立体几何证明题练习
立体几何证明题专项练习

1.如图,正三棱柱ABC—A1B1C1中,AB=2,AA1=1,D是BC的中点,点P在平面BCC1B1内,PB1=PC1= 2.(1)求证:PA1⊥BC;(2)求证:PB1//平面AC1D.2.在正方体ABCD A BC D中,M,N分别是AB,BC中点.1111(Ⅰ)求证:平面B MN⊥平面BB D D;111(Ⅱ)若在棱DD上有一点P,使BD//平面PMN,求DP与PD的比.111A1D1C1B1D CA M BN3.在直三棱柱ABC-A B C中,AB=AC=AA=3a,B C=2a,D是BC的中点,F是1F B1111C C上一点,且CF=2a.1(1)求证:B F⊥平面ADF;1(2)求三棱锥D-AB F的体积;1(3)试在AA上找一点E,使得BE//平面ADF.1C1A1CDA B4.如图,在四棱锥P-ABCD中,侧面P AD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60︒,N是PB 中点,过A、N、D三点的平面交PC于M.(1)求证:DP//平面ANC P(2)求证:M是PC中点;M(3)求证:平面PBC⊥平面ADMN D CNABEF DC5.已知直角梯形 ABCD 中, AB // CD , AB ⊥ BC , AB = 1, BC = 2, C D = 1 + 3, 过 A 作AE ⊥ CD ,垂足为 E , G 、F 分别 为AD 、CE 的中点,现将 ∆ADE 沿 AE 折叠,使得 DE ⊥ EC .(Ⅰ) 求证: BC ⊥ 面CDE ;(5 分)(Ⅱ) 求证: FG // 面BCD ;(5 分)(Ⅲ)在线段 AE 上找一点 R ,使得面 BDR ⊥ 面 DCB ,并说明理由. (5 分)D·G ·ABGAEFBC6.已知等腰梯形 PDCB 中(如图 1),PB=3,DC=1,PB=BC =2 ,A 为 PB 边上一点,且 P A=1△,将 P AD 沿 AD 折起,使面 P AD ⊥面 ABCD (如图 2).(1)证明:平面 P AD ⊥PCD ;(2)试在棱 PB 上确定一点 M ,使截面 AMC把几何体分成的两部分VPDCMA: VMACB= 2 :1;(3)在 M 满足(2)的情况下,判断直线 PD是否平行面 AMC.7.如图,直三棱柱 ABC -A 1B 1C 1 中,∠ACB =90°,M ,N 分别为 A 1B ,B 1C 1 的中点.(1)求证 BC ∥平面 MNB 1;(2)求证平面 A 1CB ⊥平面 ACC 1A 1.A 1C 1NB 1MCAB8、如图,在四棱锥 P -ABCD 中,PD ⊥平面 ABCD ,四边形 ABCD 是菱形,AC =6,BD =8,E 是 PB 上任意一点,△AEC 面积的最小值是 3.(Ⅰ)求证:AC ⊥DE ;(Ⅱ)求四棱锥 P -ABCD 的体积.PEDFA BC9.如图所示,在直四棱柱 ABCD - A B C D 中,DB=BC, DB ⊥ AC ,点 M 是棱 BB 上一点.1 1 1 11(1)求证: B D // 面 A BD ; 1 11(2)求证: MD ⊥ AC ;(3)试确定点 M 的位置,使得平面 DMC ⊥ 平面 CC D D .111D 1 C 1A 1B 1DAMBC10.如图,已知矩形ABCD中,AB=10,BC=6,沿矩形的对角线BD把∆ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上。
最新立体几何证明题整理

立体几何证明题1、已知直线a ,b 和平面,且a b ,a ,则b 与的位置关系是2、已知直线l平面,有以下几个判断:①若m l ,则m//;②若m,则m l //;③若m//,则ml ;④若m l //,则m.上述判断中正确的是()A 、①②③ B 、②③④C 、①③④D 、①②④3如图,正四面体S -ABC 中,如果E ,F 分别是SC ,AB 的中点,那么异面直线EF 与SA 所成的角等于()A .90°B .45C .60°D .30°4、如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点,求证:PD//平面MAC5、如图,在正方体1111ABCDA B C D 中,E ,F 分别是棱BC ,11C D 的中点,求证:EF//平面11BB D D6、如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,AB=5,点D 是AB 的中点,(I )求证:AC ⊥BC 1;(II )求证:AC 1//平面CDB 17、如图所示,ABCD 为正方形,SA 平面ABCD ,过A 且垂直于SC 的平面分别交SB ,SC ,SD 于E ,F ,G .CDABM P1A 1B 1D 1C FEABC D FECBAs求证:AE SB AG SD,8、如图,直角ABC△所在平面外一点S,且SA SB SC,点D为斜边AC的中点.(1)求证:SD平面ABC;(2)若AB BC,求证:BD面SAC9、在四棱锥P-ABCD中,∠DAB=∠ABC=90°,PA⊥底面ABCD;AB=BC=1,AD=2求证:平面PCD⊥平面PAC。
10、如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱EF∥12BC(I)证明FO∥平面CDE;(II)设3BC CD,证明EO平面CDF11、已知正方体1111ABCD A B C D,O是底ABCD对角线的交点.求证:(1)OC1//面11AB D;(2 )1AC面11AB D.SA BCFEDGASCBDD1ODBAC1B1A1CAB CDEFO12、如图,棱柱111ABC A B C 的侧面11BCC B 是菱形,11B C A B(Ⅰ)证明:平面1AB C平面11A BC ;(Ⅱ)设D 是11A C 上PABC 的点,且1//A B 平面1B CD ,求11:A D DC 的值.13、图,在三棱锥中,AB AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.(Ⅰ)证明:AP ⊥BC ;(Ⅱ)已知8BC ,4PO ,3AO ,2OD .求二面角B APC 的大小.14、如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,CE ⊥AC,EF ∥AC,AB=2,CE=EF=1(Ⅰ)求证:AF ∥平面BDE (Ⅱ)求证:CF ⊥平面BDE15、如图1,在直角梯形CD 中,D//C ,D2,C 1,D2,是D 的中点,是C 与的交点.将沿折起到1的位置,如图2.(I )证明:CD平面1C ;(II )若平面1平面CD ,求平面1C 与平面1CD 夹角的余弦值.16、如图,直三棱柱ABC—A1B1C1 中,AC =BC =1,∠ACB =90°,AA1 =2,D 是A1B1 中点.(1)求证C1D ⊥平面A1B ;(2)当点 F 在BB1 上什么位置时,会使得AB1 ⊥平面C1DF ?并证明你的结论.17、如图,在正三棱柱ABC—A1B1C1中,AB=AA1,D是CC1的中点,F是A1B的中点,⑴求证:DF∥平面ABC;⑵求证:AF⊥BD。
高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。
高中数学立体几何证明题汇总

高中数学立体几何证明题汇总立体几何常考证明题1.已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点。
1)证明EFGH是平行四边形。
2)已知BD=23,AC=2,EG=2,求异面直线AC、BD所成的角和EG、BD所成的角。
2.如图,已知空间四边形ABCD中,BC=AC,AD=BD,E 是AB的中点。
1)证明AB垂直于平面CDE。
2)证明平面CDE垂直于平面ABC。
3.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点。
证明A1C平行于平面BDE。
4.已知三角形ABC中∠ACB=90,SA垂直于面ABC,AD垂直于SC。
证明AD垂直于面SBC。
5.已知正方体ABCD-A1B1C1D1,O是底面ABCD对角线的交点。
1)证明C1O平行于面AB1D1.2)证明AC1垂直于面AB1D1.6.正方体ABCD-A1B1C1D1中。
1)证明AC垂直于平面B1D1D。
2)证明BD1垂直于平面ACB1.7.正方体ABCD-A1B1C1D1中。
1)证明平面A1BD平行于平面B1DC。
2)已知E、F分别是AA1、CC1的中点,证明平面EB1D1平行于平面FBD。
8.四面体ABCD中,AC=BD,E、F分别为AD、BC的中点,且EF=AC/2,∠XXX。
证明BD垂直于平面ACD。
9.如图P是△ABC所在平面外一点,PA=PB,CB垂直于平面PAB,M是PC的中点,N是AB上的点,AN=3NB。
1)证明XXX垂直于AB。
2)当∠APB=90,AB=2BC=4时,求MN的长度。
10.如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是AB、AD、C1D1的中点。
证明平面D1EF平行于平面BDG。
11.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点。
1)证明A1C平行于平面BDE。
2)证明平面A1AC垂直于平面BDE。
12、已知矩形ABCD,PA垂直于平面ABCD,AB=2,PA=AD=4,E为BC的中点。
立体几何证明题精选

立体几何证明题精选1.在多面体中,矩形ABB1A1和ACC1A1,AC垂直于BC。
证明BC垂直于平面ACC1A1,同时在线XXX上存在一点M,使得DE与平面A1MC平行。
2.在三棱锥P-ABC中,D,E,F分别是棱PC,AC,AB 的中点。
已知PA垂直于AC,PA=6,BC=8,DF=5.证明PA 平行于平面DEF,同时平面BDE垂直于平面ABC。
3.在四棱锥P-ABCD中,AP垂直于平面PCD,AD平行于BC,AB和BC分别为线段AD和PC的中点。
证明AP平行于平面BEF,同时BE垂直于平面PAC。
4.在四棱锥P-ABCD中,底面ABCD是平行四边形,BA=BD=BC=1,AD=2,PA=PD=√5,E和F分别是棱AD和PC的中点。
证明EF平行于平面PAB,同时平面PBC垂直于平面ABCD。
5.在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB垂直于BC,AA1=AC=2,BC=1,E和F分别是A1C1和BC的中点。
证明平面ABE垂直于平面B1BCC1,C1F平行于平面ABE,同时求三棱锥E-ABC的体积。
6.在四棱锥P-ABCD中,底面ABCD为矩形,PA垂直于平面ABCD,E为PD的中点。
证明PB平行于平面AEC,同时若AP=1,AD=3,则三棱锥P-ABD的体积为2/3,求A到平面PBC的距离。
7.在四棱锥中,平面ACD和平面ABD的交线为直线L,平面ABC和平面ACD的交线为直线M,平面ABC和平面ABD的交线为直线N,P为直线L上一点,Q为直线M上一点,R为直线N上一点,且PQR平行于平面ABCD,证明PR 平行于直线BD,同时求四面体PQRD的体积。
8.在长方体ABCD-A1B1C1D1中,底面A1B1C1D1为正方形,O为BD的中点,E为棱AA1上任意一点。
证明BD垂直于EC1,同时若AB=2,AE=2,OE垂直于EC1,则AA1的长度为2√2.。
立体几何专题

立体几何专题1. (北京文) (18) (本小题 14 分)如图,在四棱锥 P-ABCD 中,底面 ABCD 为矩形, 平面 PAD⊥平面 ABCD , PA⊥ PD , PA=PD , E , F 分别为 AD , PB 的中点.( Ⅰ ) 求证: PE ⊥BC ; (Ⅱ)求证:平面 PAB ⊥平面 PCD ; (Ⅲ) 求证: EF∥平面 PCD.2. (北京理) (16) (本小题 14 分)如图, 在三棱柱 ABC- A 1B 1C 1 中, CC 1 」平面 ABC , D , E , F , G 分别为 AA 1,AC , A 1C 1,BB 1 的中点, AB=BC= 5, AC= AA 1 =2.( Ⅰ ) 求证: AC⊥平面 BEF ; ( Ⅱ ) 求二面角B-CD-C 1 的余弦值; (Ⅲ) 证明: 直线 FG 与平面 BCD 相交.3. (江苏) (15) (本小题满分 14 分)在平行六面体ABCD 一 A B C D 中,AA = AB, AB 」B C .求证: (1) AB∥平面A B C; (2) 平面ABB A 」平面A BC.4. (浙江) (19) (本题满分 15 分)如图,已知多面体 ABCA1B1C1,A1A, B1B, C1C均垂直于平面 ABC,∠ABC=120°, A1A=4, C1C=1, AB=BC=B1B=2.(Ⅰ)证明:AB1 ⊥平面A1B1C1;(Ⅱ)求直线 AC1 与平面 ABB1 所成的角的正弦值.1 1 1 1 1 1 1 1 1 1 1 1 1第 2 页共 10 页5. (天津文) (17)(本小题满分 13 分)如图,在四面体 ABCD 中,△ABC 是等边三角形,平面 ABC⊥平面 ABD,点 M 为棱AB 的中点, AB=2, AD= 2 3 ,∠BAD=90°.( Ⅰ )求证:AD⊥BC;( Ⅱ ) 求异面直线 BC 与 MD 所成角的余弦值;(Ⅲ)求直线 CD 与平面 ABD 所成角的正弦值.6. (天津理) (17)(本小题满分 13 分)如图,AD∥BC 且 AD=2BC,AD 」CD , EG∥AD且 EG=AD,CD∥FG 且 CD=2FG,DG 」平面ABCD, DA=DC=DG=2.(I)若 M 为 CF 的中点, N 为 EG 的中点,求证:MN∥平面CDE;(II)求二面角E BC F 的正弦值;(III)若点 P 在线段 DG 上,且直线 BP 与平面 ADGE 所成的角为60°,求线段 DP 的长.7. (全国卷一文)(18)(12 分)如图, 在平行四边形 ABCM 中, AB = AC = 3, ∠ACM = 90, 以 AC 为折痕 将△ ACM 折起,使点 M 到达点 D 的位置,且 AB⊥DA. (1)证明:平面 ACD ⊥平面 ABC ;(2) Q 为线段 AD 上一点, P 在线段 BC 上, 且 BP = DQ = DA , 求三棱锥3Q ABP 的体积.8. (全国卷一理)(18)(12 分)如图, 四边形 ABCD 为正方形, E, F 分别为 AD, BC 的中点, 以 DF 为折 痕把 △DFC 折起,使点 C 到达点 P 的位置,且 PF 」BF . (1)证明:平面 PEF 」平面 ABFD ; (2)求 DP 与平面 ABFD 所成角的正弦值 .29. (全国卷二文)( 19) (12 分)如图,在三棱锥P ABC 中,AB = BC = 2 2,PA = PB = PC = AC = 4,O为AC 的中点.(1)证明:PO 」平面ABC;(2)若点M 在棱 BC 上,且MC = 2MB,求点C 到平面POM 的距离.10. (全国卷二理)(20)(12分)如图,在三棱锥P ABC 中,AB = BC = 2 2,PA = PB = PC = AC = 4,O 为AC 的中点.(1)证明:PO 」平面ABC;(2) 若点M 在棱BC 上,且二面角M PA C 为30,求PC 与平面 PAM 所成角的正弦值.POA CMB11. (全国卷三文)(19)(12分)如图,矩形ABCD所在平面与半圆弧 CD 所在平面垂直,M 是CD 上异于C, D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM 上是否存在点 P ,使得MC∥平面PBD ?说明理由.12. (全国卷三理)(19)(12分)如图,边长为 2 的正方形ABCD所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C, D 的点.(1)证明:平面 AMD⊥平面BMC;(2) 当三棱锥M ABC 体积最大时,求面 MAB 与面MCD所成二面角的正弦值.13. (12 分)如图,四棱锥 P-ABCD 中,侧面 PAD 为等比三角形且垂直于底面 ABCD,1AB = BC = AD, 三BAD = 三ABC = 90o , E 是 PD 的中点.2(1) 证明:直线CE/ / 平面 PAB(2) 点 M 在棱 PC 上,且直线 BM 与底面 ABCD 所成锐角为45o ,求二面角 M-AB-D 的余弦值14. (12 分)如图,在四棱锥 P-ABCD 中, AB//CD,且三BAP = 三CDP = 90(1)证明:平面 PAB⊥平面PAD;(2)若 PA=PD=AB=DC, 三APD = 90 ,求二面角 A-PB-C 的余弦值.15. (12 分)如图,四面体 ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD= ∠CBD,AB=BD.(1) 证明:平面ACD⊥平面 ABC;(2) 过 AC 的平面交 BD 于点 E,若平面 AEC 把四面体 ABCD 分成体积相等的两部分,求二面角 D –AE –C 的余弦值.16.如图,在四棱锥 P-ABCD 中,底面 ABCD 为正方形,平面PAD⊥平面 ABCD,点 M在线段 PB 上, PD//平面 MAC, PA=PD= 6, AB=4.(I)求证: M 为 PB 的中点;(II)求二面角 B-PD-A 的大小;(III)求直线 MC 与平面 BDP 所成角的正弦值.17.如图,在三棱锥 P-ABC 中,PA⊥底面 ABC,三BAC = 90o .点 D, E, N 分别为棱PA, PC, BC 的中点, M 是线段 AD 的中点, PA=AC=4, AB=2.(Ⅰ)求证: MN∥平面BDE;(Ⅱ)求二面角 C-EM-N 的正弦值;7(Ⅲ) 已知点 H 在棱 PA 上,且直线 NH 与直线 BE 所成角的余弦值为,求线段 AH21的长.18.如图,几何体是圆柱的一部分,它是由矩形为旋转轴旋转得到的,是的中点.(Ⅰ)设是(Ⅱ)当上的一点,且,求的大小;,,求二面角的大小.(及其内部) 以边所在直线19. (本题满分 15 分)如图,已知四棱 P–ABCD,△PAD 是以 AD 为斜边的等腰直角三角形,BC∥AD,D⊥AD, PC=AD=2DC=2CB, E 为 PD 的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.。
高中立体几何证明题

高中立体几何证明题一、线面平行的证明题1已知正方体ABCD - A_{1}B_{1}C_{1}D_{1},E,F分别是AB,BC的中点,求证:EF∥平面A_{1}C_{1}D。
解析1. 连接AC。
- 在 ABC中,因为E,F分别是AB,BC的中点,所以EF∥ AC。
2. 正方体ABCD - A_{1}B_{1}C_{1}D_{1}中:- AC∥ A_{1}C_{1}。
- 由EF∥ AC和AC∥ A_{1}C_{1}可得EF∥ A_{1}C_{1}。
- 又A_{1}C_{1}⊂平面A_{1}C_{1}D,EFnot⊂平面A_{1}C_{1}D。
- 根据线面平行的判定定理,所以EF∥平面A_{1}C_{1}D。
题2在三棱柱ABC - A_{1}B_{1}C_{1}中,D是AB的中点,求证:AC_{1}∥平面CDB_{1}。
解析1. 连接BC_{1},交B_{1}C于点E。
- 在三棱柱ABC - A_{1}B_{1}C_{1}中,E为BC_{1}的中点。
2. 因为D是AB的中点:- 所以在 ABC_{1}中,DE∥ AC_{1}。
- 又DE⊂平面CDB_{1},AC_{1}not⊂平面CDB_{1}。
- 根据线面平行的判定定理,可得AC_{1}∥平面CDB_{1}。
二、线面垂直的证明题3在四棱锥P - ABCD中,底面ABCD是正方形,PA = PB = PC = PD,求证:PA⊥平面ABCD。
解析1. 连接AC,BD交于点O,连接PO。
- 因为底面ABCD是正方形,所以O为AC,BD中点。
- 又PA = PC,PB = PD,根据等腰三角形三线合一的性质:- 可得PO⊥ AC,PO⊥ BD。
- 而AC∩ BD = O,AC⊂平面ABCD,BD⊂平面ABCD。
- 根据直线与平面垂直的判定定理,所以PO⊥平面ABCD。
- 又PA = PB = PC = PD,AO = BO = CO = DO,所以 PAO≅ PBO≅ PCO ≅ PDO。
立体几何证明及答案

○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________ ○…………内…………○…………装…………○…………订…………○…………线…………○………… 1.(本小题满分12分)如图, 四棱柱1111ABCD A B C D -的底面ABCD 是正方形, O 为底面中心,1 AO ⊥平面ABCD ,12,2AB AA ==. (1)证明:1AA BD ⊥; (2)证明: 平面1//A BD 平面11;CD B 2.(本小题满分12分)正方体1111D C B A ABCD -的棱长为l ,点F 、H 分别为A 1D 、A 1C 的中点. (1)证明:A 1B ∥平面AFC ; (2)证明:B 1H ⊥平面AFC . 4.(本题满分14分)如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点.求证:(1)PA //平面BDE ;(2)平面PAC ⊥平面BDE . 5.如图,四棱锥ABCD P -的底面是正方形,侧棱PD ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点. A B CD A 1 B 1 C 1 D 1 O PE D A B C O○…………外…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○………… (1)求证://MN 平面PAD ;(2)求证:PCD PBC ⊥平面平面.6.如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F ,分别是AB BD ,的中点.求证:(1)直线//EF 面ACD ;(2)平面EFC ⊥面BCD .7.如图,在直三棱柱111ABC A B C -中,1AA AC =,且11BC AC ⊥.(1)求证:平面1ABC ⊥平面11A ACC ;(2)若,D E 分别为是11A C 和1BB 的中点,求证:DE ‖平面1ABC .8.如图,在直三棱柱ABC-A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证:P M D C B A N○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________ ○…………内…………○…………装…………○…………订…………○…………线…………○………… (1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .参考答案1.(1)详见解析;(2)详见解析;(3)3.【解析】试题分析:(1)由题意BD ⊥AC ,因为A 1O ⊥平面ABCD 可知A 1O ⊥BD ,可证BD ⊥面A 1AC 即可证明结论;(2)由于A 1B 1∥AB ,AB ∥CD ,可得A 1B 1∥CD ,又A 1B 1=CD ,可得四边形A 1B 1CD 是平行四边形所以A 1D ∥B 1C , 同理可证A 1B ∥CD 1,利用面面平行判定定理即可证明结结论; (3) 由于A 1O ⊥面ABCD 故A 1O 是三棱柱A 1B 1D 1-ABD 的高.又在RT △A 1OA 中,AA 1=2,AO = 1 ,可得A 1O=3,根据柱体体积公式即可求出三棱柱ABD-A 1B 1D 1的体积.试题解析:(1)证明:∵底面ABCD 是正方形 ∴BD ⊥AC又∵A 1O ⊥平面ABCD BD ⊂面ABCD ∴A 1O ⊥BD又∵A 1O∩AC=O A 1O ⊂面A 1AC ,AC ⊂面A 1AC∴BD ⊥面A 1AC AA 1⊂面A 1AC∴AA 1⊥BD 4分(2)∵A 1B 1∥AB AB ∥CD ∴A 1B 1∥CD 又A 1B 1=CD ∴四边形A 1B 1CD 是平行四边形 ∴A 1D ∥B 1C 同理A 1B ∥CD 1∵A 1B ⊂平面A 1BD, A 1D ⊂平面A 1BD, CD 1⊂平面CD 1B 1, B 1C ⊂平面CD 1B且A 1B∩ A 1D=A 1 CD 1∩B 1C=C∴平面A 1BD // 平面CD 1B 1 8分(3) ∵A 1O ⊥面ABCD ∴A 1O 是三棱柱A 1B 1D 1-ABD 的高.在正方形AB CD 中,AO = 1 .在RT △A 1OA 中,AA 1=2,AO = 1 ∴A 1O=3 ∴21(2)1 (332)ABD V S AO ===三棱柱 所以, 三棱柱ABD-A 1B 1D 1的体积为3. 12分.考点:1.线面垂直的判定;2.面面平行的判定;3.柱体的体积公式.2.(1)见解析;(2)见解析.【解析】试题分析:(1)利用中点,结合三角形的中位线性质,只需取AC 中点E ,证A 1B ∥EF 即可;(2)注意到B 1H 即B 1D ,只需证B 1D 与AF 、AC 均垂直即可.试题解析:(1)连BD 交AC 于点E ,则E 为BD 的中点,连EF ,又F 为A 1D 的中点,所以EF ∥A 1B , 3分又⊂EF 平面AFC ,⊄B A 1平面AFC ,由线面平行的判断定理可得A 1B ∥平面AFC 5分(2)连B 1C ,在正方体中A 1B 1CD 为长方形,∵H 为A 1C 的中点 ,∴H 也是B 1D 的中点,∴只要证⊥D B 1平面ACF 即可 6分由正方体性质得BD AC ⊥,B B AC 1⊥,∴⊥AC 平面B 1BD ,∴D B AC 1⊥ 9分又F 为A 1D 的中点,∴D A AF 1⊥,又11B A AF ⊥,∴⊥AF 平面A 1B 1D ,∴D B AF 1⊥,又AF 、AC 为平面ACF 内的相交直线, 11分∴⊥D B 1平面ACF.即⊥H B 1平面ACF. 12分考点:空间几何体,线面关系3. 见解析.【解析】试题分析:(1)证明线面平行,要找线线平行,在平面1AB D 内找一直线与1AC 平行即可.连1A B 交1AB于O,连OD ,则OD||1AC 即证.(2)依题意可得AD ⊥平面11BCC B ,故AD ⊥1BC .在矩形11BCC B 中,由条件可证111BDB BB C ∆∆,从而得11BC DB ⊥,故可得1BC ⊥平面1AB D . 试题解析:(1)连接11,A B AB O OD ⋂=连接1111//,,AC OD OD AB D AC AB D ⊂⊄面面 11//AC AB D 面 6分(漏线不在面内扣2分)(2)设D 为BC 中点,∴AD ⊥BC ,正三棱柱中,11BB ABC AD ABC AD BB ⊥⊂∴⊥面,面,,1111,BC BB B BC BB BCC B =⊂,平面111111,,AD BCC B BC BCC B AD BC ∴⊥⊂∴⊥平面平面 9分设11B D BC F =111DBB BB C 直角和直角中,1111111222BB BD DBB BB C BB B C ===∴,111,90,90BDF C BB CBB FBD BDF FBD ∴∠=∠∠+∠=∴∠+∠=又11BC B D ∴⊥ 13分又1111,,,BC AD AD B D D AD B D AB D ⊥=⊂平面11BC AB D ∴⊥平面 16分考点:线面平行,线面垂直的判定与性质4.见解析【解析】试题分析:(1)连接OE ,OE||PA ,由直线与平面平行的判定定理,可证得PA||平面BDE ;(2)由PO ⊥底面ABCD ,可得PO ⊥BD ;底面为正方形,可得BD ⊥AC ,由直线和平面垂直的判定定理,可得BD ⊥平面PAC ,由面面垂直的判定定理,可证得平面PAC ⊥平面BDE . 试题解析:(1)连结OE Q O 是正方形的中心O AC \是的中点又Q E 是PC 的中点 \OE 是PCA V 的中位线 \ OE||PA又Q OE Ì 平面BDE,PA Ë 平面BDE \PA||平面BDE;(2)Q PO ⊥底面ABCD ,BD Ì平面ABCD \PO ⊥BD又Q BD ⊥AC AC PO O ?\BD ⊥平面PAC又Q BD Ì 平面BDE \平面PAC ⊥平面BDE .考点:平面与平面垂直的判定;直线与平面平行的判定.5.(1)证明见解析;(2)证明见解析【解析】试题分析:(1)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质,注意把证明的条件写齐全;(2)要证平面与平面垂直,需要证明直线与平面垂直,证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.试题解析:解:(1)取PD 的中点F ,连接FN AF ,点N 是PC 的中点DC FN //∴,且DC FN 21= 又 四边形ABCD 是正方形,且点M 是AB 的中点DC AM //∴,且DC AM 21=AM FN //∴,且AM FN =∴四边形FNMA 是平行四边形,FA MN //∴又⊄MN 平面PAD ,⊂FA 平面PAD//MN ∴平面PAD⊥PD 平面ABCD ,且⊂BC 平面ABCDBC PD ⊥∴四边形ABCD 是正方形,CD BC ⊥∴又D CD PD =⊥∴BC 平面PCD又⊂BC 平面PBC∴平面PCD ⊥平面PBC . 考点:1、直线与平面平行的判定;2、平面与平面垂直的判定.6.(1)见解析 (2)见解析【解析】试题分析:(1)利用线面平行的判断定理证明线面平行,首先说明线线平行,然后再说明线面平行.(2)证明面面垂直的方法是利用线面垂直的判定定理首先说明线面垂直,然后再说明平面经过这条直线即可证明面面垂直解题时,注意线线、线面与面面关系的相互转化. 试题解析:(1)∵E F ,分别是AB BD ,的中点.∴EF 是ABD ∆的中位线,∴AD EF //,∵//EF ⊄面ACD ,AD ⊂面ACD ,∴直线//EF 面ACD ;(2)∵BD AD ⊥,AD EF //,∴BD EF ⊥,∵CD CB =,F 是BD 的中点,∴BD CF ⊥又F CF EF =⋂, ∴BD ⊥面EFC ,∵BD ⊂面BCD ,∴面EFC ⊥面BCD考点:平面与平面垂直的判定;直线与平面平行的判定.7.(1)见解析;(2)见解析【解析】试题分析:(1)由已知易知11A ACC 为正方形,可证A 1C ⊥平面ABC 1 ,因此平面ABC 1⊥平面11A ACC ;(2)方法一:取1A A 中点F ,连EF ,FD ,易知平面EFD ∥平面1ABC ,所以ED ∥平面1ABC ;方法二:A 1C 交AC 1于G 点连BG ,易证四边形BEDG 为平行四边形,可证DE ∥平面ABC 1.试题解析:(1)证明:在直三棱柱111ABC A B C -中,有1A A ⊥平ABC .AC ABC ⊂面 ∴1A A AC ⊥, 又1A A AC =,∴11A ACC 为正方形,∴11A C AC ⊥ .又BC 1⊥A 1C ,且111AC BC C = ∴A 1C ⊥平面ABC 1 ,而1AC ⊂面11A ACC 则平面ABC 1⊥平面11A ACC(2)方法一:取1A A 中点F ,连EF ,FD ,EF AB ,DF ∥1AC即平面EFD ∥平面1ABC , 则有ED ∥平面1ABC方法二:A 1C 交AC 1于G 点连BG , BE DG ,则有DE ∥BG ,即DE ∥平面ABC 1.考点:面面垂直的判定定理与线面平行的判定定理8.(1)见试题解析;(2)见试题解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何
1.(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD⊥BC,AB=BC=AD,E,F分别为线段AD,
PC的中点.
(⊥)求证:AP⊥平面BEF;
(⊥)求证:BE⊥平面PAC.
2.(2014•四川)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形
(⊥)若AC⊥BC,证明:直线BC⊥平面ACC1A1;
(⊥)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE⊥平面A1MC?请证明你的结论.
3.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:
(1)直线PA⊥平面DEF;
(2)平面BDE⊥平面ABC.
4.(2014•黄山一模)如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F分别是AB、PD的中点.
(1)求证:AF⊥平面PCE;
(2)求证:平面PCE⊥平面PCD;
(3)求四面体PEFC的体积.
5.(2014•南海区模拟)如图,四棱锥P﹣ABCD的底面是直角梯形,AB⊥CD,AB⊥AD,⊥PAB和⊥PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点.
(⊥)求证:PO⊥平面ABCD;
(⊥)求证:OE⊥平面PDC;
(⊥)求直线CB与平面PDC所成角的正弦值.
6.(2013•天津)如图,三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.
(⊥)证明:EF⊥平面A1CD;
(⊥)证明:平面A1CD⊥平面A1ABB1;
(⊥)求直线BC与平面A1CD所成角的正弦值.
7.(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,
⊥ABC=120°,G为线段PC上的点.
(⊥)证明:BD⊥平面PAC;
(⊥)若G是PC的中点,求DG与PAC所成的角的正切值;
(⊥)若G满足PC⊥面BGD,求的值.
8.(2013•湖南)如图.在直棱柱ABC﹣A1B1C1中,⊥BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.
(1)证明:AD⊥C1E;
(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1﹣A1B1E的体积.
9.(2011•天津)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,⊥ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.
(⊥)证明:PB⊥平面ACM;
(⊥)证明:AD⊥平面PAC;
(⊥)求直线AM与平面ABCD所成角的正切值.
10.(2011•北京)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,⊥BAD=60°.(⊥)求证:BD⊥平面PAC;
(⊥)若PA=AB,求PB与AC所成角的余弦值;
(⊥)当平面PBC与平面PDC垂直时,求PA的长.
11.(2010•深圳模拟)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别AB、SC的中点
(1)求证:EF⊥平面SAD
(2)设SD=2CD,求二面角A﹣EF﹣D的大小.
12.(2010•重庆)如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.
(1)求证:AB⊥平面PCB;
(2)求二面角C﹣PA﹣B的大小的余弦值.。