算法设计与分析(第二版) 第7章

合集下载

《算法设计与分析》教案

《算法设计与分析》教案
for(int k=0;k<4;k++) cout<<m[k]<<" ";
cout<<endl;
}
}
}
}
}
2、数字全排列(使用STL)
#include<iostream>
#include<algorithm>
using namespace std;
const int n=4;
int main()
{
int a[4]={2,4,3,1};
if(l==r-1)
{ if(a[l]>a[r]) { max=a[l]; min=a[r]; }
else { max=a[r]; min=a[l]; }
return;
}
int m = (l+r)/2;
T max1,max2,min1,min2;
MaxMin(a, l, m, max1, min1);
例:在n个元素中找最大值和最小值(非递归程序)
template<class T>
void MaxMin(T a[], int n, T& max, T&min)
{
if(n==1) { max=min=a[0]; return; }
if(a[0]>a[1]) { max=a[0]; min=a[1]; }
{
if(k==m)
{#43;+) cout<<a[i]<<" ";
cout<<endl;
}
else
for(int i=k;i<=m;i++)

算法设计与分析课件

算法设计与分析课件
2
ACM国际大学生程序设计竞赛
ACM国际大学生程序设计竞赛(英文 全称:ACM International Collegiate Programming Contest(ACM-ICPC或 ICPC)是由美国计算机协会(ACM)主办 的,一项旨在展示大学生创新能力、团队 精神和在压力下编写程序、分析和解决问 题能力的年度竞赛。经过30多年的发展, ACM国际大学生程序设计竞赛已经发展成 为最具影响力的大学生计算机竞赛。赛事 目前由IBM公司赞助。
主要内容介绍(续)
• • • • 第 7章 第 8章 第 9章 第10章 概率算法 NP完全性理论 近似算法 算法优化策略
1
相关先导基础课程和算法概述
专业基础课程: 数据结构、计算机语言(C++)、操作系统 如何编写计算机程序: • 数据结构+算法 = 程序 • 算法:计算机软件的“灵魂” 算法是计算机科学和计算机应用的核心
1.2 算法复杂性分析
Ω的定义:如果存在正的常数C和自然数N0,使得当NN0时 有f(N)Cg(N),则称函数f(N)当N充分大时下有界,且g(N)是它 的一个下界,记为f(N)=Ω (g(N))。即f(N)的阶不低于g(N)的阶。 θ的定义:定义f(N)= θ (g(N))当且仅当f(N)=O(g(N))且 f(N)= Ω (g(N))。此时称f(N)与g(N)同阶。 o的定义:对于任意给定的ε>0,都存在正整数N0,使得 当NN0时有f(N)/Cg(N)ε,则称函数f(N)当N充分大时的阶比 g(N)低,记为f(N)=o(g(N))。 例如,4NlogN+7=o(3N2+4NlogN+7)。
调试:“调试只能指出有错误,而不能指出它们不存在 错误” 9 作时空分布图:验证分析结论,优化算法设计

算法的设计(第7章回溯和分支限界)

算法的设计(第7章回溯和分支限界)

未来发展趋势及挑战
算法优化与创新
随着问题规模的增大和复杂性的提高,对算法性能的要求也越来越高。未来,回溯和分支 限界算法的优化和创新将成为研究的重要方向,包括设计更高效的剪枝策略、改进限界函 数等。
人工智能与算法设计的融合
人工智能技术的快速发展为算法设计提供了新的思路和方法。未来,将人工智能技术应用 于回溯和分支限界算法的设计中,实现自动化或半自动化的算法设计和优化,将是一个具 有挑战性的研究方向。
旅行商问题(TSP)。该问题是一个典 型的分支限界法应用案例,通过估计 旅行路线的最小和最大长度,可以缩 小搜索范围,并提高求解效率。回溯 法也可以求解TSP问题,但通常需要结 合其他优化技术来提高效率。
案例三
图的着色问题。该问题既可以通过回 溯法求解,也可以通过分支限界法求 解。回溯法通过搜索所有可能的着色 方案,并判断每种方案是否满足条件 ;而分支限界法则可以通过估计着色 的最小和最大颜色数来缩小搜索范围 。在实际应用中,可以根据问题的具 体特点和要求选择合适的算法。
利用问题领域的启发式信息来指导搜索过程,通过评估当前状态的优劣来决定是否继续 搜索该分支。启发式剪枝能够显著减少搜索空间,提高算法效率。
04 分支限界法详解
队列式分支限界法原理及实现
• 原理:队列式分支限界法是一种广度优先搜索策略,通过维 护一个队列来存储待处理的节点。在搜索过程中,不断从队 列中取出节点进行处理,并将产生的子节点加入队列,直到 找到目标节点或队列为空。
特点
回溯算法通常采用深度优先搜索策略 ,在搜索过程中,当发现当前路径无 法满足问题要求时,会及时“回溯” 到上一步,尝试其他可能的路径。
适用场景及问题类型
适用场景
回溯算法适用于求解组合优化问题, 如排列组合、图的着色、旅行商问题 等。

算法设计与分析-王-第1章-算法设计基础

算法设计与分析-王-第1章-算法设计基础

2)有没有已经解决了的类似问题可供借鉴?
1.4 算法设计的一般过程
在模型建立好了以后,应该依据所选定的模型对问 题重新陈述,并考虑下列问题: (1)模型是否清楚地表达了与问题有关的所有重要
的信息?
(2)模型中是否存在与要求的结果相关的数学量? (3)模型是否正确反映了输入、输出的关系? (4)对这个模型处理起来困难吗?
程序设计研究的四个层次:
算法→方法学→语言→工具
理由2:提高分析问题的能力
算法的形式化→思维的逻辑性、条理性
1.2 算法及其重要特性
一、算法以及算法与程序的区别
例:欧几里德算法——辗转相除法求两个自然数 m 和 n 的最大公约数
m n
欧几里德算法
r
1.2 算法及其重要特性
欧几里德算法
① 输入m 和nห้องสมุดไป่ตู้如果m<n,则m、n互换;
对不合法的输入能作出相适应的反映并进行处理。 (2) 健壮性(robustness): 算法对非法输入的抵抗能力, 即对于错误的输入,算法应能识别并做出处理,而不是 产生错误动作或陷入瘫痪。 (3)可读性:算法容易理解和实现,它有助于人们对算 法的理解、调试和修改。 (4) 时间效率高:运行时间短。 (5) 空间效率高:占用的存储空间尽量少。
算法设计与分析
Design and Analysis of Computer Algorithms
高曙
教材:

算法设计与分析(第二版),清华大学出版社,王红梅, 胡明 编著
参考书目:

Introduction to Algorithms, Third Edition, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,机械工 业出版社,2012

算法设计与分析第二版课后习题及解答(可编辑)

算法设计与分析第二版课后习题及解答(可编辑)

算法设计与分析第二版课后习题及解答算法设计与分析基础课后练习答案习题1.14.设计一个计算的算法,n是任意正整数。

除了赋值和比较运算,该算法只能用到基本的四则运算操作。

算法求 //输入:一个正整数n2//输出:。

step1:a1; step2:若a*an 转step 3,否则输出a; step3:aa+1转step 2;5. a.用欧几里德算法求gcd(31415,14142)。

b. 用欧几里德算法求gcd(31415,14142),比检查min{m,n}和gcd(m,n)间连续整数的算法快多少倍?请估算一下。

a. gcd31415, 14142 gcd14142, 3131 gcd3131, 1618 gcd1618, 1513 gcd1513, 105 gcd1513, 105 gcd105, 43 gcd43, 19 gcd19, 5 gcd5, 4 gcd4, 1 gcd1, 0 1.b.有a可知计算gcd(31415,14142)欧几里德算法做了11次除法。

连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1?14142 和 2?14142之间,所以欧几里德算法比此算法快1?14142/11 ≈1300 与2?14142/11 ≈ 2600 倍之间。

6.证明等式gcdm,ngcdn,m mod n对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和rm mod nm-qn;显然,若d能整除n和r,也一定能整除mr+qn和n。

数对m,n和n,r具有相同的公约数的有限非空集,其中也包括了最大公约数。

故gcdm,ngcdn,r7.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0mn的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcdm,ngcdn,m并且这种交换处理只发生一次.8.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?1次b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?5次gcd5,8习题1.21.农夫过河P?农夫W?狼 G?山羊 C?白菜2.过桥问题1,2,5,10---分别代表4个人, f?手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c0的实根,写出上述算法的伪代码可以假设sqrtx是求平方根的函数算法Quadratica,b,c//求方程ax^2+bx+c0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D0temp←2*ax1←-b+sqrtD/tempx2←-b-sqrtD/tempreturn x1,x2else if D0 return ?b/2*ael se return “no real roots”else //a0if b≠0 return ?c/belse //ab0if c0 return “no real numbers”else return “no real roots”5. 描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Kii0,1,2,商赋给n第二步:如果n0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法 DectoBinn//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1n]中i1while n!0 doBin[i]n%2;nintn/2;i++;while i!0 doprint Bin[i];i--;9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.算法略对这个算法做尽可能多的改进.算法 MinDistanceA[0..n-1]//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements 习题1.3考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count[]4.古老的七桥问题第2章习题2.17.对下列断言进行证明:如果是错误的,请举例a. 如果tn∈Ogn,则gn∈Ωtnb.α0时,Θαgn Θgn解:a这个断言是正确的。

算法设计与分析王红梅第二版动态规划详解演示文稿

算法设计与分析王红梅第二版动态规划详解演示文稿

2022/3/2
Chapter 6 Dynamic Programming
26
第26页,共110页。
多段图的最短路径问题
多段图的决策过程:
多段图的边(u, v),用cuv 表边的权值,从源点s到终点t的最短路 径记为d(s, t),则从源点0到终点9的最短路径d(0, 9)由下式确定 :
d(0, 9)=min{c01+d(1, 9), c02+d(2, 9), c03+d(3, 9)}
2022/3/2
Chapter 6 Dynamic Programming
10
第10页,共110页。
动态规划法的设计思想
动态规划法的求解过程 原问题
子问题1
子问题2 ……
子问题n
2022/3/2
填表 原问题的解
Chapter 6 Dynamic Programming
11
第11页,共110页。
动态规划法的设计思想
Page 15
第6章 动态规划法
2022/3/2
第15页,共110页。
数塔问题——想法
[想法]从顶层出 发下一层选择 取决于两个4层 数塔的最大数 值和。
8 12 15 3 96 8 10 5 12 16 4 18 10 9
Page 16
第6章 动态规划法
2022/3/2
第16页,共110页。
数塔问题——想法
求解初始子问题:底层的每个数字可看作1层数塔,则最大数值和就是其自身; 再求解下一阶段的子问题:第4层的决策是在底层决策的基础上进行求解,可以看作4 个2层数塔,对每个数塔进行求解; 再求解下一阶段的子问题:第3层的决策是在第4层决策的基础上进行求解,可以看作3个 2层的数塔,对每个数塔进行求解;

《算法设计与分析》第07讲精品PPT课件

《算法设计与分析》第07讲精品PPT课件
上海海洋大学信息学院2009-12-2
不同的活结点表形成不同的分枝限界法,分为: FIFO分枝限界法、LIFO分枝限界法和LC(least cost)分枝限界法。三种不同的活结点表,规定了 从活结点表中选取下一个E-结点的不同次序。
FIFO分枝限界法的活结点表是先进先出队列 LIFO分枝限界法的活结点表是堆栈; LC分枝限界法的活结点表是优先权队列,LC分 枝限界法将选取具有最高优先级的活结点出队列, 成为新的E-结点。
2
3 5 2 4
19 6
18
3
16 4 7 16
10 20 0 13 14 2 1 3 0 16 3 15 12 0 3 12
1 10
0
2
2 2
0
3
4
上海海洋大学信息学院2009-12-2
归约列
10 20 0 13 14 2 1 3 0 16 3 15 12 0 3 12
iJ,i 1..n iJ,im i m1,...,n
ĉ(X) c(X) u(X)
上海海洋大学信息学院2009-12-2
可变大小元组状态空间树
上海海洋大学信息学院2009-12-2
7. 3 货郎担问题的分支限界法
上海海洋大学信息学院2009-12-2
问题描述
旅行商问题(travelling salesperson)是一个看似 简单其实十分难解的著名难题之一,至今仍有许多 人在研究它。此问题描述为:一个旅行商准备到n 个村庄售货。他从A村出发经过其它n-1个村庄,又 回到出发地A村。现要求一条最短路径,使得每个 村庄都经过且仅经过一次。
收益之和,使得总收益最大的作业子集是问题的最
优解。如果希望以最小值为最优解,则可以适当改

算法设计与分析:第7章 分支限界算法

算法设计与分析:第7章 分支限界算法

7.3.1 0/1背包问题
问题描述
• ! "$ &# $%&"# &%& # %'
– $ – $ &
%$ &!
$ "# (
算法思想
• !!3 '$6;
• 2)&!";+0#
&&E) *
.2D,<
最小代价(LC)分支限界法
代价函数!(·)
• % "!(%) %
• % "! %( % )
– %
• !(%) = ∞#
– %
• ! % =
相对代价估计函数"!($)
• "!(')((')&! • & '
• '$% &' • "!(')" *
)' )#"!(*) ≤ "!(') (
代价估计函数"!($)
• "!(') "! ' = ) ' + ,+(')
//X进队列
if(x是一个答案结点&&cost(x)<U)
//X为答案结点时修正U
if(u(x)+e < cost(x)) U=u(x)+e ;
else{ U=cost(x); ans=x;} else if(u(x)+e < U) U=u(x)+e ; //X为非答案结点时修正U
}
E.@56
_ N8!O/4/\/2i"1#9)K<iK<'- 4i ?I 40iFMZ>I 40+(104)]6=76i"/2)%PT\/3i"1#19)K<i 6iK<'- ?IY 0iFMZ>I 10]6=60i"/3)%PT\
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图7-1 有向图示例
广度优先搜索直接实现了我们上述的过程。初始时,队 列Q中只含顶点s,即距离为0的顶点。对于后续距离d = 1, 2,3,…,在某时刻,队列Q中只包含距离为d的所有顶点。 随着这些顶点被处理(执行出队操作),其尚未被访问的近邻 被插入到队尾。图7-2给出了访问图7-1中顶点时的当前队列, 其中a为起始点,顶点按照字母顺序排列。队列Q中字母上 方的数字表示起始点到该顶点的距离。而且图7-2右边的广 度优先搜索树包含了每个顶点最先被访问时所通过的那些边。 由此可得,从a开始的每条路径都是最短路径。因此,这棵 树称为最短路径树(shortest path tree)。
对于图7-1,以结点a作为源点s,将该图划分为若干层: s自身,与s距离为1的那些顶点作为一层,与s距离为2的那 些结点作为另一层,以此类推。一种简便的计算从s到其他 顶点的距离的方法是逐层进行计算。一旦计算出距离为0,1, 2,…,d的那些顶点,就很容易确定出距离为d+1的顶点。 这些顶点就是那些与距离为d的那层顶点相邻的尚未被访问 的顶点。这就给出一个在任一给定时刻只有两层是活跃的迭 代算法:在某层d,其中的顶点完全被访问过;在d+1层, 要通过扫描第d层顶点的近邻,来找出该层的顶点。
表7-1 应用领域与图模型
7.1 图 的 表 示
可以使用邻接矩阵来表示一个图。对于有n(= |V|)个顶点 的图,其邻接矩阵的第(i,j)个元素为
ai, j
1, vi到v j存在一条边 0, vi、v j 间无边
其中,vi(i = 1, …, n)为图中顶点。对于一个无向图,因为其 中的每条边{u,v}可从两个方向看待,因而该邻接矩阵是对 称的。这种表示的好处是可在常量时间内检查图中是否存在 某条边,只需要访问一次内存。而矩阵需要O(n2)的空间。 如果图中的边数不是很多,这种表示方式浪费空间。
第7章 图算法
7.1 图的表示 7.2 广度优先搜索 7.3 Dijkstra算法 7.4 Bellman-Ford算法 7.5 Floyd-Warshall算法 习题
许多应用问题可以归结为图模型上的问题。因而,我们 可以用图作为表示和求解问题的工具。例如,在航线图中, 图中的顶点可以表示机场,边可以表示飞行航线,边上的权 值则可能表示距离或费用。在电路图中,图中的顶点表示逻 辑门、寄存器、引脚或处理器,边表示接线,边上的权值可 能表示接线长度或传输延迟。在作业调度问题中,图中的顶 点表示作业,边表示优先关系,边上的权值可能表示优先级。 在金融问题中,图中的顶点表示股票或流通货币,边表示交 易或事务处理,边上的权值可能表示费用。表7-1列举了不 同应用领域在图模型中的意义。
BFS算法的执行过程如图7-3所示。
图7-3 BFS算法的执行过程
7.3 Dijkstra算法
给定加权有向图G = (V,E),定义权函数w为边到其上 实值的映射w:E→R。路径p =〈v0,v1,…,vk〉上的权定 义为这条路径边上的权值之和,即
使用哪一种表示法,取决于顶点集|V|中顶点之间的关系、 图中的顶点数以及边数|E|。|E|的规模可与|V|相当或与|V|2相 当(所有边可能相连)。如果是前者,则称该图是稀疏的,否 则称该图是稠密的。我们将在后续的章节中看到,|E|与|V|之 间的这个关系将会成为我们选择合适图算法的主要因素。
7.2 广度优先搜索
图7-2 图7-1的广度优先队列Q及其广度优先搜索树
广度优先搜索算法如下所示。
前驱
BFS(G, s)
1
for each vertex v V[G] //初始化到顶点v的最短路径及
2 3 4 5 6 7 8 9 长度
do d[v]
[v] NIL
d[s] 0 Q
//初始化队列Q
ENQUEUE(Q, s)
图的另一种表示方法是邻接表表示法。这种方法只需要 与边数成正比的空间,由|V|个链表组成,每个顶点都有一个 链表。顶点u的链表存放由u出发所指向的顶点,也就是说, 存放(u,v)∈E的那些顶点v。因此,如果图为有向图,则每 条边只在一个链表中出现; 如果图为无向图,则每条边在 两个链表中出现。无论是哪种情况,数据结构的总规模为 O(|E|)。在这种情况下,检查某条边(u,v)不再为常量时间, 因为这个过程需要查找u的邻接表。但通过一个顶点的所有 近邻还是可以比较容易地完成这个过程。我们很快就可知, 这个过程证明是图算法中的一个很有用的操作。对于无向图, 这种表示是对称的,当且仅当u在v队列中存在顶点
do u DEQUEUE(Q) //摘取队列中最小元素
for each vertex v Adj[u] //更新顶点v的最短路径
10
do if d[v] =
11
then d[v] d[u] + 1
12
ENQUEUE(Q, v)
以下分析算法的运行时间。初始化后,第10行的测试保 证每个顶点至多入队一次,且至多出队一次。入队和出队操 作所需时间为常量时间O(1) O(V)。由于仅在顶点出队时才扫描该顶点的邻接表,因此, 每个邻接表至多被扫描一次。由于所有邻接表的长度之和为 Θ(E),因此扫描邻接表所花费的总时间为O(E)。初始化的开 销为O(V)。因此,BFS的总运行时间为O(V+E)。由此可得, 广度优先搜索算法的运行时间为G的邻接表表示规模的线性 时间。
广度优先搜索(Breadth First Search,BFS)是图搜索中最 简单的算法之一,也是很多重要图算法的基础算法。 Dijkstra单源点最短路径算法就使用了与BFS类似的思想。 给定一个图G = (V,E)以及一个称为源点的特殊顶点s,BFS 系统地探索图G中的边,找出由s可达的那些顶点。BFS计算 出从s到每个可达顶点的距离(最少边数)。同时,还形成一 棵根为s的广度优先树,这棵树中包括了由s可达的所有顶点。 对于由s可达的任一顶点v,在这棵广度优先树中从s到v的路 径对应于图G中从s到v的一条最短路径,也就是说,包含了 边数最少的一条路径。BFS算法对于有向图和无向图均适用。
相关文档
最新文档