微积分(曹定华)(修订版)课后题答案第二章习题详解

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章

习题2-1

1. 试利用本节定义5后面的注(3)证明:若lim n →∞

x n =a ,则对任何

自然数k ,有lim n →∞

x n +k =a .

证:由lim n n x a →∞

=,知0ε∀>,1N ∃,当1n N >时,有

n x a ε-<

取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有

n k x a ε+-<

由数列极限的定义得 lim n k x x a +→∞

=.

2. 试利用不等式A B A B -≤-说明:若lim n →∞

x n =a ,则

lim n →∞

∣x n ∣=|a|.考察数列x n =(-1)n

,说明上述结论反之不成立.

证:

lim 0,,.

使当时,有n x n x a

N n N x a εε→∞

=∴∀>∃>-<

而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>

n n x a x a ε-≤-< 即 n x a ε-<

由数列极限的定义得 lim n n x a →∞

= 考察数列 (1)n n x =-,知lim n n x →∞

不存在,而1n x =,lim 1n n x →∞=, 所以前面所证结论反之不成立。

3. 利用夹逼定理证明:

(1) lim n →∞222111

(1)

(2)n n n ⎛⎫

+++ ⎪+⎝⎭=0; (2) lim n →∞2!

n

n =0. 证:(1)因为

22222

2111112

(1)

(2)n n n n n n n n n n

++≤+++

≤≤=+ 而且 2

1lim

0n n →∞

=,2

lim 0n n →∞=, 所以由夹逼定理,得

22211

1lim 0(1)(2)n n n n →∞⎛⎫

+++

= ⎪+⎝

. (2)因为2222

2240!123

1n n n n n

<=

<-,而且4

lim 0n n →∞=,

所以,由夹逼定理得

2lim 0!

n n n →∞= 4. 利用单调有界数列收敛准则证明下列数列的极限存在.

(1) x n =

1

1

n e +,n =1,2,…;

(2) x

1,x n +1n =1,2,…. 证:(1)略。

(2)因为

12x <,不妨设2k x <,则

12k x +=<=

故有对于任意正整数n ,有2n x <,即数列{}n x 有上界,

又 1n n x x +-=,而0n x >,2n x <, 所以 10n n x x +-> 即 1n n x x +>, 即数列是单调递增数列。

综上所述,数列{}n x 是单调递增有上界的数列,故其极限存在。

习题2-2

1※. 证明:0

lim x x →f (x )=a 的充要条件是f (x )在x 0处的左、右极限均

存在且都等于a .

证:先证充分性:即证若0

lim ()lim ()x x x x f x f x a -+→→==,则0

lim ()x

x

f x a →=. 由0

lim ()x x f x a -→=及0

lim ()x x f x a +→=知:

10,0εδ∀>∃>,当010x x δ<-<时,有()f x a ε-<,

20δ∃>当020x x δ<-<时,有()f x a ε-<。

取{}12min ,δδδ=,则当00x x δ<-<或00x x δ<-<时,有()f x a ε-<, 而00x x δ<-<或00x x δ<-<就是00x x δ<-<,

于是0,0εδ∀>∃>,当00x x δ<-<时,有()f x a ε-<, 所以 0

lim ()x x

f x a →=.

再证必要性:即若0

lim ()x x

f x a →=,则0

lim ()lim ()x x x x f x f x a -+→→==,

由0

lim ()x x

f x a →=知,0,0εδ∀>∃>,当00x x δ<-<时,有()f x a ε-<,

由00x x δ<-<就是 00x x δ<-<或00x x δ<-<,于是0,0εδ∀>∃>,当

00x x δ<-<或00x x δ<-<时,有()f x a ε-<.

所以 0

lim ()lim ()x x x x f x f x a -+→→==

综上所述,0

lim x x →f (x )=a 的充要条件是f (x )在x 0处的左、右极限均

存在且都等于a .

2. (1) 利用极限的几何意义确定0

lim x → (x 2

+a ),和0lim x -

→1

e x

(2) 设f (x )= 12e ,0,,0,x x x a x ⎧

⎪<⎨⎪+≥⎩

,问常数a 为何值时,0lim x →f (x )存在. 解:(1)因为x 无限接近于0时,2x a +的值无限接近于a ,故

相关文档
最新文档