逆矩阵
§3 逆矩阵

三、解矩阵方程
解矩阵方程 (1) AX = C , ( 2) XA = B , ( 3) AXB = C , 其中 A、B 均为可逆矩阵 .
矩阵方程
AX = B XA = B
AXB = C
解
X = A−1 B
X = BA−1
X = A−1 C B −1
3 2 1 − 5 例5 解矩阵方程 (1) ; X = 1 4 −1 4
−1 −1 −1
1 − 1 1 1 2 − 3 (2 ) X 1 1 0 = 2 0 4 2 1 1 0 − 1 5
1 −1 1 1 1 0 =1≠ 0 2 1 1
给方程两端右乘矩阵
1 − 1 1 1 1 0 , 2 1 1
解
d − b A = ad − bc ≠ 0, A = − c a .
*
1 d − b ∴A = . ad − bc − c a
−1
二阶矩阵的逆可以直接“看出来”
1 2 3 例3 (1) 求方阵 A = 2 2 1 的逆矩阵. 3 4 3 1 2 3 −1 ∴ A 存在. 解 A = 2 2 1 = 2 ≠ 0, 3 4 3
−1 T
(5 ) 若A可逆 ,则有 A = A .
−1 −1
另外, 当 A ≠ 0时
定义
A =E
0
A
−k
= ( A ) , k为整数
−1 k
当 A ≠ 0, λ , µ为整数时 , 有 A A =A
λ µ λ +µ
,
(A )
λ µ
= Aλµ .
二、逆矩阵的求法
矩阵求逆方法大全

矩阵求逆方法大全
矩阵的逆是一个重要的数学概念,它在很多领域中都得到了广泛的应用,如线性代数、微积分、概率论等。
求解矩阵的逆可以用于解线性方程组、计算行列式、计算特征值和特征向量等。
本文将介绍几种常见的矩阵求逆方法,包括伴随矩阵法、高斯消元法、LU分解法和特征值分解法。
1.伴随矩阵法:
伴随矩阵法是求解逆矩阵最常用的方法之一、首先,计算出矩阵的伴
随矩阵,然后将其除以矩阵的行列式即可得到逆矩阵。
2.高斯消元法:
高斯消元法是一种常用的线性方程组求解方法,也可以用来求解矩阵
的逆。
通过将待求逆矩阵与单位矩阵连接起来,然后进行初等行变换,直
至左边的矩阵变为单位矩阵,右边的矩阵即为所求逆矩阵。
3.LU分解法:
LU分解法将矩阵分解为下三角矩阵L和上三角矩阵U的乘积,然后
通过求解两个三角矩阵的逆矩阵,进而求得原矩阵的逆。
LU分解法是一
种常用的数值计算方法,应用广泛。
4.特征值分解法:
特征值分解法是一种通过矩阵的特征值和特征向量来求解矩阵的逆的
方法。
首先,根据特征值定理求解矩阵的特征值和特征向量,然后利用这
些特征值和特征向量构建一个对角矩阵,最后通过对角矩阵求逆得到原矩
阵的逆。
除了上述方法外,还有其他一些方法可以用来求解矩阵的逆,如迭代法、SVD分解法等。
这些方法在不同的应用场景下有不同的优势。
总之,求解矩阵的逆是一个重要的数学问题,在实际应用中有着广泛的应用。
以上介绍的几种方法是常用的求解逆矩阵的方法,读者可以根据自己的需求选择合适的方法进行求解。
求矩阵的逆矩阵的方法

求矩阵的逆矩阵的方法矩阵的逆是一个在线性代数中非常重要的概念。
逆矩阵是一个方阵(A)的伴随矩阵(ad(A))除以该方阵的行列式(det(A))的结果,即逆矩阵(A-1) = ad(A) / det(A)。
要找到一个矩阵的逆矩阵,首先需要确保矩阵是可逆的。
矩阵可逆的充分必要条件是矩阵的行列式不等于零,即det(A) ≠0。
只有当行列式不等于零时,才能找到逆矩阵。
如果行列式等于零,该矩阵就被称为奇异矩阵,它没有逆矩阵。
接下来,我将详细介绍两种常见的方法来计算矩阵的逆。
方法一:伴随矩阵法伴随矩阵法是一种直接计算矩阵的逆矩阵的方法。
首先,我们计算出原始矩阵的伴随矩阵,然后再除以矩阵的行列式即可得到逆矩阵。
步骤如下:1. 计算原始矩阵的伴随矩阵(ad(A))。
伴随矩阵的每个元素(ad(A)ij)等于原始矩阵(A)的代数余子式(Aij)的代数余子式(Aij)。
其中,代数余子式(Aij)是矩阵中去掉第i行和第j列的部分矩阵的行列式(det(Aij))乘以(-1)^(i+j)。
2. 计算原始矩阵的行列式(det(A))。
3. 计算逆矩阵(A-1)。
逆矩阵的每个元素(A-1)ij等于伴随矩阵(ad(A))的每个元素(ad(A)ij)除以原始矩阵的行列式(det(A))。
伴随矩阵法的优点是直接,可以一步得到逆矩阵。
然而,该方法在求解大型矩阵时计算量较大。
方法二:初等行变换法初等行变换法是通过一系列的初等行变换来得到一个单位矩阵,然后通过对单位矩阵进行相同的初等行变换得到逆矩阵。
步骤如下:1. 将原始矩阵(A)写在左侧,单位矩阵(I)写在右侧,构成一个增广矩阵[A I]。
2. 通过一系列的行变换,将左侧矩阵变成单位矩阵。
在每一步行变换时,同样地对右侧的单位矩阵做相同的变换。
3. 当左侧的矩阵完全变成单位矩阵时,右侧的矩阵就是原始矩阵的逆矩阵。
初等行变换法的优点是对于大型矩阵来说,计算量较小。
然而,该方法需要一定的手工计算和整数运算,可能会产生较大的误差。
第三章 矩阵的逆

唯一性: 是可逆矩阵, 的逆矩阵唯一. 唯一性:若A是可逆矩阵,则A的逆矩阵唯一 是可逆矩阵 的逆矩阵唯一 证明: 证明: 设B、C都是 的逆矩阵,则 都是A的逆矩阵 、 都是 的逆矩阵,
AB = BA = E ,
AC = CA = E
⇒ B = EB = (CA) B = C ( AB) = CE = C.
逆矩阵的求法二: 逆矩阵的求法二:伴随矩阵法
A11 ∗ A12 A = M A1n A21 A22 M A2 n L L M L An1 An 2 , M Ann
(1)
A
−1
1 ∗ = A , A
其中 A * 为A的伴随矩阵。 的伴随矩阵。 的伴随矩阵
2a + c 2b + d 1 0 ⇒ = − b 0 1 −a
a = 0, 2a + c = 1, b = −1, 2b + d = 0, ⇒ ⇒ c = 1, − a = 0, d = 2. − b = 1,
又因为
BA AB 2 1 0 − 1 0 − 1 2 1 1 0 , = = − 1 0 1 2 1 2 − 1 0 0 1
所以
0 − 1 A = . 1 2
−1
0 A 例: 设n阶矩阵 及s阶矩阵 都可逆,求 阶矩阵A及 阶矩阵 都可逆, 阶矩阵B都可逆 阶矩阵 . B O X 11 X 12 解:设所求逆矩阵为 , X 21 X 22
∴ A 存在
−1
A
−1
A∗ = A
0 0 0 0 2⋅ 3⋅ 4⋅ 5 1⋅ 3⋅ 4⋅ 5 0 0 0 0 1 = 0 0 1⋅ 2⋅ 4⋅ 5 0 0 5! 0 0 1⋅ 2⋅ 3⋅ 5 0 0 0 0 0 0 1⋅ 2⋅ 3⋅ 4
逆矩阵的几种求法与解析 很全很经典

6.利用线性方程组求逆矩阵
若n阶矩阵A可逆,则A A -1 =E,于是A -1 的第i列是线性方程组AX=E的解, i=1,2,…,n,E是第i个分量是I的单位向量.因此,我们可以去解线性方程组AX=B, 其中B=(b 1 ,b 2 ,…,b n ) T , 然后把所求的解的公式中的b 1 ,b 2 ,…,b n 分别用 E 1 =(1,0,0,…,0), E 2 =(0,1,0,…,0), ……,
T -1 2
解
令
( A + 4 E ) T (4 E - A) -1 (16 E - A 2 ) =D
D= ( A + 4 E ) T (4 E - A) -1 (16 E - A 2 ) = (4 E + A) T (4 E - A) -1 (4 E - A)(4 E + A) = (4 E + A)(4 E + A) T = (4 E + A) . 虽然题目中出现了(4E-A) -1 .但是经过化简之后不再出现此式,因此得 D= 4 E - A =22500. 例2 证明 已知 n阶矩阵A满足A 2 +2A-3E=0.求证:A+4E可逆并求出A+4E的逆.
5.恒等变形法
4
恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论 推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用 AA -1 =E,把题目中的逆矩阵化简掉。
例1
é 1 0 0ù ú 计算(A+4E) (4E-A) (16E-A )的行列式,其中 A= ê ê- 1 2 0ú ê ë 1 4 1ú û
初等行变换 用矩阵表示(A I) ¾¾ ¾¾® 为(I A -1 ),就是求逆矩阵的初等行变换法,
第三节 逆矩阵

A21 A22 A2 n
An 1 An 2 * , 称 A 为 A 的伴随矩阵。 Ann
2012-6-16
定理2.3
A 0 A 可逆,且 A
1
A
*
A
其中
A 为 A 的伴随矩阵。
*
2012-6-16
证明
AA
1
A 显然 A 0, 有意义。 A
0 A 0 0 0 I A
AA
1
A 1 1 0 * AA A A 0
2012-6-16
定理2.4 定理2.5 定义2.13
若 若
2012-6-16
A可逆
A 0.
A不可逆 A 0 .
3 0 1 1 2 2 5 3
1
3 A 5
1 2
3 B 0 1
1 2 3
2 5 A A
*
1 ,从而 3
X BA
1
1 1 10 3 13
A 21 A A 22 A A 23 A
A 31 A A 32 A A 33 A
2012-6-16
8 5 1
29 18 3
A11 A 11 A 7 12 A 1 A13 A
* 1
2012-6-16
四、小结与思考
逆矩阵的概念及运算性质.
逆矩阵 A 1 存在 A 0 . 逆矩阵的计算方法
1 待定系数法 ;
2 利用公式 A 1
高等代数3-3矩阵的逆

... 0 A En ... A
A A
*
A11 A12 A 1n
A21 A22 A2 n
... An1 a11 ... An 2 a 21 ... Ann a n1
a12 a 22 an2
即矩阵A的逆矩阵是唯一的 .
B1 B1 E B1 ( AB2 ) ( B1 A )B2 EB2 B2
由于A的逆矩阵是唯一的,将A的唯一的逆矩阵记为 A1
则有
AA1 A1 A E
3. 单位矩阵E是可逆矩阵,且E 1 E .
4. 零矩阵O不是可逆矩阵.
a1 0 ... 0 0 a2 ... 0 例A 0 0 ... a n 其中 a1a2 ...an 0 a1 0 0 a2 0 0
可逆
1 0 3 0 1 A 1 2 3 1 2 3 3
1
1 3 A 2 6
A 0
不可逆
用公式法求二阶矩阵的 逆矩阵非常方便 .
a b 1 d d 1 若A , 且 A 0, 则 A . A c a c d
已知方阵A满足A3 A2 4 A 5 E O ,则( A 2 E )1 ________.
A2 A 2 E
1 2 0 已知AB B A , 其中B 2 1 0 ,则( A E )1 __________. 0 0 2
( A E )( B E ) E ( A E )1 B E
1 ( A 2E ) 2 1 例5 已知方阵A满足A A 4 E O ,则( A E ) __________. 2
逆矩阵的知识点总结

逆矩阵的知识点总结一、逆矩阵的基本概念1.1 矩阵的逆在矩阵理论中,矩阵的逆是一个重要的概念。
如果存在一个矩阵B,使得矩阵A与矩阵B相乘得到单位矩阵I,那么矩阵B就被称为矩阵A的逆矩阵,记作A-1。
换句话说,如果AB=I,那么B就是A的逆矩阵。
1.2 逆矩阵的存在性并非所有的矩阵都有逆矩阵。
只有当矩阵是可逆的时候,才会存在逆矩阵。
一个矩阵是可逆的,当且仅当它是一个方阵且其行列式不为0。
1.3 逆矩阵的求解要求解矩阵的逆,可以使用多种方法。
其中最常用的方法是高斯-约当法求解逆矩阵。
这一方法通过行变换和列变换来将矩阵化为单位矩阵,从而得到矩阵的逆。
1.4 逆矩阵与解的关系在线性代数中,矩阵的逆与线性方程组的解密切相关。
如果一个矩阵是可逆的,那么它所代表的线性方程组一定有唯一解,反之亦然。
二、逆矩阵的性质2.1 逆矩阵的唯一性如果一个矩阵有逆矩阵,那么逆矩阵是唯一的。
这是因为如果存在两个不同的矩阵B和C,使得AB=I且AC=I,那么由矩阵乘法的结合律可得B=BI=B(AC)=(BA)C=IC=C,即B=C。
2.2 逆矩阵的乘法逆矩阵有一个重要的性质,即两个可逆矩阵的乘积仍然是可逆的,并且其逆矩阵等于这两个矩阵的逆的乘积的逆。
换句话说,如果A和B都是可逆的矩阵,那么(AB)-1=B-1A-1。
2.3 逆矩阵与转置矩阵的关系矩阵的转置是将矩阵的行和列互换得到的新矩阵。
在逆矩阵的情况下,有一个重要的性质,即一个矩阵的逆与其转置的逆是相等的,即(A-1)T=(AT)-1。
2.4 逆矩阵与幂的关系矩阵的逆与幂有着密切的关系。
如果一个矩阵A是可逆的,那么其幂A^n也是可逆的,并且(A^n)-1=(A-1)^n。
2.5 逆矩阵与伴随矩阵的关系在矩阵理论中,有一个与逆矩阵密切相关的概念,即伴随矩阵。
伴随矩阵是一个矩阵的行列式和代数余子式构成的矩阵。
与逆矩阵的关系在于,如果一个矩阵A是可逆的,那么它的伴随矩阵乘以矩阵A的行列式就等于单位矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。