7s当点A和点C相遇前,AB=BC时,此时0<t<7,如下图所示此时点A运动的路程为1×t=t,点C运动的路程为3×t=3t∴此时AB=10-t,BC=18-3t∵AB=BC∴10-t=18-3t解得:t=4;当点A和点C相遇时,此时t=7,如下图所示此时点A和点C重合∴AB=BC 即t=7;当点A 和点C 相遇后,此时t >7,如下图所示由点C 的速度大于点A 的速度 ∴此时BC >AB故此时不存在t ,使AB=BC .综上所述:当A 、C 两点与点B 距离相等的时候,t =4或7.(3)点B 到达点C 的时间为:BC ÷3=6s ,点A 到达点C 的时间为:AC ÷1=28s ①当点B 到达点C 之前,即0<t <6时,如下图所示此时点A 所表示的数为-8+t ,点B 所表示的数为2+3t ∴线段AB 的中点P 表示的数为()()823232t t t -+++=-∴PC=20-(2t -3)=12 解得:t=112; 当点B 到达点C 之后且点A 到点C 之前,即6≤t <28时,如下图所示此时点A 所表示的数为-8+t ,点B 所表示的数为20 ∴线段AB 的中点P 表示的数为()820622t t-++=+ ∴PC=20-(62t+)=12 解得:t=4,不符合前提条件,故舍去. 综上所述:t=112时,PC=12;②当点B 到达点C 之前,即0<t <6时,如下图所示此时点A 所表示的数为-8+t ,点B 所表示的数为2+3t ∴线段AB 的中点P 表示的数为()()823232t t t -+++=-∴PC=20-(2t -3)=4 解得:t=192,不符合前提条件,故舍去; 当点B 到达点C 之后且点A 到点C 之前,即6≤t <28时,如下图所示此时点A 所表示的数为-8+t ,点B 所表示的数为20 ∴线段AB 的中点P 表示的数为()820622t t-++=+ ∴PC=20-(62t+)=4 解得:t=20.综上所述:当t=20时,PC=4.【点睛】此题考查是数轴上的动点问题,掌握数轴上两点之间的距离公式、中点公式、行程问题公式和分类讨论的数学思想是解决此题的关键.一、作文汇编1.按要求作文阅读名著,我们感悟人生的风景;阅读自然,我们欣赏山水的奇妙;阅读青春,我们享受成长的过程;阅读父母,我们体味亲情的厚重……请结合自身的经历和感悟,以“读”为题,写一篇 600 字以上的记叙文。
苏科版数学初一上学期期末试题与参考答案(2024-2025学年)

2024-2025学年苏科版数学初一上学期期末复习试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、题目:若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长为多少cm?选项:A、24cmB、26cmC、28cmD、30cm2、题目:已知一个长方形的长为6cm,宽为4cm,那么它的面积是多少平方厘米?选项:A、20cm²B、24cm²C、30cm²D、36cm²3、下列各数中,比-2大的数是()。
A、-3B、-1C、0D、-44、如果一个数的相反数是它本身,那么这个数是()。
A、0B、1C、-1D、不存在5、(选择题)小明家养了若干只兔子,如果5周增长率为20%,则 growth_rate 表示兔子的增长率为:A. 20%B. 25%C. 33.3%D. 50%6、(选择题)一个长方形的周长是24cm,且长是宽的两倍,那么这个长方形的面积是:A. 12平方厘米B. 16平方厘米C. 18平方厘米D. 24平方厘米7、若一个正方形边长增加了原来的50%,则面积增加了多少百分比?A. 50%B. 100%C. 125%D. 225%8、下列哪组数能构成直角三角形的三边长?A. 5, 12, 13B. 7, 10, 12C. 8, 15, 17D. 9, 12, 159、在直角坐标系中,点A的坐标是(-3,4),点B的坐标是(2,-1),则线段AB 的中点坐标是()。
A.(-0.5,1.5)B.(-1,2)C.(-0.5,-2)D.(1,2) 10、已知函数f(x) = 2x - 3,若f(a) = 1,则a的值为()。
A. 1B. 2C. 3D. 4二、填空题(本大题有5小题,每小题3分,共15分)1、一个长方形的长是8cm,宽是3cm,那么它的周长是_______cm。
2、一个正方形的边长增加了20%,那么它的面积增加了 _______%。
24-25七年级数学第一次月考卷(考试版A4)【测试范围:苏科版2024七上第1章-第2章】(苏科版

2024-2025学年七年级数学上学期第一次月考卷(苏科版2024)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答填空题和解答题时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版2024七年级上册第1章-第2章。
5.难度系数:0.8。
一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在数学史上,中国古代著作《九章算术》是最早采用正负数表示相反意义量的.如果公元前500年记作500-,那么公元2024年记作( )A .2024-B .2024C .1524D .25242.下列各组数中,互为相反数的是( )A .()7-+与()7+-B .(0.5)-+与()0.5+-C .114æöç÷-+ç÷èø与45æö--ç÷èøD .()0.01+-与1100æö--ç÷èø3.2024年6月25日14时07分,嫦娥六号返回器准确着陆于内蒙古四子王旗预定区域,标志着探月工程嫦娥六号任务取得圆满成功,实现世界首次月球背面采样返回.嫦娥六号返回器在距地面高度约120公里处,以接近第二宇宙速度(约为112000米/秒)高速在大西洋上空第一次进入地球大气层,实施初次气动减速.其中112000用科学记数法可表示为( )A .311210´B .411.210´C .51.1210´D .61.1210´4.将()()()()5632--+++--+写成省略加号后的形式是( )A .5632+--B .5632-+--C .5632++-D .5632-+-+5.实数,a b 在数轴上对应点的位置如图所示,下列结论正确的是( )A .0ab >B .0a b +<C .a b >D .0a b -<6.下列计算不正确的是( )A .()212343--´-+=-B .()2123415--´--=-C .()2(1)23415--´--=D .()2(1)2341--´-+=-7.如图,正六边形ABCDEF (每条边都相等)在数轴上的位置如图所示,点A 、F 对应的数分别为2-和1-,现将正六边形ABCDEF 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点E 所对应的数为0,连续翻转后数轴上2025这个数所对应的点是( )A .A 点B .B 点C .C 点D .F 点8.把长为2022个单位长度的线段AB 放在单位长度为1的数轴上,则线段AB 能盖住的整点有( )A .2021个B .2022个C .2021或2022个D .2022或2023个9.数轴上的三点A 、B 、C 所表示的数分别为a 、b 、c 且满足0a b +>,0a c ×<,则原点在( )A .点A 左侧B .点A 点B 之间(不含点A 点B )C .点B 点C 之间(不含点B 点C )D .点C 右侧10.数形结合是解决一些数学问题的重要思想方法,比如12x x -在数轴上表示数1x ,2x 对应的点之间的距离.现定义一种“H 运算”,对于若干个数,先将每两个数作差,再将这些差的绝对值进行求和.例如:对1-,1,2进行“H 运算”,得1112126--+--+-=.下列说法:①对m ,1-进行“H 运算”的结果是3,则m 的值是4-;②对n ,3-,5进行“H 运算”的结果是16,则n 的取值范围是35n -<<;③对a a b c ,,,进行“H 运算”,化简后的结果可能存在6种不同的表达式.其中正确的个数是( )A .0B .1C .2D .3二、填空题:本题共8小题,每小题4分,共32分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010—2011学年度第一学期期末试卷
七年级数学
(满分:150分 测试时间:120分钟)
题
号
一
二
三
总分 合分人
1-10 11-18
19
20 21
2
2
23
2
4 25
26
得
分
一.选择题(每题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每题3分,计30分) 题号 1
2
3
4
5
6
7
8
9
10
答案
1、下列式子中,正确的是
A .55-=-
B .55-=-
C .10.52-=-
D .1122
--= 2、实数a 、b 在数轴上的位置如图所示,则下列式子成立的是
2011.01
学校 姓名 考试 班级 密 封
A .a +b>0
B .a >-b
C .a +b<0
D .-a <b 3、右图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为
4、在数轴上与原点的距离等于2个单位的点表示的数是
A .2
B .-2
C .-1和3
D .-2和2 5.下列运算中,正确的是
A .b a b a b a 2
222=+- B .22=-a a
C .4
22523a a a =+ D .ab b a 22=+
6、国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元。
若设小明的这笔一年定期存款是x 元,则下列方程中正确的是
A .1219%20%98.1=⋅+x
B .1219%20%98.1=⋅x
C .1219%)201(%98.1=-⋅x
D .1219%)201(%98.1=-⋅+x x 7.如图(1)所示,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是
8、已知a+b =0,a ≠b ,则化简
a b (a+1)+b
a
(b+1)得 A .2a B .2b C .2 D .-2
9、观察表l ,寻找规律.表2是从表l 中截取的一部分,其中a ,b ,c 的值分别为 表1
A .20,25,24
B .25,20,24
C .18,25,24
D .20,30,25
10、a 、b 是有理数,如果,b a b a +=-那么对于结论:
图(1)
A .
B .
C .
D .
(1)a一定不是负数;(2)b可能是负数,其中A.只有(1)正确B.只有(2)正确C.(1),(2)都正确D.(1),(2)都不正确
二、填空题(每题3分,计24分)
11.我市某日的气温是-2℃~6℃,则该日的温差是____________℃。
12.据统计,全球每分钟约有8500000吨污水排入江河湖海,则每分钟的排污量用科学记数法表示应是吨。
13、若单项式2x2y m与-1
3
x n y3是同类项,则m+n的值是。
14、点C在直线AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中
点。
则线段MN的长为。
15.当x= 时,代数式4x-5的值等于-7。
16、如果关于x的方程2x+1=3和方程0
3
2=
-
-
x
k
的解相同,那么k的值。
17、如图,直线AB、CD相交于点O,∠DOE=∠BOD,OF平分∠AOE,若∠BOD=
28°,则∠EOF的度数为。
得分评卷人
18、设一列数1a 、2a 、3a 、…、 a 2010中任意三个相邻数之和都是35,已知
a 3=2x,a 20=15,x a -=399,那么a 2011= 。
三.解答题(本大题共10题,满分96分)
19.计算(本题满分10分)
(1)24127618552⨯⎪⎭
⎫
⎝⎛+--+-
(2)2010211(1)33(3)2
---÷⨯--
20.解下列方程(本题满分10分)
(1)3
1
652--
=+-x x x (2) 5.02
5.1
6.0.51=--x x
21.(本题满分14分)
(1) 化简后再求值:()()
2224232y x x y x ---+,其中()01 22
=++-y x
(2)若关于x 、y 的单项式cx 2a+2y 2与0.4xy 3b+4的和为零,则
21a 2b-[2
3a 2
b-(3abc-a 2c)-4a 2c]-3abc 的值又是多少?
22.(本题满分10分)
张新和李明到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.
听说花20元办一张会员卡买书可以享受7折优惠。
是的,我上次买了几本书,加上办卡的费用,还省了10元。
得分评卷人
、(本题满分12分)
如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.
(1)写出∠DOE 的补角;
(2)若∠BOE=62°,求∠AOD 和∠EOF 的度数;
(3)试问射线OD 与OF 之间有什么特殊的位置关系?为什么?
24、(本题满分12分)
在做解方程练习时,学习卷中有一个方程“+=-
y y 8
1
212■ ”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解.
与当x =3时代数式5122)4x x ----()(的值相同.”聪明的小聪很快补上了这个常数.同学们,请你
们也来补一补这个常数.
得分
评卷人
25.(本题满分14分)
如图所示,图(1)为一个长方体,10==AB AD ,6=AE ,图2为图1的表面展开图(字在外.
表面上),请根据要求回答问题: (1) 面“扬”的对面是面 ;
(2) 如果面“丽”是右面,面 “美”在后面,哪一面会在上面?
(3)图(1)中,M 、N 为所在棱的中点,试在图(2)中画出点M 、N 的位置;
并求出图 (2)中ABM 三角形的面积;
我 爱 美 丽 扬 州 图(2)
N B A M •• C D 图(1) E
得分
评卷人
26、(本题满分14分)
某物流公司的甲、乙两辆货车分别从相距300千米的A 、B 两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶1.5...小时时...
甲车先到达配货站C 地,此时两车相距....30..千米,...
甲车在C 地用1小时配货,然后按原速度开往B 地;乙车行驶2小时时也到C 地,未停留继续开往A 地。
(友情提醒:画出线段图帮助分析)
(1)乙车的速度是 千米/小时,B 、C 两地的距离是 千米,
A 、C 两地的距离是 千米;
(2)求甲车的速度及甲车到达B 地所用的时间;
(3)乙车出发多长时间,两车相距150千米。
初中数学试卷。