(完整word版)垂径定理典型例题及练习
垂径定理练习题及答案

垂径定理练习题及答案一、选择题1. 在一个圆中,如果一条直径的端点与圆上一点相连,这条线段的中点与圆心的距离是直径的()A. 一半B. 半径B. 直径D. 无法确定2. 垂径定理指出,如果一条线段是圆的直径,那么它与圆上任意一点连线所形成的直角三角形的斜边是()A. 直径B. 半径C. 线段D. 无法确定3. 圆内接四边形的对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形是()A. 平行四边形B. 矩形C. 菱形D. 无法确定4. 如果圆的半径为r,那么圆的直径是()A. 2rB. rC. r的平方D. 2r的平方二、填空题1. 垂径定理告诉我们,如果一条线段是圆的直径,那么它与圆上任意一点连线所形成的直角三角形的斜边是______。
2. 圆的内接四边形中,如果对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形的对角线长度相等,等于______。
3. 已知圆的半径为5cm,那么圆的直径是______。
三、解答题1. 已知一个圆的半径为7cm,圆内有一点P,连接点P和圆心O,得到线段OP。
如果OP的长度为4cm,求点P到圆上任意一点的距离。
2. 一个圆的直径为14cm,圆内接四边形ABCD,其中AC为直径。
已知AB=6cm,求BC的长度。
四、证明题1. 证明:如果一个三角形是直角三角形,且斜边是圆的直径,那么这个三角形的外接圆的直径是这个三角形的斜边。
2. 证明:如果一个圆的内接四边形的对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形的对角线长度相等。
答案:一、选择题1. A2. A3. B4. A二、填空题1. 直径的一半2. 圆的直径3. 10cm三、解答题1. 点P到圆上任意一点的距离是3cm(利用勾股定理,OP为直角三角形的一条直角边,半径为斜边,另一直角边为点P到圆上任意一点的距离)。
2. BC的长度是8cm(利用圆内接四边形的性质,对角线互相平分,且AC是直径,所以BD=7cm,再利用勾股定理求BC)。
圆的垂径定理习题及答案

圆的垂径定理习题一.选择题?1.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是(????)?A.4???????B.6????????C.7????????D.8?2.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为(??)??A.2??????B.3??????C.4??????D.5?3.过⊙0内一点M的最长弦为10cm,最短弦长为8cm,则OM的长为()4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为(??)?A.12个单位?????B.10个单位??????????C.1个单位??????D.15个单位? 5.如图,O⊙的直径AB垂直弦CD于P,且P是半径OB的中点,6cmCD?,则直径AB的长是(???)? 6.下列命题中,正确的是(?????)?A.平分一条直径的弦必垂直于这条直径???B.平分一条弧的直线垂直于这条弧所对的弦?C.弦的垂线必经过这条弦所在圆的圆心???D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为(?????) 8.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为(?????)?A.??1?cm????B.?7cm??????C.?3?cm或4?cm????D.?1cm?或7cm?9.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为(?????)?A.2??????B.8??????C.2或8?????D.3二、填空题1.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为???????cm?2.在直径为10cm的圆中,弦AB的长为8cm,则它的弦心距为?????????cm3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于?????????4.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为????????cm?5.如图,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,OE=3厘米,则CD=????厘米? 6.半径为6cm的圆中,垂直平分半径OA的弦长为???????????cm7.过⊙O内一点M的最长的弦长为6cm,最短的弦长为4cm,则OM的长等于cm8.已知AB是⊙O的直径,弦CD⊥AB,E为垂足,CD=8,OE=1,则AB=9.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l,则弦AB的长是10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为?????????m11.如图,在直角坐标系中,以点P为圆心的圆弧与轴交于A、B两点,已知P(4,2)?和A(2,0),则点B的坐标是????????12.如图,AB是⊙O的直径,OD⊥AC于点D,BC=6cm,则OD=??????cm13.如图,矩形ABCD与圆心在AB上的圆O交于点G、B、F、E,GB=10,EF=8,那么AD=14.如图,⊙O的半径是5cm,P是⊙O外一点,PO=8cm,∠P=30o,则AB=?????????cm15.⊙O的半径为13?cm,弦AB∥CD,AB=24cm,CD=10cm,那么AB和CD的距离是?????????Cm 16.已知AB是圆O的弦,半径OC垂直AB,交AB于D,若AB=8,CD=2,则圆的半径为17.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为????????米18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是厘米19.如图,是一个隧道的截面,如果路面AB宽为8米,净高CD为8米,那么这个?隧道所在圆的半径OA是___________米20.如图,AB为半圆直径,O?为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D。
(完整word版)垂径定理典型例题及练习

典型例题分析:例题1、 基本概念1.下面四个命题中正确的一个是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心2.下列命题中,正确的是( ).A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧例题2、垂径定理1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是________cm.2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm.3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .(1)求证:四边形OEHF 是正方形.(2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长.5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=21BF.O A E F例题3、度数问题1、已知:在⊙O中,弦cm12=AB,O点到AB的距离等于AB的一半,求:AOB∠的度数和圆的半径.2、已知:⊙O的半径1=OA,弦AB、AC的长分别是2、3.求BAC∠的度数。
例题4、相交问题如图,已知⊙O的直径AB和弦CD相交于点E,AE=6cm,EB=2cm,∠BED=30°,求CD的长.例题5、平行问题在直径为50cm的⊙O中,弦AB=40cm,弦CD=48cm,且AB∥CD,求:AB与CD之间的距离.例题6、同心圆问题如图,在两个同心圆中,大圆的弦AB,交小圆于C、D两点,设大圆和小圆的半径分别为ba,.求证:22baBDAD-=⋅.例题7、平行与相似已知:如图,AB是⊙O的直径,CD是弦,于CDAE⊥E,CDBF⊥于F.求证:FDEC=.A BDCEO作 业: 一、概念题1.下列命题中错误的有()(1)弦的垂直平分线经过圆心(2)平分弦的直径垂直于弦(3)梯形的对角线互相平分(4)圆的对称轴是直径A .1个B .2个C .3个D .4个2、⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( )(A )5OM 3≤≤ (B )5OM 4≤≤(C )5OM 3<< (D )5OM 4<<3.如图,如果AB 为⊙O 直径,弦AB CD ⊥,垂足为E ,那么下列结论中错误的是( )A .DE CE =B .C .BAD BAC ∠=∠ D .AD AC >4.如图,AB 是⊙O 直径,CD 是⊙O 的弦,CD AB ⊥于E ,则图中不大于半圆的相等弧有( )对。
初中垂径定理试题及答案

初中垂径定理试题及答案一、选择题1. 在圆中,垂直于弦的直径是该弦的()。
A. 垂线B. 垂径C. 弦心距D. 弦长答案:B2. 垂径定理告诉我们,如果一条线段垂直于弦,并且平分弦,那么它也平分弦所对的()。
A. 弧B. 圆心角C. 弦心距D. 弦长答案:A3. 在圆中,如果一条直径垂直于弦,那么这条直径将弦分成的两段长度()。
A. 相等B. 不相等C. 无法确定D. 取决于圆的大小答案:A二、填空题4. 在圆中,如果弦AB的中点为M,且直径CD垂直于弦AB于点M,则弦AB所对的弧ACB的度数为______。
答案:90°5. 垂径定理在圆的几何学中非常重要,它说明了垂直于弦的直径将弦平分,并且平分的弦所对的弧是______。
答案:相等的三、解答题6. 已知圆O的半径为10cm,弦AB垂直于直径CD于点M,求弦AB的长度。
答案:由于直径CD垂直于弦AB,根据垂径定理,弦AB被直径CD平分,因此弦AB的长度为圆的直径,即20cm。
7. 在一个圆中,弦AC的长度为12cm,弦BC的长度为8cm,且AC和BC相交于点O,求圆的半径。
答案:由于AC和BC相交于圆心O,根据垂径定理,OA=OC,OB=OA,因此OA=OC=6cm,OB=OA=6cm。
根据勾股定理,圆的半径r满足r^2 =OA^2 + OB^2 = 6^2 + 6^2 = 72,所以r = √72 = 6√2 cm。
四、证明题8. 证明:在圆中,如果一条直径垂直于弦,那么这条直径将弦平分。
答案:设圆心为O,直径为CD,弦为AB,且CD垂直于AB于点M。
要证明CM=MD。
由于CD是直径,所以∠CMO=∠DMO=90°。
根据垂径定理,CM=MD,因此这条直径将弦平分。
垂径定理典型例题及练习(供参考)

典型例题分析:例题1、 基本概念1.下面四个命题中正确的一个是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心2.下列命题中,正确的是( ).A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧例题2、垂径定理1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是________cm.2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm.3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .(1)求证:四边形OEHF 是正方形.(2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长.5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=21BF.O A E F例题3、度数问题1、已知:在⊙O中,弦cm12=AB,O点到AB的距离等于AB的一半,求:AOB∠的度数和圆的半径.2、已知:⊙O的半径1=OA,弦AB、AC的长分别是2、3.求BAC∠的度数。
例题4、相交问题如图,已知⊙O的直径AB和弦CD相交于点E,AE=6cm,EB=2cm,∠BED=30°,求CD的长.例题5、平行问题在直径为50cm的⊙O中,弦AB=40cm,弦CD=48cm,且AB∥CD,求:AB与CD之间的距离.例题6、同心圆问题如图,在两个同心圆中,大圆的弦AB,交小圆于C、D两点,设大圆和小圆的半径分别为ba,.求证:22baBDAD-=⋅.例题7、平行与相似已知:如图,AB是⊙O的直径,CD是弦,于CDAE⊥E,CDBF⊥于F.求证:FDEC=.A BDCEO作 业:一、概念题1.下列命题中错误的有()(1)弦的垂直平分线经过圆心(2)平分弦的直径垂直于弦(3)梯形的对角线互相平分(4)圆的对称轴是直径A .1个B .2个C .3个D .4个2、⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( )(A )5OM 3≤≤ (B )5OM 4≤≤(C )5OM 3<< (D )5OM 4<<3.如图,如果AB 为⊙O 直径,弦AB CD ⊥,垂足为E ,那么下列结论中错误的是( )A .DE CE =B .C .BAD BAC ∠=∠ D .AD AC >4.如图,AB 是⊙O 直径,CD 是⊙O 的弦,CD AB ⊥于E ,则图中不大于半圆的相等弧有( )对。
(附答案)《垂径定理》典型例题

《垂径定理》典型例题例1. 选择题:(1)下列说法中,正确的是()A. 长度相等的弧是等弧B. 两个半圆是等弧C. 半径相等的弧是等弧D. 直径是圆中最长的弦答案:D(2)下列说法错误的是()A. 圆上的点到圆心的距离相等B. 过圆心的线段是直径C. 直径是圆中最长的弦D. 半径相等的圆是等圆答案:B例2. 如图,已知AB是⊙O的直径,M、N分别是AO、BO的中点,CM⊥AB,DN⊥AB。
分析:要证弧相等,可证弧所对的弦相等,也可证弧所对的圆心角相等。
证明:连结OC、OD∵M、N分别是OA、OB的中点∵OA=OB,∴OM=ON又CM⊥AB,DN⊥AB,OC=OD∴Rt△OMC≌Rt△OND∴∠AOC=∠BOD例3. 在⊙O中,弦AB=12cm,点O到AB的距离等于AB的一半,求∠AOB 的度数和圆的半径。
分析:根据O到AB的距离,可利用垂径定理解决。
解:过O点作OE⊥AB于E∵AB=12由垂径定理知:∴△ABO为直角三角形,△AOE为等腰直角三角形。
例4. 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA 为半径的圆与AB、BC分别交于点D、E。
求AB、AD的长。
分析:求AB较简单,求弦长AD可先求AF。
解:过点C作CF⊥AB于F∵∠C=90°,AC=3,BC=4∵∠A=∠A,∠AFC=∠ACB∴△AFC∽△ACB例5. 如图,⊙O中,弦AB=10cm,P是弦AB上一点,且PA=4cm,OP=5cm,求⊙O的半径。
分析:⊙O中已知弦长求半径,通常作弦心距构造直角三角形,利用勾股定理求解。
解:连OA,过点O作OM⊥AB于点M∵点P在AB上,PA=4cm即⊙O的半径为7cm。
例6. 如图“五段彩虹展翅飞”是某省利用国债资金修建的横跨渡江的琼洲大桥已正式通车,该桥的两边均有五个红色的圆拱,最高的圆拱的跨度为110米,拱高为22米,求这个圆拱所在圆的直径。
(完整版)圆的垂径定理习题及答案

圆的垂径定理习题一 . 选择题1.如图 1,⊙ O 的直径为 10,圆心 O 到弦 AB 的距离 OM 的长为 3,那么弦 AB 的长是( )2.如图,⊙O 的半径为 5,弦AB 的长为 8,M 是弦AB 上的一个动点,则线段 OM 长的最小值为( )3.过⊙ 0内一点 M 的最长弦为 10cm ,最短弦长为 8cm ,则 OM 的长为( )4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 O A 、OB 在 O 点钉在一起,并使它们保持垂直,在测直径时,把 O 点靠在圆周上,读得刻度 OE=8个单位, OF=6个单位,则圆的直位 D . 15 个单位5.如图,O ⊙的直径 AB 垂直弦 CD 于P ,且P 是半径 OB 的中点,6cmCD ,则直径 AB 的长是( )6.下列命题中,正确的是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必经过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心7.如图,某公园的一座石拱桥是圆弧形(劣弧) ,其跨度为 24 米,拱的半径为 13 米,则拱高为A .4B .6C .7D .8B .3C .4D . 5B . 10 个单位C . 1 个单A . 212 个单位8.⊙ O 的半径为 5cm ,弦 AB//CD ,且 AB=8cm,CD=6cm 则, AB 与 CD 之间的距离为 ( )A . 1 cmB . 7cmC . 3 cm 或 4 cmD . 1cm 或 7cm 9.已知等腰△ ABC 的三个顶点都在半径为 5 的⊙ O 上,如果底边 BC 的长为 8,那么 BC 边上的高为 ( ) A .2 B .8 C .2或 8 D .3二、填空题1.已知 AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与 C ,OC=3cm ,则⊙ O 的半径为 cm 2.在直径为 10cm 的圆中,弦 AB 的长为 8cm ,则它的弦心距为 cm3.在半径为 10的圆中有一条长为 16 的弦,那么这条弦的弦心距等于4. 已知 AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与 C ,OC=3cm ,则⊙ O 的半径为 cm 5.如图,⊙O 的直径 AB 垂直于弦 CD ,垂足为 E ,若∠COD =120°,OE =3厘米,则 CD = 厘 6.半径为 6cm 的圆中,垂直平分半径 OA 的弦长为 cm7.过⊙ O 内一点 M 的最长的弦长为 6cm ,最短的弦长为 4cm ,则 OM 的长等于 cm8.已知 AB 是⊙O 的直径,弦 CD ⊥ AB ,E 为垂足, CD=8,OE=1,则 AB=9.如图, AB 为⊙O 的弦,⊙ O 的半径为 5,OC ⊥AB 于点 D ,交⊙ O 于点 C ,且 CD =l ,则弦 AB 的长11. 如图,在直角坐标系中,以点 P 为圆心的圆弧与轴交于 A 、B 两点,已知 P(4,2) 和A(2,0) , 则点 B 的坐标是12.如图, AB 是⊙ O 的直径, OD ⊥AC 于点 D ,BC=6cm ,则 OD= cm10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知 AB =16m ,半径 OA = 10m ,则中间柱CD 13.如图,矩形 ABCD 与圆心在 AB 上的圆 O 交于点 G 、B 、 F 、E ,GB=10, EF=8,那么 AD=的高度为14.如图,⊙ O 的半径是 5cm ,P 是⊙O 外一点,PO=8cm ,∠P=30o, 则 AB= cm是 Cm16.已知 AB 是圆 O 的弦,半径 OC 垂直 AB ,交 AB 于 D ,若 AB=8, CD=2,则圆的半径为 17.一个圆弧形门拱的拱高为 1 米,跨度为 4 米,那么这个门拱的半径为 米 18.在直径为 10厘米的圆中 ,两条分别为 6厘米和 8厘米的平行弦之间的距离是 厘米19. 如图,是一个隧道的截面, 如果路面 AB 宽为 8米,净高 CD 为 8米,那么这个 隧道所在圆的20.如图, AB 为半圆直径, O 为圆心, C 为半圆上一点, E 是弧 AC 的中点, OE 交弦 AC 于点 D 。
(完整版)垂径定理练习题及答案

垂径定理一.选择题★1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( )A .4B .6C .7D .8答案:D★★2.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( )A .2B .3C .4D .5答案:B★★3.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( )A .9cmB .6cmC .3cmD .cm 41 答案:C★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )A .12个单位B .10个单位C .1个单位D .15个单位答案:B★★5.如图,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( )A .23cmB .32cmC .42cmD .43cm答案:D★★6.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心答案:D★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )A.5米 B.8米 C.7米 D.53米答案:B★★★8.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( ) A. 1 cm B. 7cm C. 3 cm或4 cm D. 1cm 或7cm答案:D★★★9.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为( )A.2 B.8 C.2或8 D.3答案:C二.填空题★1.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm答案:5 cm★2.在直径为10cm的圆中,弦AB的长为8cm,则它的弦心距为 cm答案:3 cm★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于答案:6★★4.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm★★5.如图,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,OE=3厘米,则CD =厘米O图 4E DCBA答案:63 cm★★6.半径为6cm的圆中,垂直平分半径OA的弦长为 cm.答案:63 cm★★7.过⊙O内一点M的最长的弦长为6cm,最短的弦长为4cm,则OM的长等于 cm 答案:5★★8.已知AB是⊙O的直径,弦CD⊥AB,E为垂足,CD=8,OE=1,则AB=____________答案:217★★9.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l,则弦AB的长是答案:6★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为 m答案:4★★11.如图,在直角坐标系中,以点P为圆心的圆弧与轴交于A、B两点,已知P(4,2)和A(2,0),则点B的坐标是答案:(6,0)★★12.如图,AB是⊙O的直径,OD⊥AC于点D,BC=6cm,则OD= cm答案:3★★13.如图,矩形ABCD与圆心在AB上的圆O交于点G、B、F、E,GB=10,EF=8,那么AD=答案:3★★14.如图,⊙O的半径是5cm,P是⊙O外一点,PO=8cm,∠P=30º,则AB= cm PBAO答案:6★★★15.⊙O的半径为13 cm,弦AB∥CD,AB=24cm,CD=10cm,那么AB和CD的距离是 Cm答案:7cm 或17cm★★★16.已知AB是圆O的弦,半径OC垂直AB,交AB于D,若AB=8,CD=2,则圆的半径为答案:5★★★17.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为米答案:52★★★18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是厘米BAPOyx答案:7或1★★★19.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的半径OA 是___________米答案:5★★★20.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型例题分析:
例题1、 基本概念
1.下面四个命题中正确的一个是( )
A .平分一条直径的弦必垂直于这条直径
B .平分一条弧的直线垂直于这条弧所对的弦
C .弦的垂线必过这条弦所在圆的圆心
D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心
2.下列命题中,正确的是( ).
A .过弦的中点的直线平分弦所对的弧
B .过弦的中点的直线必过圆心
C .弦所对的两条弧的中点连线垂直平分弦,且过圆心
D .弦的垂线平分弦所对的弧
例题2、垂径定理
1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深
度为16cm ,那么油面宽度AB 是________cm.
2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的
最大深度为________cm.
3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .
(1)求证:四边形OEHF 是正方形.
(2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.
4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长.
5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是
的中点,AD ⊥BC 于D ,求证:AD=21BF.
O A E F
例题3、度数问题
1、已知:在⊙O中,弦cm
12
=
AB,O点到AB的距离等于AB的一半,求:AOB
∠的度数和圆的半径.
2、已知:⊙O的半径1
=
OA,弦AB、AC的长分别是2、3.求BAC
∠的度数。
例题4、相交问题
如图,已知⊙O的直径AB和弦CD相交于点E,AE=6cm,EB=2cm,∠BED=30°,求CD的长.
例题5、平行问题
在直径为50cm的⊙O中,弦AB=40cm,弦CD=48cm,且AB∥CD,求:AB与CD之间的距离.
例题6、同心圆问题
如图,在两个同心圆中,大圆的弦AB,交小圆于C、D两点,设大圆和小圆的
半径分别为b
a,.求证:2
2b
a
BD
AD-
=
⋅.
例题7、平行与相似
已知:如图,AB是⊙O的直径,CD是弦,于
CD
AE⊥E,CD
BF⊥于F.求证:FD
EC=.
A B
D
C
E
O
作 业: 一、概念题
1.下列命题中错误的有()
(1)弦的垂直平分线经过圆心(2)平分弦的直径垂直于弦
(3)梯形的对角线互相平分(4)圆的对称轴是直径
A .1个
B .2个
C .3个
D .4个
2、⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( )
(A )5OM 3≤≤ (B )5OM 4≤≤
(C )5OM 3<< (D )5OM 4<<
3.如图,如果AB 为⊙O 直径,弦AB CD ⊥,垂足为E ,那么下列结论中错误的
是( )
A .DE CE =
B .
C .BA
D BAC ∠=∠ D .AD AC >
4.如图,AB 是⊙O 直径,CD 是⊙O 的弦,CD AB ⊥于E ,则图中不大于半圆的相等
弧有( )对。
A .1对
B .2对
C .3对
D .4对
二、垂径定理
1、过⊙O 内一点P 的最长弦为10cm ,最短的弦为6cm ,则OP 的长为 .
2.在⊙O 中,弦AB 长为cm 8,圆心到弦AB 的距离为cm 3,则⊙O 半径长为 cm
3.半径是5cm 的圆中,圆心到cm 8长的弦的距离是 cm
4.如图,有一圆弧形桥拱,拱形的半径m 10=OA ,桥拱的距度16=AB m ,则拱高
_____=CD m.
5.一水平放置的圆柱型水管的横截面如图所示,如果水管横截面的半径是13cm ,水面宽
24=AB ,则水管中水深是_______cm.
6.如图,⊙O 的直径⊥CD AB ,垂足为点E ,若8,2==ED CE ,则=AB ( )
A .2
B .4
C .8
D .16
7.过⊙O 内一点M 的最长的弦长为4cm ,最短的弦长为2cm ,
则OM 的长为( )
A .3cm
B .2cm
C .1
D .3cm
8.已知:如图,⊙O 中直径AB 垂直于弦CD ,垂足为E ,若6,10==CD AB ,则BE
的长是( )
A .1
B .2
C .3
D .4
9.已知⊙O 的弦AB 长8cm ,弦心距为3cm ,则⊙O 的直径是( )
A .5cm
B .10cm
C .55cm
D .73cm
10.已知⊙O 的半径为2cm ,弦AB 长32cm ,则这条弦的中点到弦所对劣弧的中点的距离为( )
A .1cm
B .2cm
C .2cm
D .3cm
11如图,已知⊙O 的半径为cm 6,两弦AB 与CD 垂直相交于E ,若cm CE 3=,
cm DE 9=,则=AB ( )
A .cm 6
B .cm 33
C .cm 3
D .cm 36
三、度数问题
1、在⊙O 中,AB 是弦,C 是AB 的中点,延长OC 交⊙O 于D .若CD OC =,则AOB ∠的度数是( ).
A .︒90
B .︒100
C .︒120
D .︒60
四、相交问题
1、圆的弦与直径相交成30°角,并且分直径为6cm 和4cm 两部分,则弦心距为( )
A .33
B .3
C .2
1 D .23 五、平行问题
1、 圆的两互相平行的弦长分别8cm 1和4cm 2,又两弦之间距离为cm 3,则圆的半径长是 cm
2、 在半径为cm 5的圆内有两条互相平行的弦,弦长分别为cm 8、cm 6,则这两条弦之间的距离为________
六、同心圆
1、如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 两点,cm 6,cm 10==CD AB ,则AC 的长为( )
A .0.5cm
B .1cm
C .1.5cm
D .2cm
七、平行于相似
1、如图,已知:在⊙O 中,AB 是直径,CD 是弦,CD CE ⊥交AB 于E ,CD DF ⊥交AB 于F .求证:BF AE =.。