第二讲数图形
四年级奥数第二讲图形的计数问题含答案

四年级奥数第⼆讲图形的计数问题含答案第⼆讲图形的计数问题⼀、知识点:⼏何图形计数问题往往没有显⽽易见的顺序,⽽且要数的对象通常是重叠交错的,要准确计数就需要⼀些智慧了.实际上,图形计数问题,通常采⽤⼀种简单原始的计数⽅法-⼀枚举法.具体⽽⾔,它是指把所要计数的对象⼀⼀列举出来,以保证枚举时⽆⼀重复、.⽆⼀遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.⼆、典例剖析:例(1)数出右图中总共有多少个⾓分析:在∠AOB内有三条⾓分线OC1、OC2、OC3,∠AOB被这三条⾓分线分成4个基本⾓,那么∠AOB内总共有多少个⾓呢?⾸先有这4个基本⾓,其次是包含有2个基本⾓组成的⾓有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本⾓组成的⾓有2个(即∠AOC3、∠C1OB),最后是包含有4个基本⾓组成的⾓有1个(即∠AOB),所以∠AOB内总共有⾓:4+3+2+1=10(个)解:4+3+2+1=10(个)答:图中总共有10个⾓。
练⼀练:数⼀数右图中总共有多少个⾓?答案: 总共有⾓:10+9+8+…+4+3+2+1=55(个)例(2 )数⼀数共有多少条线段?共有多少个三⾓形?分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三⾓形,先看在△AGH中,在GH上有3个分点,分成基本⼩三⾓形有4个.所以在△AGH中共有三⾓形4+3+2+1=10(个).在△AMN与△ABC中,三⾓形有同样的个数,所以在△ABC中三⾓形个数总共:(4+3+2+1)×3=10×3=30(个)解::①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三⾓形是:(4+3+2+1)×3=10×3=30(个)答:在△ABC中共有线段60条,共有三⾓形30个。
一年级下册数学讲义-思维拓展:图形的计数(含答案PDF)全国通用

第二讲图形的计数一、平面图形1、规则图形方法:开火车①单层总数=基本线段数依次加到1②多层三角形A、边到边B、角到边2、不规则图形方法:分类数①按大小②按方向二、立体图形1、分层数2、空白=实心-空心3、分割法【例1【解析】要数清图中一共有多少个圆点点,小朋友们不妨先想一想我们有哪些观察角度。
方法一:从上到下观察,分层数,那么总数是:1+2+3+4+5+6+7+6+5+4+3+2+1=49(个)方法二:斜着看,有7排7列个圆点点,总数是:7+7+7+7+7+7+7=49(个)【例2】时钟1时敲1下,2时敲2下,3时敲3下,……照这样敲下去,从1时起到时钟共敲28下时,时钟显示是几时?当共敲80下的时候又是几时?【解析】注意:13点的时候指针指向1,敲击一下,敲击的次数与时钟上时针所指数字相同;记住一些常用的加和结果可以方便解题。
(1)1+2+3+4+5+6+7=28(下),所以共敲28次的时候是7时的最后一次敲击。
(2)从1时到12时一共敲了1+2+3+4+5+6+7+8+9+10+11+12=78(下)(这里小朋友要是背过常用加和结果就可以迅速发现从1加到12的结果是78了),过了12时,又会从1开始敲,78+1+1=80(下),所以敲击第80下的时候,时钟显示的是2时,此时正好敲2时的第一下。
【例3】艾迪、薇儿、加加、减减和6个士兵一起分54颗珍珠。
要求每个人都分到珍珠,但分到的珍珠颗数又不能一样多,怎么分?如果不能分,至少应该有多少颗珍珠才能够分?【解析】小朋友们一定要注意,一共有10个人,不要见到数字6就以为只有6个人啦。
每个人都分到珍珠,但颗数又不能相同,我们不知道分到珍珠最多的人可以分到多少颗,但是我们可以让分的最少的只分到1个,然后其他人依次比上一个人多拿一个,这样就能算出至少需要多少颗珍珠才够分。
至少需要的珍珠数为:1+2+3+4+5+6+7+8+9+10=55(颗),所以54颗珍珠不够分。
二年级奥数教案第2讲:图形规律

(板书课题:图形规律)二、星海遨游[30分钟][一]星海遨游1[10分钟]找规律,选出第4幅图的图形编号。
①②③④师:同学们,用你们的火眼金睛观察下这道题,看看题中的四个图形大小、形状、数量等是否有什么相同或不同点呢?生:[思考]它们外形都是一个圆。
师:非常棒,这个是他们相同点,那他们不同点是什么。
生:里面阴影部分的图形在圆中的位置不一样。
师:果真是火眼金睛,那我们看看这个阴影部分的图形它在圆中的位置有没有一定的规律呢?生:[观察思考]师:第一个圆中阴影部分开口方向朝哪边?生:开口朝左。
师:那第二个圆中阴影部分开口方向又朝哪边?生:朝上。
师:第三个呢?生:朝右。
师:同学们,用手比划出前面三个圆中阴影部分开口朝的方向,先哪,到哪,再到哪?生:先左,再上,再右。
师:所以顺着下来,最后一个圆中阴影部分应该开口朝哪呢?生:朝下。
板书:选③。
[一]星海历练1[5分钟]看图形,找规律,第四幅图应该怎么画?分析:从前三个图形中可以知道方框内三角形数量不变,黑色三角形的位置发生变化,从右下往上,先右下角第一个涂黑--右下角往上第二斜列两个涂黑--右下角往上第三斜列两个涂黑--右下角往上第四斜列两个涂黑。
板书:[二]星海遨游2[10分钟]仔细观察下面图形变化规律,想一想第四幅图应该怎么画?师:同学们,你们按刚才老师教的方法,看下这里图形有哪些是变化的,哪些是不变的?生1:方框内四个小图形的数量和图形形状不变。
生2:四个小图形在方框内位置发生变化。
师:发生了怎样的变化呢?生:老师它们的位置都不是固定的,好难发现。
师:那我们把这个分成四格的方框标上序号,然后一个图形一个图形看看能否发现它们的变化规律。
师:老师把这个方框按这样的顺序标号。
[板书:]师:三角形的变化位置是按怎样的规律摆放的?生:4-1-2-空-4。
师:说明第四个图形中哪个方格内是放三角形的呢?生:第3个。
师:按这样的方法,看看正方形、圆形、长方形又是按怎样的规律摆放的。
第二讲图形的计数教案

第二讲图形的计数知识点:本讲学习的主要内容有:(一)线段、角、三角形的计数;(二)长方形、正方形、立体的计数。
图形计数是指对满足一定条件的某图形进行观察并逐一数出来。
在计数过程中,必须有次序有条理地进行计数:做不重复也不遗漏。
最常用的方法是:分类计数,利用基本图形计数。
教学目标:通过本讲的学习,学生能认识各种要数图形的基本特征和基本构成;掌握图形的基本方法做到不重不漏;能正确,有序,合理,迅速地数出图形。
重难点:1.学生能认识各种要数图形的基本特征和基本构成。
2.掌握数图形的基本方法做到不重复不遗漏。
3.能够正确能正确,有序,合理,迅速地数出图形。
第一课时教学时间:教学内容:数线段和角教学目标:1.通过学习让学生掌握数角和线段的方法,做到不遗漏不重复,并能正确,有序,合理,迅速地数出图形。
2.培养学生思维的有序性和良好的学习习惯。
重难点:1.掌握数线段和角的方法,做到不遗漏不重复。
2.能够正确,有序,合理,迅速地数出图形。
教学过程:一.例题1如下图中有多少条线段?ABCDE(1)学生先独立数一数,并交流结论。
(2)教师引导学生得出正确答案,并总结方法方法一:将图中的线段AB、BC、CD、DE看作是基本线段,那么:由1条基本线段构成的线段有AB、BC、CD、DE共4条;由2条基本线段构成的线段有AC、BD、CE共3条;由3条基本线段构成的线段有AD、BE共2条;由4条基本线段构成的线段有AE共1条;方法二:从线段的两个端点出发去数:以A点为左端点的线段有AB、AC、AD、AE共4条;以B点为左端点的线段有BC、BD、BE共3条;以C点为左端点的线段有CD、CE共2条;以D点为左端点的线段有DE共1条;2.仿练:如图,数一数图中各有多少条线段?二、教学数角1.例2如下图中共有几个角?O A(1)组织学生数一数,并交流数的方法和结论(2)教师引导学生得出正确答案,并总结方法方法一:将图中AOB COD看作基本角,那么:由1个基本角构成的角有AOB BOC COD 共3个;由2个基本角构成的角有AOC BOD 共2个;由3个基本角构成的角有AOD共1个;方法二:从角的一边出发来数以OA为一边的角有AOB AOC AOD 共3个;以OB为一边的角有BOC BOD 共2个;以OC 为一边的角只有COD1个。
人教版小学四年级数学第2讲:图形计数(学生版)

第二讲图形计数几何图形计数问题往往没有显而易见的顺序,而且要数的对象通常是重叠交错的,要准确计数就需要一些智慧了.实际上,图形计数问题,通常采用一种简单原始的计数方法-一枚举法.具体而言,它是指把所要计数的对象一一列举出来,以保证枚举时无一重复、.无一遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.一:简单图形计数的方法。
二:复杂图形计数的方法和找规律的方法。
例(1)数出右图中总共有多少个角例(2 )数一数共有多少条线段?共有多少个三角形?例(3)数一数图中长方形的个数例(4)数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形).例(5)数一数图中三角形的个数例(6)数一数图中一共有多少个三角形?A一、填空题:1.右图一共有( )个长方形?2.右图一共有( )个长方形?3.右图一共有( )个长方形?4.右图一共有( )个正方形?5.右图一共有( )个长方形?6.右图一共有( )个平行四边形?7.右图一共有( )个梯形?8.右图一共有( )个正方形?9.右图一共有( )个正方形?10.右图一共有( )个正方形?二、解答题:11.下图共有几个正方形?12.下图共有几个正方形?13.在一个图案中有100个矩形、100个菱形和40个正方形,这个图案中至少有多少个平行四边形?14.三个同样的正方形框架,摆放在适当的位置,最多可以数出多少个正方形来?B一、填空题1. 下图中长方形(包括正方形)总个数是_____.2. 下图中有正方形_____个,三角形_____个,平行四边形_____个,梯形_____个.3. 下图中共出现了_____个长方形.4. 先把正方形平均分成8个三角形.再数一数,它一共有_____个大小不同的三角形.5. 图形中有_____个三角形.6.如下图,一个三角形分成36个小三角形.把每个小三角形涂上红色或蓝色,两个有公共边的小三角形要涂上不同的颜色,已知涂成红色的三角形比涂成蓝色的三角形多,那么多_____个.7. 把一条长15cm 的线段截为三段,使每条线段的长度是整数,用这三条线段可以组成多少个不同的三角形?(当且仅当两三角形的三条边可以对应相等时,我们称这两个三角形是相同的.)C1. 右图是由小立方体码放起来的,其中有一些小方体看不见.图中共有_____个小立方体.2. 下图中共有_____个正方形.3. 有九张同样大小的圆形纸片,其中标有数码“1”的有1张;标有数码“2”的有2张;标有数码“3”的有3张,标有数码“4”的也有3张。
四年级下册数学奥数试题-培优拓展训练:第2讲:图形计数(教师版)

第二讲图形计数几何图形计数问题往往没有显而易见的顺序,而且要数的对象通常是重叠交错的,要准确计数就需要一些智慧了.实际上,图形计数问题,通常采用一种简单原始的计数方法-一枚举法.具体而言,它是指把所要计数的对象一一列举出来,以保证枚举时无一重复、.无一遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.一:简单图形计数的方法。
二:复杂图形计数的方法和找规律的方法。
例(1)数出右图中总共有多少个角分析:在∠AOB内有三条角分线OC1、OC2、OC3,∠AOB被这三条角分线分成4个基本角,那么∠AOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本角组成的角有2个(即∠AOC3、∠C1OB),最后是包含有4个基本角组成的角有1个(即∠AOB),所以∠AOB内总共有角:4+3+2+1=10(个)解:4+3+2+1=10(个)答:图中总共有10个角。
例(2 )数一数共有多少条线段?共有多少个三角形?分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三角形,先看在△AGH中,在GH上有3个分点,分成基本小三角形有4个.所以在△AGH中共有三角形4+3+2+1=10(个).在△AMN与△ABC中,三角形有同样的个数,所以在△ABC中三角形个数总共:(4+3+2+1)×3=10×3=30(个)解::①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三角形是:(4+3+2+1)×3=10×3=30(个)答:在△ABC中共有线段60条,共有三角形30个。
第二讲 图形的计数
第二讲图形的计数一、平面图形1、规则图形方法:开火车①单层总数=基本线段数依次加到1②多层三角形A、边到边B、角到边2、不规则图形方法:分类数①按大小②按方向二、立体图形1、分层数2、空白=实心-空心3、分割法——马悦老师【例1【解析】要数清图中一共有多少个圆点点,小朋友们不妨先想一想我们有哪些观察角度。
方法一:从上到下观察,分层数,那么总数是:1+2+3+4+5+6+7+6+5+4+3+2+1=49(个)方法二:斜着看,有7排7列个圆点点,总数是:7+7+7+7+7+7+7=49(个)【例2】时钟1时敲1下,2时敲2下,3时敲3下,……照这样敲下去,从1时起到时钟共敲28下时,时钟显示是几时?当共敲80下的时候又是几时?【解析】注意:13点的时候指针指向1,敲击一下,敲击的次数与时钟上时针所指数字相同;记住一些常用的加和结果可以方便解题。
(1)1+2+3+4+5+6+7=28(下),所以共敲28次的时候是7时的最后一次敲击。
(2)从1时到12时一共敲了1+2+3+4+5+6+7+8+9+10+11+12=78(下)(这里小朋友要是背过常用加和结果就可以迅速发现从1加到12的结果是78了),过了12时,又会从1开始敲,78+1+1=80(下),所以敲击第80下的时候,时钟显示的是2时,此时正好敲2时的第一下。
【例3】艾迪、薇儿、加加、减减和6个士兵一起分54颗珍珠。
要求每个人都分到珍珠,但分到的珍珠颗数又不能一样多,怎么分?如果不能分,至少应该有多少颗珍珠才能够分?【解析】小朋友们一定要注意,一共有10个人,不要见到数字6就以为只有6个人啦。
每个人都分到珍珠,但颗数又不能相同,我们不知道分到珍珠最多的人可以分到多少颗,但是我们可以让分的最少的只分到1个,然后其他人依次比上一个人多拿一个,这样就能算出至少需要多少颗珍珠才够分。
至少需要的珍珠数为:1+2+3+4+5+6+7+8+9+10=55(颗),所以54颗珍珠不够分。
华罗庚学校数学课本(5年级下册)第02讲 不规则图形面积的计算(二)
第二讲不规则图形面积的计算(二)不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时还常要和“容斥原理”(即:集合A与集合B之间有:S A∪B=S A+S b-S A∩B)合并使用才能解决。
例1 如右图,在一个正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积。
解法1:把上图靠下边的半圆换成(面积与它相等)右边的半圆,得到右图.这时,右图中阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等.所以上图中阴影部分的面积等于正方形面积的一半。
解法2:将上半个“弧边三角形”从中间切开,分别补贴在下半圆的上侧边上,如右图所示.阴影部分的面积是正方形面积的一半。
解法3:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如右图所示.阴影部分的面积是正方形的一半.例2 如右图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。
解:由容斥原理S阴影=S扇形ACB+S扇形ACD-S正方形ABCD例3 如右图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE =6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积。
解:S阴影=S扇形ABE+S扇形CBF-S矩形ABCD=13π-24=15(平方厘米)(取π=3)。
例4 如右图,直角三角形ABC中,AB是圆的直径,且AB=20厘米,如果阴影(Ⅰ)的面积比阴影(Ⅱ)的面积大7平方厘米,求BC长。
分析已知阴影(Ⅰ)比阴影(Ⅱ)的面积大7平方厘米,就是半圆面积比三角形ABC面积大7平方厘米;又知半圆直径AB=20厘米,可以求出圆面积.半圆面积减去7平方厘米,就可求出三角形ABC的面积,进而求出三角形的底BC的长.=(157-7)×2÷20=15(厘米)。
最新2017小学二年级全学年上下册奥数举一反三经典课件(共38讲419页)
练习 3: 数一数下面图中各有多少个三角形。答
练习3 6,10,5
• 例4:数一数下图中共有多少个三角形。 •
• • • • •分析与解答:与前一个例子相比,图中多了一条线段EF, 因此三角形的个数应是AD和EF上面的线段与点O所围成 的三角形个数的和。显然,以AD上的线段为底边的三角 形也是1+2+3=6个,所以图中共有6×2=12个三角形。
• 【例题1】 •下面一组图中,有一个是不同的,你能找出它吗?
•思路导航:图(1)、(2)、(3)、(5)是完全相同的 两个图形重叠一小部分。而图(4)是两个完全一样的半 圆拼成的一个整圆,没有重叠。 • 这几组图形中,第4组图形与其他的不同。
练习 1 1.下面一组图,其中有一个是不同的,你能找出来吗?
.练习 2: 下列各图中各有多少个锐角?答
期望数学 岛
1.6 2.15 3.28
•例3:数一数下图中共有多少个三角形。
•分析与解答:图中AD边上的每一条线段与顶点O构成一 个三角形,也就是说,AD边上有几条线段,就构成了几 个三角形,因为AD上有4个点,共有1+2+3=6条线段,所 以图中有6个三角形。 •
第32讲 浅谈最值
第23讲 不会输的游戏 第33讲 间隔的学问
第24讲 位置趣谈
第34讲 推理计算
第25讲 拆数游戏
第35讲 坐船过河
第26讲 巧用余数(二) 第36讲 合理安排
第27讲 应用题(二) 第37讲 寻找隐藏条件
第28讲 线路问题
第38讲 简单推理
第29讲 智趣巧题
第30讲 移多补少
第1讲 比谁眼力好
练习 5
练习 5
1.仔细观察,第四幅图应画什么图形? 1.
(新人教A)高三数学第二轮复习第二讲函数的图像与性质
第二讲 函数(二)一、函数的图象1,图象的变换 (1)平移变换①函数(),y f x a =+的图象是把函数()y f x =的图象沿x 轴向右(0a >)或向右(0a <)平移||a 个单位得到的;②函数)0(,)(<+=a a x f y 的图象是把函数轴的图象沿y x f y )(=向上(0a >)或向下(0a <)平个单位得到的移a 。
(2)对称变换①函数)(x f y =与函数)(x f y -=的图象关于直线x=0对称;函数)(x f y =与函数)(x f y -=的图象关于直线y=0对称;函数)(x f y =与函数)(x f y --=的图象关于坐标原点对称; ②函数)(x a f y +=与函数)(x a f y -=的图象关于直线a x =对称。
③如果函数)(x f y =对于一切,R x ∈都有=+)(a x f )(a x f -,那么)(x f y = 的图象关于直线a x =对称。
④设函数y=f(x)的定义域为R ,满足条件f(a+x)=f(b -x),则函数y=f(x)的图像关于直线x=2ba +对称。
(3)伸缩变换①)0(),(>=a x af y 的图象,可将)(x f y =的图象上的每一点的纵坐标伸长)1(>a 或缩短)10(<<a 到原来的a 倍。
②)0(),(>=a ax f y 的图象,可将)(x f y =的图象上的每一点的横坐标伸长)10(<<a 或缩短)1(>a 到原来的a1倍。
例1.将下列变换的结果填在横线上: (1)将函数xy -=3的图象向右平移2个单位,得到函数 的图象;(2)将函数)13(log 2-=x y 的图象向左平移2个单位,得到函数 的图象;(3)将函数3)2(-=x y 的图象各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数 的图象. 解析:(1)关键是答案为23--=x y ,还是)2(3--=x y ,可以取一个点检验,将函数xy -=3的图象向右平移2个单位后点(-1,3)变为(1,3),故答案为)2(3--=x y ,即xy -=23(2)关键是答案为)213(log 2+-=x y ,还是]1)2(3[log 2-+=x y ,注意到)13(log 2-=x y 的图象向左平移2个单位后(1,1)变为点(-1,1),所以后者正确,故答案为)53(log 2+=x y ;(3)函数3)2(-=x y 的图象经过变换后,点(3,0)变为(9,1),故答案为3)131(-=x y .评析:总结上述解答,应该明白一个函数)(x f 的图象的各种变换都是针对基本变量x (或y )进行的,所以变换后发生的变化都应该紧随着变量x (或y )的后面,应认真总结这些经验.注意,函数图象变换的规律也可以应用到曲线方程表示的图形的变换. 例2.已知函数,1-=x xy 给出下列三个命题中正确命题的序号是 ①函数的图象关于点(1,1)对称; ②函数的图象关于直线x y -=2对称; ③将函数图象向左平移一个单位,再向下平移一个单位后与函数xy 1=重合. .答案:①、②、③.(提示:111y x =+-) 例3.将奇函数)(x f y =的图象沿着x 轴的正方向平移2个单位得到图象C ,图象D 与C 关于原点对称,则D对应的函数是( )A .)2(--=x f yB .)2(-=x f yC .)2(+-=x f yD .)2(+=x f y答案D .(提示:)2()2()(---=⇒-=⇒=x f y x f y x f y ,即).2(+=x f y例4.已知f(x+199)=4x 2+4x+3(x ∈R),那么函数f(x)的最小值为____.分析:由f(x +199)的解析式求f(x)的解析式运算量较大,但这里我们注意到,y=f(x +100)与y=f(x),其图象仅是左右平移关系,它们取得的最大值和最小值是相同的,由2214434()22y x x x =++=++,立即求得f(x)的最小值即f(x +199)的最小值是2. 2.利用图象解决函数问题熟练掌握函数图象的有关知识是学习函数以及解决函数问题的重要基本技能,在学习时要抓住下面两个要点:(1)学习函数图象的最基本的能力是熟练掌握所学过的基本初等函数(如正、反比例函数,二次函数,指数、对数函数,三角函数)的图象;(2)“数形结合”是一种很重要的数学方法,在解决许多函数、方程、不等式及其它与函数有关的问题时,常常运用“数形结合”的方法解答问题或帮助分析问题,运用“数形结合”解答问题需要有下述能力与经验:1)必须有能力准确把握问题呈现的全部图象特征;2)必须能够列出等价的数学式子表达问题的图象特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲数图形例1、数一数,下图中共有多少条线段?
同步演练1
(1)数一数下图中共有多少条线段?
例2、数一数,下图中共有多少个角?
同步演练2
数一数下图中各有多少个三角形?
例3、数一数,下面的图中有多少个正方形?
同步演练3
数数看,下图中共有几个正方形?
例4、数一数,下面的图中有多少个长方形?
同步演练4
数数看,下图中共有几个长方形?
例5、数一数下图中含有太阳的正方形的个数。
同步演练5
例6、数一数下图中有多少个小方块?同步演练6
数一数下图中有多少个小方块?
双周突破
1、数一数下图中共有多少条线段?
2、数一数下图中各有多少个三角形?
3、数一数下图中各有多少个三角形?
4、下面给出5个点,每两个点之间画一条线段,一共有几条线段?
5、数一数下图中各有多少个三角形和正方形?
6、数一数下图中含有“?”的三角形个数。
7、数一数下图中含有五角星的正方形的个数。
第七讲
移多补少
知识提要:
1)不同的物体的数量可以数个数,也可以“一
一对应”地进行比较。
2)把多出来的部分分给少的物体,要注意个数增加和减少的规律。
3)求谁比谁“多几”或“少几”问题的时候,要用“大数”减“小数”
例1、第一排有12个8个。
从第一排拿几个到第二排,两排的数量就相等?
第一排:
有两行红花,第一行有11朵,第二行有5朵。
要使两行花的朵数同样多,应从第一行拿几朵到第二行?
例2、二(3)班有20个女同学,有28个男同学,一天他们排成两队去参观动物园,一队是女同学,一队是男同学,队伍排好后发现一队长一队短。
怎样可以使两路纵队人数一样多呢?
同步演练2
二(1)班图书角有图书50本,二(2)班图书角有图书62本。
二(2)班送几本图书给二(1)班,两班图书就同样多了。
例3、小红家书架上有二层书,上层有48本,下层有28本,要怎样移使每层的书一样多呢?
同步演练3
有甲乙两个杯子,里面分别装有18克、6克的水,要让两个杯子中的水一样多,怎么办呢?
例4、骄骄和阳阳共有36支铅笔,如果骄骄给阳阳4支,他们俩的铅笔数量就相等,骄骄原来有几支铅笔?
同步演练4
一班调10人到二班后,两班人数就都是50人,那么一班和二班,原来各有多少人?
例5、星期天有30个小朋友分成三队去动物园玩,如果第一队调1人到第二队,再从第二队调3人去第三队,三队人数就相等了,原来三队各有多少个小朋友?
小红小明小兰三人共有30本小人书,如果小明向小红要3本,再送给小兰5本,三人的书正好相等,原来三人各有多少本小人书?
双周突破
1、要使左右两边的苹果同样多,应该从右边拿几个到左边?
2、第一行摆:■■■■■■
从第一行拿2个■到第二行,两行的方块数就相等。
第二行应该摆几个■?
第二行摆:__________________________
3、喜洋洋比灰太狼多10颗星星,喜洋洋送几颗星星给灰太狼,他们的星星才能一样多呢?
4、文文和飞飞各有一些画片,飞飞给文文3张后,两人画片同样多,原来飞飞比文文多几张画片?
5、甲班调出8人到乙班,甲班比乙班还多6人,甲班原来比乙班多几人
6、白猫的鱼11条,花猫的鱼15条,黑猫的鱼10条,怎样分配才能使它们的鱼样多?
7、小白兔有15个萝ト,小黒兔有18个萝ト,妈妈又买来7个萝ト,怎样分才能让两只小兔的萝卜个数同样多?
第十三讲巧填运算符号
例1、在○里填上运算符号
(1)5 ○ 4= 11○ 2
(2)2 ○ 3 = 1 ○ 5
同步演练1
(1)6 ○ 3 = 9 ○ 2
(2)7 ○ 2 ○ 7 = 7
例2、在下面○里填上与左边不同的运算符号,使等式成立。
2 × 8 -
3 = 2 ○ 8 ○ 3
同步演练2
在下面○里填上与左边不同的运算符号,使等式成立
2 + 4 + 1 = 2 ○ 4 ○1
例3、在合适的地方填上“+”或“-”,使下面等式成立。
1 2 3 4 5 6 = 3
同步演练3
1 2 3 4 5 6 = 1
6 5 4 3 2 1 = 5
例4、把“+”“-”“×”“÷”与“( )”填入合适的地方使等式成立。
4 4 4 4 =1
4 4 4 4 =4
同步演练4
把“+”“-”“×”“÷”与“( )”填入合适的地方使等式成立。
5 5 5 5 5 = 1
5 5 5 5 5 = 5
例5、下面两道算式需要填四种运算符号,每个符号只能用一次,该怎样填呢?
9 4 6 =30
16 2 5 =()
同步演练5
在下面的○里填上运算符号,在□填上合适的数,使两个算式都成立(每种运算符号只能填一次)
8 ○ 3 ○ 4 = 20
12 ○ 3 ○ 5= □
双周突破
1、在等号左右两边填上不同的运算符号,使等式成立。
1 ○
2 ○
3 = 1 ○ 2 ○ 3
2、在□内填上与左边不同的运算符号,使等式成立
(1)6 - 2 + 2 = 6 □ 2 □2
(2)8 + 2 + 3 = 8 □ 2 □3
3、在合适的地方填上“+”或“一”,使下面等式成立
1 2 3 4 5 6 7 8 9 =1
4、将“+”“-”“×”“÷”填人下面的□中,使等式成立
7 □ 2 □ 4 =10 □ 2 □ 5
5、从“+”“-”“×”、“÷”或“()”中,挑选合适的符号,填在适当的地方,使等式成立。
6 6 6 6 6 6 = 1
6 6 6 6 6 6 =5
6、把“+”“-”、“×”“÷“分别填在下面四个○里,并在□里填上合适的数,使两个算式都成立(每种运算符号只能填一次)
4 ○ 4 ○ 4 = 20
18 ○ 9 ○ 3 =□
7、在○内填上合适的运算符号。
(1)6 ○ 5○ 4 > 6 ○ 5 ○ 4
(2)4 ○ 4 ○ 4 < 3 ○ 3 ○3。