3.1不对称缓和曲线加圆曲线逐桩坐标计算
逐桩坐标计算

1、已知条件: 设计文件所给已知条件:交点坐标及里程、曲线半 径、缓和曲线长、转向角。 地面上的已知条件:导线点坐标及高程、导线控制
点的实际位置。
2、逐桩坐标计算步骤
(1)由转向角α、半径R、缓和曲线长l0,计算曲线要素T、L
T = m + (R + P) tan( /2) L = ( 2 0 )R
求HZ→P的坐标方位角 HZ P
HZ P HZ JD 曲线右偏时取“-”;曲线左偏时取“+”;
求P点坐标
X P X HZ d cos HZ P y P YHZ d sin HZ P
转轴法计算中线点位坐标
计算点P在ZH—HY缓和曲线上 • 计算P点在ZH—xy坐标系下的坐标 • 计算P点在线路坐标下坐标
ZH点坐标计算 由JD1、JD2的坐标反算JD2→JD1 的坐标方位角
JD JD
2
1
计算ZH点坐标
X ZH X JD2 T cos JD2 JD1 YZH YJD2 T sin JD2 JD1
HZ点坐标计算
由JD2、JD3的坐标反算JD2→JD3的坐标方位角 JD2JD3
HZ点坐标的计算 X HZ X JD2 T cos JD2 JD3 YHZ YJD2 T sin JD2 JD3
(四)逐桩坐标计算方法
对于线路逐桩坐标计算常用的方法主要有: 构造导线法
转轴计算法。
构造导线法
计算点P在ZH-HY上 如计算P点在ZH-xy坐标系下的坐标
曲线右偏时K=1;曲线左偏时K=-1;
P点在YH—HZ缓和曲线上 • 求P点在HZ—x’y’坐标系下的坐标
公路逐桩坐标计算程序

2 )sinαAB +(
P 点为顺时针方向时,其方位角为 αAB+900 P 点为逆时针方向时,其方位角为 αAB−900
第一段缓和曲线时:以直缓点(ZH)为起点计算,αAB 为 ZH 点的坐标方位角,L 为 P 点距 ZH 点的距离。 第二段缓和曲线时:以缓直点(HZ)为起点计算,αAB 为 HZ 点坐标方位角的反 方向即 HZ 点方位角加 180 度,L 为 P 点距 HZ 点的距离,加减 90 度刚好与第一 段缓和曲线相反。图如下:
缓和曲线转角公式:β
=
L2
2RLs
(2) 边桩坐标计算公式
左侧
XA=XP+T1cos(αAB± β-900) YA=YP+T1sin(αAB± β-900)
右侧
XB=XP+T2cos(αAB± β+900) YB=YP+T2sin(αAB± β+900)
*第二段缓和曲线计算边桩坐标时, 注意加减 90 度时, 与第一段缓和曲线相反。
2、 缓和曲线段 (1) 中桩坐标计算公式
Xp=X1+(L − Yp=Y1+(L −
L5 40R 2 Ls L5 40R 2 Ls
2 )cosαAB+(
L3 6RLs L3 6RLs
− −
L7 336R 3 ������s 3 L7 336R 3 ������s 3
)sin(αAB±900) )sin(αAB±900)
右侧
XB=XP+T2cos(αAB± β+900) YB=YP+T2sin(αAB± β+900)
第二章
公路导线测量计算
1
公路导线测量为附合导线测量,按路线前进方向测量右角。β
铁路线路不对称曲线的中边桩坐标计算

铁路线路不对称曲线的中边桩坐标计算铁路线路不对称曲线,是指铁路曲线的内外旁距不相等。
因此,需要
根据设计要求和实际情况计算中边桩坐标,以确保曲线的合理性和安全性。
计算中边桩坐标的方法如下:
1.确定曲线元素参数,包括半径、圆心角、外旁距、内旁距等。
2.计算曲线的内旁距、外旁距变化量,根据设计要求和实际情况,确
定中边桩的位置。
3.根据中边桩所在的曲线段长度和起点坐标,计算中边桩的坐标。
例如,如果设定起点坐标为(x1,y1),曲线段总长度为L,中边桩距
离起点的长度为s,且曲线元素参数已知,则可利用三角函数计算中边桩
的坐标:
x = x1 + (s/L) * (R + r) * sin(Δ/2) * cos(θ)。
y = y1 + (s/L) * (R + r) * sin(Δ/2) * sin(θ)。
其中,R和r分别为曲线半径,Δ为圆心角,θ为曲线起点到中边
桩方向的夹角。
需要注意的是,如果曲线内旁距和外旁距变化量相等,则中边桩坐标
即为曲线上的中点坐标。
否则,需要根据实际情况进行计算和调整。
带有缓和曲线的圆曲线逐桩坐标计算例题

带有缓与曲线的圆曲线逐桩坐标计算例题:某山岭区二级公路,已知交点的坐标分别为JD1(40961、914,91066、103)、JD2(40433、528,91250、097)、JD3(40547、416,91810、392),JD2里程为K2+200、000,R=150m,缓与曲线长度为40m,计算带有缓与曲线的圆曲线的逐桩坐标。
(《工程测量》第202页36题)解:(1)转角、缓与曲线角、曲线常数、曲线要素、主点里程、主点坐标计算方法一:偏角法(坐标正算)(2)第一缓与段坐标计算 228370'''= β 308416012'''= α(3)圆曲线段坐标计算 1490153-'''==βαα(4)第二缓与段坐标计算 228370=桩号弧长里程里程桩点ZY -=i l偏角0231β⎪⎪⎭⎫ ⎝⎛=∆S i i L l 方位角 i c i ∆-=12αα (左转) 弦长22590Sii i L R l l c -= Xi i c i ZH i c X X αcos +=Yiic i ZH i c Y Y αsin +=ZH:K2+048、5620 160 48 03 40576、543 91200、296 +060 11、438 0 12 30 160 35 33 11、438 40565、754 91204、097 +080 31、438 1 34 23 159 13 40 31、438 40547、149 92211、446 HY K2+088、562402 32 47 158 15 1639、96840539、41991215、104桩号弧长里程里程桩点HY -=i l偏角π︒=∆90R l i i方位角(左转) i JD ZY c i∆=---0βαα弦长ii R c ∆=sin 2X i c i HY i c X X αcos += Yici HY i c Y Y αsin +=HY: K2+088、5620βαα-=-JD ZY 切线153 09 41 40539、419 91215、104 +100 11、438 2 11 04 150 58 37 11、435 40529、420 91220、652 +120 31、438 6 00 15 147 09 26 31、38040513、055 91232、122+140 51、438 9 49 26 143 20 15 +16071、438 13 38 37 139 31 04QZ:K2+176、28087、718 16 45 10136 24 3186、47340476、789 91274、728+180 91、438 +200 111、438 +220 131、438 +240 151、438 +260171、438YH:K2+263、998175、43633 30 21119 39 20165、60640457、480 91359、018桩号弧长里程里程桩点-Z H l i =偏角0231β⎪⎪⎭⎫⎝⎛=∆S i i L l 方位角i c i∆+=32αα(左转)弦长22590Si i i L R l l c -=X ii c i i c X X αcos HZ +=Y ii c i HZ i c Y Y αsin +=方法二:切线支距法(坐标系转换)(2)第一缓与段坐标计算308416012'''= α1212sin cos ααy x X X ZH i ++= 1212cos sin ααy x Y Y ZH i -+=(本题为左转曲线)228370'''= β p = 0.444m q = 19.988m308416012'''= α ZH (40576、543 , 91200、296) sin cos ααy x X X ++= cos sin ααy x Y Y -+=YH: K2+263、99840 2 32 47 261 03 24 39、968 40457、480 91359、018 +280 23、998 0 55 00 259 25 37 23、996 40459、290 91374、911 +300 3、998 0 01 32258 30 373、998 40462、89791394、582HZ K2+303、99832α258 30 3740463、693 91398、500桩号里程里程桩点ZY -=i l 22540s L R l l x -=33733366SS L R l RL l y -= X iY iZH: K2+048、5620 40576、543 91200、296 +060 11、438 11、438 0、042 40565、755 91204、096 +080 31、438 31、417 0、863 40547、156 92211、446 HYK2+088、5624039、9291、77840539、41991215、104桩号 里程里程桩点HY -=i l0180βπϕ+=Rl i q R x +=ϕsin P ()p R y +-=ϕcos 1PX i Y iHY:K2+088、56240539、419 91215、10473037812'''= α2323sin cos ααy x X X HZ i +-= 2323cos sin ααy x Y Y HZ i --=(本题为左转曲线)。
关于公路测量中圆曲线、缓和曲线(完整缓和曲线和非完整缓和曲线)的计算示例

关于公路测量圆曲线、缓和曲线(完整缓和曲线和非完整缓和曲线)的计算示例新浪微博:爱疯记录仪例:某道路桥梁中,A匝道线路。
已知交点桩号及坐标:SP,K9+000(2957714.490,485768.924);JD1,K9+154.745(2957811.298,485889.647);EP,K9+408.993(2957786.391,486158.713)。
SP—JD1方位角:51°16′25″;转角:右44°00′54.06″;JD1—EP方位角:95°17′20″。
由图纸上“A匝道直线、曲线及转角表”得知:K9+000—K9+116.282处于第一段圆曲线上,半径为385.75m;K9+116.282—K9+151.282处于第一段缓和曲线上,K9+151.282的半径为300m,缓和曲线要素A1=217.335,Ls1=35m;K9+151.282—K9+216.134处于第二段圆曲线上,半径为300m;K9+216.134—K9+251.134处于第二段缓和曲线上,K9+251.134的半径为1979.5,缓和曲线要素A2=111.245,Ls2=35m;K9+251.134—K9+408.933处于第三段圆曲线上,半径为1979.5m。
求:K9+130、K9+200、K9+230、K9+300的中桩坐标,切线方位角,左5米边桩的坐标,右10米边桩的坐标。
解:首先,我们知道要求一个未知点的坐标,必须知道起算点坐标,起算点至未知点的方位角,起算点至未知点的直线距离,然后利用坐标正算的计算公式,就可以直接求出未知点的坐标。
那么,关于圆曲线和缓和曲线(包括完整缓和曲线和非完整缓和曲线)的计算,我们需要知道如何求出起算点至圆曲线或缓和曲线上某点的方位角和直线距离。
下面,先列出关于圆曲线和缓和曲线中角度和距离计算的相关公式。
附:A匝道直线、曲线及转角表。
】下载地址:/view/f0677e38cdbff121dd36a32d7375a417866fc18f1 / 102 / 10y 轴。
公路逐桩及对应边桩坐标的设计计算方法

公路逐桩及对应边桩坐标的设计计算方法鲁纯【摘要】公路逐桩坐标是设计单位在设计阶段要做的工作,逐桩对应边桩坐标的计算是施工单位为方便施工及编制竣工图要做的工作.传统的坐标计算方法比较繁琐.本文根据实际经验,总结提出了简便实用的逐桩及对应边桩坐标计算方法.【期刊名称】《辽宁省交通高等专科学校学报》【年(卷),期】2010(012)002【总页数】4页(P27-29,68)【关键词】公路设计;逐桩坐标;边桩坐标;计算方法【作者】鲁纯【作者单位】辽宁省交通高等专科学校,辽宁沈阳,110122【正文语种】中文【中图分类】P258;P209公路平面线形分为直线、圆曲线、缓和曲线三种基本线形,不论何种平曲线组合,均可归结为这三种平面线形要素的逐桩坐标和切线方位角的计算。
为简化计算,一般对平曲线的各个要素单元建立相对坐标系,求出在该相对坐标系下的逐桩坐标,然后归化到统一的坐标系中。
编程时,通常把一段直线与一个平面线作为一个计算单元,如每一个弯道的直缓点ZH(i)到下一个弯道的直缓点ZH (i+1),也可将HZ(i-1)到下一个HZ(i)作为一个计算单元。
以ZH (i)到ZH (i+1)计算单元划分为例,在一个计算单元中,一个方向以及计算逐桩坐标的数学模型都不一致,因此路中线坐标的计算必须先分段计算各段落中逐桩的相对坐标,然后将其转换到统一的计算坐标或大地坐标系中,图1为最常见的各基本型曲线的一个计算单元的段落划分和局部坐标系的选择情况。
以图1中所示基本型曲线的计算单元为例,在这个计算单元,通常包括第一缓和曲线、圆曲线、第二缓和曲线和直线段四个部分。
计算时,给出里程或桩距,即可求得逐桩坐标。
同时各种曲线主点需作为加桩按序插入相应位置,形成全线连续完整的逐桩坐标序列。
1 路线导线方位角及偏角计算设路线的交点坐标(xi,yi)已知,则各交点间的方位角θi由式(1)确定(见图1)式(1)中表示 JD (i)到 JD (i+1)的方位角。
道路测量中缓和曲线中桩坐标计算方法

道路测量中缓和曲线中桩坐标计算方法的研究摘要:本文讲解了在利用全站仪进行缓和曲线中桩放样时,缓和曲线的基本形和卵形两种情况下中桩坐标计算的方法。
关键词:缓和曲线、基本形、卵形、中桩坐标计算。
随着全站仪在道路工程施工测量中的普及,传统的中线放样方法逐渐被淘汰。
目前道路工程中线放样时,只要能计算出中线上任意一点的坐标,用全站仪或者GPSRTK的坐标放样功能就可很方便、快捷地完成实地放样。
道路线形是由直线、圆曲线、缓和曲线三种线形组合而成的,而直线与圆曲线组合的线形(见图一)中桩坐标计算比较简单,在此不作阐述。
下面就缓和曲线与其它两种线形组合的线形中桩坐标计算予以分析。
缓和曲线与其它两种线形组合构成的线形主要有缓和曲线的完整形(即基本形)(见图二)和非完整形(即卵形)(见图三)二种。
一、基本形曲线中桩坐标计算:1、对于第一缓和曲线及圆曲线段(ZH~YH)(如图四),建立以ZH为坐标原点,切线方向为X′轴,半径方向为Y′轴的曲线坐标系(X′O′Y′)。
先计算曲线各点在曲线坐标系下的坐标。
⑴对于第一缓和曲线段(ZH~HY)内任一点i(此时L=Ki-KZH)若圆曲线半径R≥100m时,则Xi′=L-L5/(40R2Ls12) 公式①Yi′=L3/(6RLs1) 公式②若圆曲线半径R<100m时,则X′=L-L5÷[40(RLS)2] L9÷[3456(RLS)4]–L13÷[599040(RLS)6]L17÷[175472640(RLS)8]- L21÷[7.80337152×1010(RLS)10] (公式③)Y′=L3÷[6(RLS)] - L7÷[336(RLS)3] L11÷[42240(RLS)5] - L15÷[9676800(RLS)7] L19÷[3530096640(RLS)9] - L23÷[1.8802409472×1012(RLS)11] (公式④)⑵对于圆曲线段(HY~YH)上任一点iXi′=q Rsin cent;iYi′=R(1-cos cent;i) pL=Ki-KZH cent;i=(L- Ls1)*180/(Rπ) β0内移值P=Ls12/(24R)切线增值q= Ls1/2- Ls13/(240R2)综合⑴、⑵,根据不同坐标系的相互转换,可得ZH~YH上任一点i的中桩测量坐标为:Xi=XZH cosA×Xi′-sinA×f×Yi′(公式⑤)Yi= YZH sinA×Xi′ cosA×f×Yi′(公式⑥)角。
高速公路缓和曲线中桩坐标计算方法

高速公路缓和曲线中桩坐标计算摘要:本文讲解了在利用全站仪进行缓和曲线中桩放样时,缓和曲线的基本形和卵形两种情况下中桩坐标计算的方法。
关键词:缓和曲线,基本形,卵形,中桩坐标计算随着全站仪在道路工程施工测量中的普及,传统的中线放样方法逐渐被淘汰。
目前道路工程中线放样时,只要能计算出中线上任意一点的坐标,用全站仪或者GPS RTK的坐标放样功能就可很方便、快捷地完成实地放样。
道路线形是由直线、圆曲线、缓和曲线三种线形组合而成的,而直线与圆曲线组合的线形(见图一)中桩坐标计算比较简单,在此不作阐述。
下面就缓和曲线与其它两种线形组合的线形中桩坐标计算予以分析。
缓和曲线与其它两种线形组合构成的线形主要有缓和曲线的完整形(即基本形)(见图二)和非完整形(即卵形)(见图三)二种。
一、基本形曲线中桩坐标计算:1、对于第一缓和曲线及圆曲线段(ZH~YH)(如图四),建立以ZH为坐标原点,切线方向为X′轴,半径方向为Y′轴的曲线坐标系(X′O′Y′)。
先计算曲线各点在曲线坐标系下的坐标。
⑴对于第一缓和曲线段(ZH~HY)内任一点i(此时L=K i-K ZH)若圆曲线半径R≥100m时,则X i′=L-L5/(40R2L s12) 公式①Y i′=L3/(6RL s1) 公式②若圆曲线半径R<100m时,则X′=L-L5÷[40(RL S)2]+L9÷[3456(RL S)4]–L13÷[599040(RL S)6]+L17÷[175472640(RL S)8]- L21÷[7.80337152×1010(RL10](公式③)S)Y′=L3÷[6(RL S)] - L7÷[336(RL S)3]+L11÷[42240(RL S)5] - L15÷[9676800(RL S)7]+L19÷[3530096640(RL S)9] - L23÷[1.8802409472×1012(RL S)11](公式④)⑵对于圆曲线段(HY~YH)上任一点iX i′=q+Rsin¢iY i′=R(1-cos¢i)+pL=K i-K ZH¢i=(L- L s1)*180/(Rπ)+β0内移值P=L s12/(24R)切线增值q= L s1/2- L s13/(240R2)综合⑴、⑵,根据不同坐标系的相互转换,可得ZH~YH上任一点i的中桩测量坐标为:X i=X ZH+cosA×X i′-sinA×f×Y i′(公式⑤)Y i= Y ZH+sinA×X i′+cosA×f×Y i′(公式⑥)式中f为线路的转向系数,右转时f=1,左转时f=-1 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲线长 l 1 ,右端长为 l 2 ,圆
曲线半径为R,交点位于J。 计算时先假设圆曲线两端缓 和曲线长均为 l1 ,则切线长 为AG和BG。若假设缓和曲线
长均为 l 2 ,则切线长为CF和
DF。
AG BG ( R P1 ) tan
CF DF ( R P2 ) tan
T 1 AJ AG
3 2
_ α P P2 1 T2 = DJ = ( R + P2 ) tan +m2 + 2 sin α
曲线长
π L = ( α - β1 - β 2 ) R +l1 +l2 180
β1 = l1 180 2R π
β2 = l2 180 2R π
主点里程
kZH = K JD T1
K HY K ZH l1
HY P H Y切 k
K 1 曲线右偏时: K -1 曲线左偏时:
0
d
P
HY
(3)计算HY点到计算点P的距离d
ZH
X
d 2 R sin
(4)计算P点坐标
X P X HY d cos HY P
YP YHY d sin HY p
(2)利用坐标变换公式计算P点的线路坐标系下坐标
X P X ZH x P cos kyP sin YP YZH x P sin kyP cos
k 1曲线右偏时 K 1曲线左偏时
360 ZH切
4、P点在HY~YH上
(1)求HY点切线方位角
曲线右偏时:K 1 曲线左偏时:K -1
(2)求P点在 HZ xy 坐标系上坐标
l 5 l 9 x p l 2 2 4 4 40 R l 3456 R l2 2 3 7 11 l l l y p 3 3 5 5 6 Rl 336 R l 42240 R l2 2 2
l k HZ l P
(3)利用坐标变换公式计算P点的线路坐标系下坐标
X P X HZ x P cos ky P sin P sin ky P cos YP YHZ x
k 1曲线右偏时 K 1曲线左偏时
360 HZ切
不等长的缓和曲线+圆曲线逐桩坐标计算
3.1不等长缓和曲线逐桩坐标计算
JD
T1
缓和曲线
T2
圆曲线
直线
ZH
1 l0
HY
YH
缓和曲线
l02
HZ
直线
不等长的缓和曲线+圆曲线通常敷设在地形复杂地
区以及铁路旧线改造中(如图)。 其组成为:直线-缓和曲线(A1)-圆曲线-缓和曲 线(A2)-直线
一、不等长的缓和曲线曲线要素计算 如图:圆曲线左端缓和
k 1曲线右偏时 K 1曲线左偏时
360 ZH切
5、P点在YH~HZ上
(1)HZ点坐标计算 JD
T1
缓和曲线
T2
圆曲线
直线
ZH
l
1 0
HY
YH
缓和曲线
l02
HZ
直线
X HZ X JD T2 cos ( HZ 切) YHZ YJD T2 sin ( HZ 切)
2
m1
2
m2
P1 P2 sin
P1 P2 sin
T 2 DJ DF
则切线长
l1 l m1 = 2 240R 2
3 1
l1 p1 = 24R
2 2
2
l2 l m2 = 2 240R 2
l p2 = 24R _ α P P2 1 _ T1 = AJ = ( R + P +m1 1 ) tan 2 sin α
2、ZH点坐标计算
JD
T1
缓和曲线
1 l0
T2
圆曲线Leabharlann HYYH缓和曲线直线
l02
ZH
HZ
直线
X ZH X JD T1 cos ( ZH切 180 ) YZH YJD T1 sin ( ZH切 180 )
3、P点在ZH~HY上
(1)求P点在ZH-xy坐标系上坐标
l5 l9 x p l 2 2 4 4 40 R l 3456 R l1 1 3 7 11 l l l y p 3 3 5 5 6 Rl 336 R l 42240 R l1 1 1
HY切 ZH切 k 0
X
K 1 曲线右偏时: K -1 曲线左偏时:
x
l0 180 0 2R
X ZH
x
X
0
HY
HY
0
ZH
y
Y
y
Y
(2)计算HY→P点方位角
K P K ZY 180 2R
K P 计算点P的里程
K HY HY点的里程
K YH K ZH L l 2
K HZ K ZH L
二、不等长的缓和曲线逐桩坐标计算 1、已知条件: (1)设计文件所给已知条件:
交点坐标及里程、曲线半径R、第一缓和曲线长、第二缓和曲线 长、转向角、ZH点切线方位角。
(2)地面上的已知条件:
导线点坐标及高程、导线控制点的实际位置。
3 2
_ α P P2 1 T2 = DJ = ( R + P2 ) tan +m2 + 2 sin α
则切线长
l1 l m1 = 2 240R 2
3 1
l1 p1 = 24R
2 2
2
l2 l m2 = 2 240R 2
l p2 = 24R _ α P P2 1 _ T1 = AJ = ( R + P +m1 1 ) tan 2 sin α
(1)求P点在ZH-xy坐标系上坐标
x p m1 R sin y p (R P 1 ) R cos k p k HY 180 1 R
(2)利用坐标变换公式计算P点的线路坐标系下坐标
X P X ZH x P cos kyP sin YP YZH x P sin kyP cos