海伦公式的多种推导
三角形的海伦公式与应用解析

三角形的海伦公式与应用解析三角形是几何学中最基本的图形之一,在数学的研究和实际应用中具有广泛的重要性。
海伦公式是解决三角形面积和边长之间关系的基本公式,被广泛应用于三角形相关的问题求解。
本文将介绍海伦公式的定义和推导过程,并探讨其在实际问题中的应用。
一、海伦公式的定义对于任意给定的三角形ABC,假设其三边长分别为a, b, c,半周长为p,面积为S。
则根据海伦公式,我们可以得到以下关系式:S = √(p(p-a)(p-b)(p-c))其中,p = (a+b+c)/2。
二、海伦公式的推导为了推导海伦公式,我们可以利用三角形的高、底边和斜边之间的关系。
首先,我们选取三角形ABC中的任意一点D作为高的垂足。
根据垂足的定义,我们知道AD垂直于BC。
由于AD是三角形的高,则根据几何学的性质,可以得到以下等式:S = (1/2) * AD * BC另一方面,根据直角三角形的性质,我们知道:AB² = AD² + BD²AC² = AD² + CD²将上述两个等式相减,可以得到:AB² - AC² = BD² - CD²根据余弦定理,我们可以得到:AB² = AC² + BC² - 2 * AC * BC * cos(BAC)将以上两个等式代入前一等式中,可得:AC² + BC² - 2 * AC * BC * cos(BAC) - AC² = BD² - CD²化简后可得:BC² - 2 * AC * BC * cos(BAC) = BD² - CD²由于BC = BD + CD,我们可以将上式继续转化为:(BD + CD)² - 2 * AC * (BD + CD) * cos(BAC) = BD² - CD²展开并化简,可得:BD² + 2 * BD * CD + CD² - 2 * AC * BD * cos(BAC) - 2 * AC * CD * cos(BAC) = BD² - CD²将BD²和CD²消去,再将公式两边除以2,最后整理得:BD * CD = AC * BC * cos(BAC)既然我们已经得到了三角形的面积公式S = (1/2) * AD * BC,我们可以继续推导:AD = 2 * S / BC将AD代入前一等式中,可得:BD * CD = (2 * S / BC) * BC * cos(BAC)化简后可以得到:BD * CD = 2 * S * cos(BAC)同理,我们也可得到:CD * AD = 2 * S * cos(ABC)AD * BD = 2 * S * cos(ACB)三、海伦公式在实际应用中的解析海伦公式的应用非常广泛,它可以用于求解任意三角形的面积,仅需知道三边长即可。
海伦公式的几种证明与推广

海伦公式的几种证明与推广
1. 直角三角形海伦公式的证明:
令直角三角形ABC的斜边长为c,其中a、b分别为直角边的长度,则有:
c^2=a^2+b^2
令三角形ABC的外接圆的半径为R,则有:
R=a+b+c/2
由此,可以推出:
R^2=(a+b+c/2)^2=a^2+2ab+b^2+c^2/4=a^2+2ab+b^2+c^2/4 即:
R^2=a^2+b^2+2ab
两边同时乘以4,得:
4R^2=4a^2+4b^2+8ab
即:
4R^2=(2a+2b)^2
即:
R^2=(a+b)^2
由此可以得到海伦公式:
c^2=a^2+b^2-2ab
2. 直角三角形海伦公式的推广:
(1)等腰三角形海伦公式:
设等腰三角形ABC的斜边长为c,其中a、b分别为等腰边的
长度,则有:
c^2=a^2+b^2-2ab
(2)等腰梯形海伦公式:
设等腰梯形ABCD的斜边长为c,其中a、b分别为等腰边的
长度,则有:
c^2=a^2+b^2-2ab
(3)等边三角形海伦公式:
设等边三角形ABC的斜边长为c,其中a分别为等边的长度,则有:
c^2=3a^2-2ab。
海伦公式的推导和应用

海伦公式海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王希伦二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表。我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。假设有一个三角形,边长分别为a、b、c,三角形的面积S可以下公式求得:S=√[p(p-a)(p-b)(p-c)]而公式里的p为半周长:p=(a+b+c)/2——————————————————————————————————————————————注1:\《度量论》)手抄本中用s作为半周长,所以S=√[p(p-a)(p-b)(p-c)]和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。——————————————————————————————————————————————于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。 证明:与海伦在他的著作\《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为cosC = (a_+b_-c_)/2abS=1/2*ab*sinC=1/2*ab*√(1-cos_ C)=1/2*ab*√[1-(a_+b_-c_)_/4a_*b_] =1/4*√[4a_*b_-(a_+b_-c_)_]=1/4*√[(2ab+a_+b_-c_)(2ab-a_-b_+c_)] =1/4*√[(a+b)_-c_][c_-(a-b)_] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2则p=(a+b+c)/2, p-a=(-a+b+c)/2, (a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)]所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]证明:我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家九韶提出了“三斜求积术”。秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以q=1/4[c 2a 2-(c%| 2+a 2-b 2/2) 2]当P=1时,△2=q,S△=√{1/4[c 2a 2-(c 2+a 2-b 2/2) 2]}因式分解得1/16[(c+a) 2-b 2][b 2-(c-a) 2]=1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)=1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c)=p(p-a)(p-b)(p-c根号下(p-a)(p-b)(p-c)(p-d)代入解得s=8√ 3海伦公式的几种另证及其推广关于三角形的面积计算公式在解题中主要应用的有:设△ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为△ABC外接圆、内切圆的半径,p = (a+b+c),则S△ABC=1/2 aha =1/2 ab×sinC =1/2 r p= 2R2sinAsinBsinC= √[p(p-a)(p-b)(p-c)]其中,S△ABC =√[p(p-a)(p-b)(p-c)]就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载。海伦公式在解题中有十分重要的应用。 一、海伦公式的证明 证一勾股定理 如右图勾股定理证明海伦公式。证二:斯氏定理 如右图。斯氏定理证明海伦公式证三:余弦定理分析:变形②S =可知,运用余弦定理c2 = a2 + b2-2abcosC对其进行证明。证明:要证明S =则要证S === ab×sinC此时S = ab×sinC为三角形计算公式,故得证。 证四:恒等式恒等式证明(1)恒等式证明(2)证五:半角定理∵证一,x = =-c = p-cy = =-a = p-az = =-b = p-b∴r3 =∴r =∴S△ABC = r·p =故得证。 二、海伦公式的推广于在实际应用中,往往需计算四边形的面积,所以需要对海伦公式进行推广。于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的四边形ABCD中,设p= ,则S四边形=现根据猜想进行证明。证明:如图,延长DA,CB交于点E。 设EA = e EB = f∵∠1+∠2 =180○∠2+∠3 =180○∴∠1 =∠3∴△EAB~△ECD∴= = =解得:e =①f =②于S四边形ABCD = S△EAB将①,②跟b =代入公式变形④,得:∴S四边形ABCD =所以,海伦公式的推广得证。 三、海伦公式的推广的应用海伦公式的推广在实际解题中有着广泛的应用,特别是在有关圆内接四边形的各种综合题中,直接运用海伦公式的推广往往事倍功半。例题:如图,四边形ABCD内接于圆O中,SABCD = ,AD = 1,AB = 1, CD = 2.求:四边形可能为等腰梯形。 解:设BC = x海伦公式的推广,得:(4-x)(2+x)2 =27x4-12x2-16x+27 = 0x2(x2—1)-11x(x-1)-27(x-1) = 0(x-1)(x3+x2-11x-27) = 0x = 1或x3+x2-11x-27 = 0当x = 1时,AD = BC = 1∴四边形可能为等腰梯形。在程序中实现(VBS): dim a,b,c,p,q,sa=inputbox(\请输入三角形第一边的长度\ b=inputbox(\请输入三角形第二边的长度\ c=inputbox(\请输入三角形第三边的长度\ a=1*a b=1*b c=1*cp=(a+b+c)*(a+b-c)*(a-b+c)*(-a+b+c) q=sqr(p) s=(1/4)*qmsgbox(\三角形面积为\,\三角形面积\在VC中实现#include #include main() {int a,b,c,s;printf(\输入第一边\\n\ scanf(\ printf(\输入第二边\\n\ scanf(\ printf(\输入第三边\\n\ scanf(\ s=(a+b+c)/2;printf(\面积为:%f\\n\ }海伦公式
海伦公式的推导和应用

海伦公式海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王希伦Heron,也称海龙二世发现的公式,利用三角形的三条边长来求取三角形面积;但根据Morris Kline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表未查证; 我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样;假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=√pp-ap-bp-c而公式里的p为半周长:p=a+b+c/2——————————————————————————————————————————————注1:"Metrica"度量论手抄本中用s作为半周长,所以S=√pp-ap-bp-c 和S=√ss-as-bs-c两种写法都是可以的,但多用p作为半周长;——————————————————————————————————————————————由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式;比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案;证明1:与海伦在他的著作"Metrica"度量论中的原始证明不同,在此我们用三角公式和公式变形来证明;设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为cosC = a^2+b^2-c^2/2abS=1/2absinC=1/2ab√1-cos^2 C=1/2ab√1-a^2+b^2-c^2^2/4a^2b^2=1/4√4a^2b^2-a^2+b^2-c^2^2=1/4√2ab+a^2+b^2-c^22ab-a^2-b^2+c^2=1/4√a+b^2-c^2c^2-a-b^2=1/4√a+b+ca+b-ca-b+c-a+b+c设p=a+b+c/2则p=a+b+c/2, p-a=-a+b+c/2, p-b=a-b+c/2,p-c=a+b-c/2,上式=√a+b+ca+b-ca-b+c-a+b+c/16=√pp-ap-bp-c所以,三角形ABC面积S=√pp-ap-bp-c证明2:我国宋代的数学家秦九韶也提出了“三斜求积术”;它与海伦公式基本一样,其实在九章算术中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事;所以他们想到了三角形的三条边;如果这样做求三角形的面积也就方便多了;但是怎样根据三边的长度来求三角形的面积直到南宋,我国著名的数学家九韶提出了“三斜求积术”;秦九韶他把三角形的三条边分别称为小斜、中斜和大斜;“术”即方法;三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个;相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积;所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,q为“实”;以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以q=1/4c 2a 2-c%| 2+a 2-b 2/2 2当P=1时,△2=q,S△=√{1/4c 2a 2-c 2+a 2-b 2/2 2}因式分解得1/16c+a 2-b 2b 2-c-a 2=1/16c+a+bc+a-bb+c-ab-c+a=1/8Sc+a+b-2bb+c+a-2ab+a+c-2c=pp-ap-bp-c由此可得:S△=√pp-ap-bp-c其中p=1/2a+b+c这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”;S=c/2根号下a^-{a^-b^+c^/2c}^ .其中c>b>a.根据海伦公式,我们可以将其继续推广至四边形的面积运算;如下题:已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD 的面积这里用海伦公式的推广S圆内接四边形= 根号下p-ap-bp-cp-d 其中p为周长一半,a,b,c,d,为4边代入解得s=8√ 3海伦公式的几种另证及其推广关于三角形的面积计算公式在解题中主要应用的有:设△ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为△ABC外接圆、内切圆的半径,p = a+b+c,则S△ABC=1/2 aha=1/2 ab×sinC=1/2 r p= 2R2sinAsinBsinC= √pp-ap-bp-c其中,S△ABC =√pp-ap-bp-c 就是著名的海伦公式,在希腊数学家海伦的著作测地术中有记载;海伦公式在解题中有十分重要的应用;一、海伦公式的证明证一勾股定理如右图勾股定理证明海伦公式;证二:斯氏定理如右图;斯氏定理证明海伦公式证三:余弦定理分析:由变形②S = 可知,运用余弦定理c2 = a2 + b2 -2abcosC 对其进行证明;证明:要证明S =则要证S === ab×sinC此时S = ab×sinC为三角形计算公式,故得证;证四:恒等式恒等式证明1恒等式证明2证五:半角定理∵由证一,x = = -c = p-cy = = -a = p-az = = -b = p-b∴r3 = ∴r =∴S△ABC = r·p = 故得证;二、海伦公式的推广由于在实际应用中,往往需计算四边形的面积,所以需要对海伦公式进行推广;由于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的四边形ABCD中,设p= ,则S四边形=现根据猜想进行证明;证明:如图,延长DA,CB交于点E;设EA = e EB = f∵∠1+∠2 =180○ ∠2+∠3 =180○∴∠1 =∠3 ∴△EAB~△ECD∴= = =解得: e = ① f = ②由于S四边形ABCD = S△EAB将①,②跟b = 代入公式变形④,得:∴S四边形ABCD =所以,海伦公式的推广得证;三、海伦公式的推广的应用海伦公式的推广在实际解题中有着广泛的应用,特别是在有关圆内接四边形的各种综合题中,直接运用海伦公式的推广往往事倍功半;例题:如图,四边形ABCD内接于圆O中,SABCD = ,AD = 1,AB = 1, CD =2.求:四边形可能为等腰梯形;解:设BC = x由海伦公式的推广,得:4-x2+x2 =27x4-12x2-16x+27 = 0x2x2—1-11xx-1-27x-1 = 0x-1x3+x2-11x-27 = 0x = 1或x3+x2-11x-27 = 0当x = 1时,AD = BC = 1∴四边形可能为等腰梯形;在程序中实现VBS:dim a,b,c,p,q,sa=inputbox"请输入三角形第一边的长度"b=inputbox"请输入三角形第二边的长度"c=inputbox"请输入三角形第三边的长度"a=1ab=1bc=1cp=a+b+ca+b-ca-b+c-a+b+cq=sqrps=1/4qmsgbox"三角形面积为"&s, ,"三角形面积"在VC中实现include<stdio.h>include<math.h>main{int a,b,c,s;printf"输入第一边\n";scanf"%d",&a;printf"输入第二边\n";scanf"%d",&b;printf"输入第三边\n";scanf"%d",&c;s=a+b+c/2;printf"面积为:%f\n",sqrtss-as-bs-c;}海伦公式。
海伦公式的推导和应用

海伦公式海伦公式又译作希伦公式、海龙公式、公式、海伦-秦九韶公式,传说是古代的国王希伦(,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。
但根据Morris Kline在1908年出版的着作考证,这条公式其实是所发现,以托希伦二世的名发表(未查证)。
我国宋代的数学家也提出了“三斜求积术”,它与海伦公式基本一样。
假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=√[p(p-a)(p-b)(p-c)]而公式里的p为半周长:p=(a+b+c)/2——————————————————————————————————————————————注1:"Metrica"(《度量论》)手抄本中用s作为半周长,所以S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。
——————————————————————————————————————————————由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。
比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。
证明(1):与海伦在他的着作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。
设三角形的三边a、b、c的对角分别为A、B、C,则为cosC = (a^2+b^2-c^2)/2abS=1/2*ab*sinC=1/2*ab*√(1-cos^2 C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]证明(2):我国宋代的数学家秦九韶也提出了“三斜求积术”。
海伦公式几种证明方法

海伦公式几种证明方法海伦公式是用于计算三角形面积的一种公式,公式为:面积S=√(s(s-a)(s-b)(s-c))其中,a、b、c是三角形的三边长度,s是半周长,即s=(a+b+c)/2以下是几种证明海伦公式的方法。
1.利用矢量运算法证明海伦公式:首先,将三角形的三个顶点用向量表示,分别为A、B、C。
然后,利用向量的性质计算向量AB、BC和CA的模长,即三边的长度。
接下来,计算向量AB和BC的叉乘,得到一个新的向量P。
最后,利用向量的模长和叉乘的结果,计算三角形的面积S,即S=1/2*,P。
2.利用三角形的高进行证明:设h_a、h_b和h_c分别为三角形的三条高,分别与边a、b和c对应。
根据三角形的面积公式S=1/2*a*h_a,我们可以得到以下三个等式:S=1/2*a*h_aS=1/2*b*h_bS=1/2*c*h_c将这三个等式相加,可以得到S=1/2*(a*h_a+b*h_b+c*h_c)。
而另一方面,根据海伦公式的定义,s=(a+b+c)/2、将之前得到的三个等式代入,可以得到S=√(s(s-a)(s-b)(s-c))。
3.利用三角形内切圆进行证明:内切圆是与三角形的三条边都相切的圆。
设内切圆的半径为r。
根据圆的性质,可以得到以下三个等式:S=1/2*a*rS=1/2*b*rS=1/2*c*r将这三个等式相加,可以得到S=1/2*(a*r+b*r+c*r)。
而另一方面,根据海伦公式的定义,s=(a+b+c)/2、将之前得到的三个等式代入,可以得到S=√(s(s-a)(s-b)(s-c))。
以上是三种常见的证明海伦公式的方法。
这些证明方法均可以通过基本的几何性质和定理进行推导,从而得到海伦公式。
海伦公式展开式

海伦公式展开式海伦公式是一个用于计算三角形面积的公式,它的展开式可是相当有趣呢!咱们先来说说海伦公式本身哈,它的表达式是:S = √[p(p - a)(p -b)(p - c)] ,其中 S 表示三角形的面积,a、b、c 分别是三角形的三条边,而 p 则是半周长,也就是 p = (a + b + c) / 2 。
那海伦公式的展开式到底是啥样呢?咱们来一步步推导推导。
假设三角形的三条边分别是 a、b、c ,半周长 p = (a + b + c) / 2 ,那咱们就从 p 开始动手。
p = (a + b + c) / 2 ,两边同时乘以 2 ,得到 2p = a + b + c 。
接下来,我们把海伦公式里的S = √[p(p - a)(p - b)(p - c)] 中的 (p -a)(p - b)(p - c) 乘开。
先看 (p - a)(p - b) ,乘出来就是 p² - pb - pa + ab 。
然后再乘以 (p - c) ,得到:(p² - pb - pa + ab)(p - c) = p³ - p²c - p²b + pbc - p²a + pac + pab - abc把这个式子代入到海伦公式里,就有S = √[p(p³ - p²c - p²b + pbc - p²a + pac + pab - abc)]这式子看起来挺复杂,是吧?但咱们别怕,数学就是这样,一步一步来,总能理清楚。
我想起之前给学生们讲这个的时候,有个小同学皱着眉头问我:“老师,这公式这么麻烦,有啥用啊?”我笑着告诉他:“就像你搭积木,每一块积木看起来不起眼,但是组合在一起就能搭出漂亮的城堡。
这个公式也是,虽然复杂,但是在解决一些三角形面积问题的时候,可管用啦!”咱们接着说这个展开式。
为了让它更简洁一点,咱们再做进一步的变形和化简。
海伦公式的推导和应用

海伦公式的推导和应用(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除海伦公式海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王希伦(Heron,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。
但根据Morris Kline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表(未查证)。
我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。
假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=√[p(p-a)(p-b)(p-c)]而公式里的p为半周长:p=(a+b+c)/2——————————————————————————————————————————————注1:"Metrica"(《度量论》)手抄本中用s作为半周长,所以S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。
——————————————————————————————————————————————由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。
比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。
证明(1):与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。
设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为cosC = (a^2+b^2-c^2)/2abS=1/2*ab*sinC=1/2*ab*√(1-cos^2 C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]证明(2):我国宋代的数学家秦九韶也提出了“三斜求积术”。