全等三角形SAS专题练习
专题06三角形全等的判定之SAS重难点专练(原卷版)

学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2021·浙江九年级专题练习)如图,在△ABC 中,AB =AC ,BD =CF ,BE =CD ,若∠A =40°,则∠EDF 的度数为()A .75°B .70°C .65°D .60°2.(2021·浙江八年级期末)如图,已知,AB DC ABC DCB =∠=∠.能直接判断ABC DCB △≌△的方法是()A .SASB .AASC .SSSD .ASA3.(2021·浙江宁波市·八年级期末)如图,在平面直角坐标系中,点A 的坐标为()1,0,以线段OA 为边在第四象限内作等边ABO ,点C 为x 轴正半轴上一动点(1OC >),设点C 的坐标为(),0x ,连结BC ,以线段BC 为边的第四象限内作等边CBD ,直线DA 交y 轴于点E ,点E 的坐标是()A .(B .0,2x ⎛⎫⎪⎝⎭C .()0,3D .x ⎛⎫ ⎪ ⎪⎝⎭四边形EFGH 的面积最大值为()A .4a b +B .2()4a b +C .2()8a b +D .2ab b -5.(2021·浙江九年级二模)如图,PA 和PB 是O 的两条切线,A ,B 为切点,点D 在AB 上,点E ,F 分别在线段PA 和PB 上,且AD BF =,BD AE =.若P α∠=,则EDF ∠的度数为()A .90α︒-B .32αC .1902α︒-D .2α6.(2021·浙江九年级一模)如图,四边形ABCD 和DEFG 均为正方形,点E 在对角线AC 上,点F 在边BC 上,连结CG 和EG .若知道正方形ABCD 和DEFG 的面积,则一定能求出()A .四边形ABFE 的周长B .四边形ECGD 的周长C .四边形AEGD 的周长D .四边形ACGD 的周长7.(2021·浙江八年级期末)如图,在ABCD 中,E F 、分别是AD BC 、边的中点,G H 、是对角线BD 上的两点,且BG DH =.有下列结论:①GF BD ⊥;②GF EH =;③四边形EGFH 是平行四边形;④EG FH =.则正确的个数为()A .1个B .2个C .3个D .4个8.(2021·浙江八年级期末)如图,四边形ABCD 是菱形,点E 、F 分别在边BC 、CD 上,且BE =DF ,AB =AE ,若∠EAF =75°,则∠C 的度数为()A .85°B .90°C .95°D .105°9.(2021·浙江湖州市·八年级期末)如图,已知ABCD ,以点A 为圆心,AD 长为半径画弧,交AB 于点E ;再分别以点D 、E 为圆心,大于12DE 长为半径画弧,两弧交于点F ,画射线AF ,与DC 交于点G .若90AGB ∠=︒,10CG =,则AB 的长为()A .2532B .123C .20D .1510.(【新东方】初中数学1228初二上)如图,在ABC 中,AB AC =,54BAC ∠=︒,BAC ∠平分线与AB 的垂直平分线交于点O ,将C ∠沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,有如下五个结论:①AO BC ⊥;②OD OE =;③OEF 是等边三角形;④OEF CEF ≌;⑤54OEF ∠=︒.则上列说法中正确的个数是()11.(【新东方】初中数学1242初二上)如图,等腰Rt ABC 中,90BAC AD BC ∠=︒⊥,于D ,ABC ∠的平分线分别交AC AD 、于E F 、两点,M 为EF 的中点,延长AM 交BC 于点N ,连接DM MC 、下列结论:①DF DN =;②ABE MBN ≌;③ CMN 是等腰三角形;④AE CN =,其中正确的是()A .①②B .①④C .①③D .②③12.(【新东方】初中数学1223初三上)如图,在菱形ABCD 中,6,60,AB DAB AE =∠=︒分别交于BC 、BD 于点,2E F CE =、,连接CF ,以下结论:①ABF CBF ≌;②点E到AB 的距离是an t DCF ∠=;④ABF 的有几个()A .①B .①②C .①②③D .①②③④13.(2021·浙江八年级期末)如图,在正方形ABCD 中,点E ,F 分别是BC ,CD 上的点,AE 与BF 相交于点G ,连接AC 交BF 于点H .若CE =DF ,BG =GH ,AB =2,则△CFH 的面积为()A .4B .3﹣C .53D .6二、填空题15.(2021·浙江八年级期中)如图,在正方形ABCD 中,4AB =,点E ,F 分别在CD ,AD 上,CE DF =,BE ,CF 相交于点G ,若图中阴影部分的面积与正方形ABCD 的面积之比为3:4,则BCG 的周长为________.16.(2021·浙江杭州市·八年级期中)如图,在正方形ABCD 中,3AB =,点E ,F 分别在,CD AD 上,CE DF =,BE ,CE 相交于点G .若图中阴影部分的面积与正方形ABCD 的面积之比为2:3,则四边形GEDF 的面积为_______;BCG 的周长为______.17.(【新东方】初中数学20210625-006【初二上】)如图,在ABC 中,,100AB AC BAC =∠=︒,点D 在BC 边上,ABD AFD 、关于直线,AD 对称,FAC ∠的角平分线交BC 边于点G 、连接FG BAD θ∠=、,当θ的值等于_______时,DFG 为等腰三角形.点D ,E 为BC 边上的两点,且45DAE ∠=︒,连接EF ,BF ,则下列结论正确的是________.①AED AEF ≌△△;②AED 为等腰三角形;③BE DC DE +>;④222BE DC DE +=.19.(【新东方】初中数学1234初二上)如图,在等边ABC 中,点D ,E 分别在边BC ,AB 上,且BD AE =,AD 与CE 交于点F ,作CM AD ⊥,垂足为M ,下列结论正确的有________.①AD CE =;②BEC CDA ∠=∠;③120AFC ∠=︒;④12MF CF =;⑤AM CM =.20.(2021·台州市书生中学八年级月考)如图,正方形ABCD 的边长为2,M 是BC 的中点,N 是AM 上的动点,过点N 作EF ⊥AM 分别交AB ,CD 于点E ,F .(1)AM 的长为_____;(2)EM +AF 的最小值为_____.21.(【新东方】【2021.5.19】【JH 】【初二下】【数学】【JH0027】)如图,四边形ABCD 是M 为对角线BD (不含B 点)上任意一点.(1)AM CM +的最小值是______.(2)AM BM CM ++的最小值是________.三、解答题22.(2021·杭州市采荷中学九年级三模)如图,已知:在ABC ∆中,90BAC ︒∠=,延长BA 到点D ,使12AD AB =,点E ,F 分别是边BC ,AC 的中点.求证:DF BE =.23.(2020·重庆八年级月考)如图,AB =AC ,AD =AE ,∠BAC =∠DAE .(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.24.(2021·浙江九年级月考)图1,图2都是由边长为1的小等边三角形构成的网格,△ABC 为格点三角形.请仅用无刻度直尺在网格中完成下列画图.(1)在图1中,画出△ABC 中AB 边上的中线CM ;(2)在图2中,画出∠APC ,使∠APC =∠ABC ,且点P 是格点(画出一个即可).25.(2021·浙江)已知:如图,E F 、是平行四边形ABCD 的对角线AC 上的两点,AE CF =.求证:(1)ADF CBE △≌△;(2)//EB DF .26.(2021·浙江九年级期中)如图,点M ,N 分别在正方形ABCD 的边BC ,CD 上,且45MAN ∠=︒,把ADN △绕点A 顺时针旋转90︒得到ABE △.(1)求证:AEM △≌ANM .(2)若3BM =,2DN =,求正方形ABCD 的边长.27.(2021·浙江九年级期末)[教材呈现]如图是华师版八年级上册数学教材第69页的部分内容.[方法运用]在 ABC 中,AB =4,AC =2,点D 在边AC 上.(1)如图①,当点D 是边BC 中点时,AD 的取值范围是.(2)如图②,若BD :DC =1:2,求AD 的取值范围.[拓展提升](3)如图③,在 ABC 中,点D 、F 分别在边BC 、AB 上,线段AD 、CF 相交于点E ,且BD :DC =1:2,AE :ED =3:5.若 ACF 的面积为2,则 ABC 的面积为.28.(2021·浙江杭州市·八年级期末)如图,在△ABC 中,AB=AC ,∠BAC=90°,BC=12厘米.过点C 作直线l BC ⊥,动点P 从点C 开始沿射线CB 方向以2厘米/秒的速度运动,动点Q 也同时从点C 出发在直线l 上以1厘米/秒的速度向上或向下运动.连接AP 、AQ ,设运动时间为t 秒.(1)请写出CP 、CQ 的长度(用含t 的代数式表示):CP=厘米,CQ=厘米;(2)当点P 在边BC 上时,若△ABP 的面积为24厘米2,求t 的值;(3)当t 为多少时,△ABP 与△ACQ 全等?29.(2021·浙江杭州市·九年级二模)如图,AB 是O 的直径,C 是O 上的一点,过点B 作O 的切线BF ,过圆心O 作AC 的平行线交直线BF 于点F ,交O 于点E ,交BC 于点D ,连接CF .(1)判断CF 与O 的位置关系,并证明结论;(2)若四边形ACFO 是平行四边形,求DEOD 的值;(3)若ACB △运动后能与OFB △重合,则DEOD=______,请说明图形的运动过程.30.(2021·浙江湖州市·八年级期末)如图,已知在Rt ABC ∆中,90,ACB CD ∠=︒是斜边(1)求证:AD CE =.(2)若5,6AD AC ==,求BDE ∆的面积.31.(2021·浙江杭州市·八年级期中)如图,点A ,D ,B ,E 依次在同一条直线上,BC DF =,AD BE =,ABC EDF ∠=∠,求证:A E ∠=∠.32.(2021·浙江杭州市·八年级期末)如图,在AOB 和COD △中,OA OB =,OC OD =,若60AOB COD ∠=∠=︒,(1)求证:AC BD =.(2)求APB ∠的度数.33.(2021·浙江宁波市·八年级期末)如图1,ABC 是等边三角形,,D E 为AC 上两点,且AD CE =,延长BC 至点F ,使CF CD =,连结BD EF ,.(1)如图2,当,D E 两点重合时,求证:BD DF =.(2)如图3,延长FE 交线段BD 于点G .①求证:BD EF =.②求DGE ∠的度数.34.(2021·浙江八年级期末)如图,在ABC 中,AB AC =,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE CF =,BD CE =.(1)求证:DEF 是等腰三角形;(2)当40A ∠=︒时,求DEF ∠的度数.35.(2021·浙江八年级期末)如图,AB AC =,AD AE =,BAD CAE ∠=∠,求证:D E ∠=∠.36.(2021·杭州育才中学九年级二模)如图,点O 为正方形ABCD 的中心.DE =AG ,连结EG ,过点O 作OF 丄EG 交AD 于点F .(1)连结E F ,△EDF '的周长与AD 的长有怎样的数量关系,并证明;(2)连结OE ,求∠EOF 的度数;(3)若AF :CE =m ,OF :OE =n ,求证:m =n 2.(1)判断BD 与CE 的数量关系,并证明你的结论;(2)若AB =AD =4,∠BAC =120°,∠CAD =30°.求BD 的长.38.(【新东方】【2021.4.21】【绍兴】【初二下】【数学】【00026】)平面上有ACD △与,BCE AD 与BE 相交于点,P AC 与BE 相交于点,M AD 与CE 相交于点N ,若,,AC BC CD CE ECD ACB ==∠=∠.(1)求证:≌ACD BCE V V ;(2)55,145ACE BCD ∠=︒∠=︒,求BPD ∠的度数.39.(2021·浙江九年级其他模拟)如图,在ABC 中,AB AC =,点D ,E 在BC 上()BD BE <,BD CE =.(1)求证:ABD △≌ACE .(2)若2ADE B ∠=∠,2BD =,求AE 的长.40.(【新东方】【2021.5.19】【JH 】【初二下】【数学】【JH0026】)如图,在一正方形ABCD 中,E 为对角线AC 上一点,连接EB 、ED .△≌△.(1)求证:BEC DEC(2)延长BE交AD于点F,若FD FE∠的度数.=.求AFE41.(2021·浙江温州市·九年级三模)如图,在五边形ABCDE中,AB=CD,∠ABC=∠BCD,BE,CE分别是∠ABC,∠BCD的角平分线.(1)求证:△ABE≌△DCE;(2)当∠A=80°,∠ABC=140°时,求∠AED的度数.42.(2021·浙江八年级期末)如图,在▱ABCD中,点E、F为对角线BD的三等分点,连结AE,CF,AF,CE.(1)求证:四边形AECF为平行四边形;(2)若四边形AECF为菱形,且AE=BE,求∠BAD的度数.43.(2021·浙江八年级期末)如图1,在正方形ABCD中,点P是对角线BD上的一点,连结CP.△≌△;(1)求证:ADP CDP(2)如图2,延长AP交线段DC于点Q,交BC的延长线于点G,点M是GQ的中点,⊥;连结CM.求证:PC MC(3)如图3,延长AP交射线DC于点Q,交BC于点G,点M是GQ的中点,连结CM.若PM=,302∠=︒.求AB的长.BAP44.(【新东方】初中数学1234初二上)如图,在ABC 中,5cm AB AC ==,6cm BC =,BD AC ⊥交AC 于点D .动点P 从点C 出发,按C A B C →→→的路径运动,且速度为2cm/s ,设出发时间为t 秒.(1)求BD 和AD 的长;(2)当 3.2t =秒时,求证:CP AB ⊥;(3)当点P 在BC 边上运动时,若CDP 是以CP 为腰的等腰三角形,请你求出所有满足条件的t 的值.45.(【新东方】初中数学1305【初二上】)如图1,ACB △和ECD 都是等腰直角三角形,,,CA CB CE CD ACB == 的顶点A 在ECD 的斜边DE 上.(1)证明ECA DAB ∠=∠;(2)猜想,,AE AB AD 之间的数量关系,并证明;(3)如图2,若4,80AE AC ==,点F 是AD 的中点,求CF 的长.46.(2021·浙江九年级专题练习)如图1,等边△ABC 边长为8,AD 是△ABC 的中线,P 为线段AD (不包括端点A 、D )上一动点,以CP 为一边且在CP 下方作如图所示的等边△CPE ,连结BE .(1)点P 在运动过程中,线段BE 与AP 始终相等吗?说说你的理由(2)若延长BE 至F ,使得CF=CE=5,如图2,①求出此时AP 的长;②当点P 在线段AD 的延长线上,点F 在射线BE 上时,判断EF 的长是否为定值,若是请直接写出EF 的长;若不是请简单说明理由.47.(【新东方】【2021.5.19】【JH 】【初二下】【数学】【JH0029】)如图1,在ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于点F ,以EC ,CF 为邻边作ECFG .(1)求证:ECFG 是菱形.(2)如图2,若90ABC ∠=︒,8AB =,12AD =,M 是EF 的中点,求DM 的长.(3)如图3,若120ABC ∠=︒,连接BD ,BG ,CG ,DG ,求BDG ∠的度数.48.(2021·浙江九年级一模)如图,在四边形ABCD 中,//AD BC ,2BA AD DC ===,45ABC ∠=︒,E 是BC 边上一动点,连结AE ,将AE 绕点A 逆时针旋转135°到AF ,连结EF 与AD 交于点G ,连结DE ,DF ,设BE 的长为x .(1)求证:ABE ADF ≌.(2)若DEF 的面积为y ,求y 关于x 的函数表达式,并求y 的最大值.(3)当FGD 是等腰三角形时,求x 的值.49.(【新东方】初中数学20210625-002【初二上】)如图,ACB △和DCE 均为等腰三角形,点A ,D ,E 在同一直线上,连接,BE CM 为DCE 中DE 边上的高,BN 为ABE △中AE 边上的高,若120ACB DCE ∠=∠=︒,且1CM =,2BN =.(1)求证:≌ACD BCE V V .(2)求AEB ∠的度数.(3)求AE 的长.50.(2020·浙江绍兴市·八年级其他模拟)如图1,ABC 是边长为4cm 的等边三角形,边AB 在射线OM 上,6cm OA =,另一个等边CDE △的顶点D 从O 点出发,沿OM 的方向以1cm/s 的速度运动,在运动过程中CDE △的形状始终保持不变,且点D 不与点A 重合.设运动时间为()s t .(1)求证:CDA CEB ≌;(2)如图2,当610t <<时,BDE 的周长是否存在最小值?若存在,求出BDE 的最小周长:若不存在,请说明理由;(3)如图3,当点D 在射线OM 上运动时,是否存在以D 、E 、B 为顶点的三角形是直角三角形?若存在,求出此时t 的值:若不存在,请说明理由.51.(2021·浙江八年级期末)在正方形ABCD 中,点E 、F 分别是边AD 和DC 上一点,且DE =DF ,连结CE 和AF ,点G 是射线CB 上一点,连结EG ,满足EG =EC ,AF 交EG 于点M ,交EC 于点N .(3)是否存在实数m,当AM=mAF时,BC=3BG?若存在,请求出m的值;若不存在,请说明理由.。
全等三角形的判定(2)SAS练习

11.2 全等三角形的判定(2) SAS1.如图,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD2.能判定△ABC ≌△A ′B ′C ′的条件是( )(A .AB=A ′B ′,AC=A ′C ′,∠C=∠C ′ B. AB=A ′B ′, ∠A=∠A ′,BC=B ′C ′ C. AC=A ′C ′, ∠A=∠A ′,BC=B ′C D. AC=A ′C ′, ∠C=∠C ′,BC=B ′C3.如图,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD= , 根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.4.如图,已知BD=CD ,要根据“SAS”判定△ABD ≌△ACD , 则还需添加的条件是 。
5.如图,AD=BC ,要根据“SAS”判定△ABD ≌△BAC , 则还需添加的条件是 7.如图,AC 与BD 相交于点O ,已知OA=OC ,OB=OD , 求证:△AOB ≌△COD8.已知:如图,AB=CB ,∠1=∠2 ,△ABD 和△CBD 全等吗?说明理由。
9. 已知:如图,△ABC 中, AD ⊥BC 于D ,AD=BD , DC=DE , ∠C=50°。
求∠ EBD 的度数。
10.已知:如图,AB=AC ,AD=AE ,∠1 =∠2 。
试说明:△ABD ≌△ACE 。
11、(能力提升)如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明. ①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.。
三角形全等的判定(SSS、SAS) 习题

1全等三角形(SSS 、SAS)例1:如图, CE=DE ,EA=EB ,CA=DB ,求证:∠CAB=∠DBA 证明∵CE=DE , EA=EB ( )∴________=________ 即:_______=________ 在△ABC 和△BAD .中,∵()()()⎪⎩⎪⎨⎧===___________________________________________已证已知∴△ABC ≌△BAD .( )∴∠CAB=∠DBA ( )练一练:1、如图,AC =BD ,BC =AD ,说明.∠C=∠D证明:在△ABC 与△BAD 中,()()()______________________________________________= ⎧⎪= ⎨⎪=⎩ ∴△ABC ≌△BAD ( )∴∠C=∠___ ( )2、如图,AB=DF ,AC=DE ,BE=FC ,问:(1)ΔABC 与ΔDFE 全等吗? (2)AB 与DF 平行吗?请说明你的理由。
AFDC E23、如图1所示,点C 、F 在直线AD 上,且AF=DC ,AB=DE ,BC=EF 。
(1)试说明AB ∥DE;(2)观察图2,图3,指出它们是怎样由图1变换得到的? (3)在满足已知条件的情况下根据图2,试证明BC ∥EF 。
4、已知AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE ,点B 、C 、D 在一条直线上,求证:AC ⊥CE 。
5、(多变题)已知AB=CD ,AD=CB ,求证:∠A=∠C一变:已知AD ∥BC ,AD=CB ,试证明:△ADC ≌△CBA二变:已知AD ∥BC ,AD=CB ,AE=CF.试证:△AFD ≌△CEB图3图2图1F ED CB A E DB A E DC FA B D E B A C D C B A D CB A F E CBD A36、(实际运用)有一湖的湖岸在A 、B 之间呈不规则形状,A 、B 之间的距离不能直接测量,你能用已学过的知识或方法设计测量方案并求出A 、B 之间的距离吗?做一做:7、如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样 大小的一块.为了方便起见,需带上________块,其理由是__________.8、如图所示,AB ,CD 相交于O ,且AO =OB ,观察图形,图中已具备的另一相等 的条件是________,联想到SAS ,只需补充条件________,则有△AOC ≌△_______9、如图,已知CA=CB ,AD=BD ,E ,F 分别为CB ,CA 的中点,求证:DE=DF10、如图,已知AB =AE ,∠B =∠E ,BC =ED ,点F 是CD 的中点.求证:AF ⊥CD.FEBDB A E F C11、已知△ABE和三角形DEC均为等边三角形,连接BD,AC,求证:AC=BD4。
“SSS”“SAS”判定三角形全等综合练习

证明:∵∠BAE=∠CAD, ∴∠BAE+∠BAD=∠CAD+∠BAD,
即∠DAE=∠CAB.
在△ADE 和△ACB 中,
AD=AC, ∠DAE=∠CAB, AE=AB, ∴△ADE≌△ACB(SAS). ∴DE=CB.
5.(2019·陕西)如图,点 A,E,F,B 在直线 l 上,AE=BF, AC∥BD,且 AC=BD.求证:CF=DE.
证明:在△ABD 和△ACE 中,
AB=AC, AD=AE, BD=CE,
∴△ABD≌△ACE(SSS). ∴∠BAD=∠1,∠ABD=∠2.
∵∠3=∠BAD+∠ABD, ∴∠3=∠1+∠2.
拓展提升
3.如图,已知CA=CB,AD=BD, M,N分别是CA,CB的中点, 求证:DM=DN.
证明:连接CD,如图所示. 在△CAD与△CBD中, CA=CB (已知),
9.(2020·宜宾)如图,在△ABC 中,点 D 是边 BC 的中点, 连接 AD 并延长到点 E,使 DE=AD,连接 CE.
(1)求证:△ABD≌△ECD; (2)若△ABD 的面积为 5,求△ACE 的面积.
解:(1)证明:∵D 是 BC 中点, ∴BD=CD. 在△ABD 和△ECD 中,
BC=EF, ∠ACB=∠DFE, CF=FC, ∴△BCF≌△EFC(SAS). ∴∠CBF=∠FEC.
03 综合题
11.已知在△ABC 和△ADE 中,AB=AC,AD=AE,∠BAC =∠DAE=90°.
(1)如图 1,当点 D 在 AC 上时,线段 BD,CE 有怎样的数量 关系和位置关系?直接写出你的结论;
(1)△ABC≌△DEF; (2)∠CBF=∠FEC.
证明:(1)∵AF=CD, ∴AF+FC=CD+FC, 即 AC=DF. ∵AB∥DE, ∴∠A=∠D. 在△ABC 和△DEF 中,
三角形全等的判定(SAS)对应练习

三角形全等的判定 (SAS )一.选择题1.在△ABC 和△A /B /C /中,AB= A /B /,AC= A /C /,若还需要加一个角的条件使△ABC ≌ A /B /C /, 则应添加的条件是( )A. ∠A=∠A /B. ∠B=∠B /C. ∠C=∠C /D. ∠D=∠D /2.如图AC 与BD 相交于点O ,且OA=OD,如果用“SAS ”来判断△ABO 和△DCO 全等,还应添加的条件是( )A .AB=DC B. OB=OC C. ∠A=∠D D. ∠AOB=∠DOC 二.填空题3.全等三角形判定方法1——“边角边” (即______)指的是__________________4.如图,AB =AC ,如果根据“SAS”使△ABE ≌△ACD,那么需添加条件5.下列描述:①腰和顶角对应相等的两个等腰三角形全等;②两条直角边对应相等的两个直角三角形全等;③有两边和一角对应相等的两个三角形全等;④等腰三角形顶角平分线把这个等腰三角形分成两个全等的三角形.其中正确的有_____________.三、解答题6.已知:如图,C 是AB 的中点,AD ∥CE ,AD=CE .求证:△ADC ≌△CEB .7.已知:如图,AB 、CD 相交于O 点,AO =CO ,OD =OB .求证:∠D =∠B .AABCED8.已知:如图,AB ∥CD ,AB =CD . 求证:AD ∥BC .9. 如图, A ,C ,D ,B 在同一条直线上,AE=BF ,AD=BC ,AE ∥BF . 求证:FD ∥EC .10.已知:如图,AC ⊥BD ,BC=CE ,AC=DC . 求证:∠B+∠D=90°;11.小明在练习本上画一个三角形,不小心将墨迹污染到这块三角形的图形上(如图),你能帮他画一个完全一样的三角形吗?DCFBA。
人教初中数学八上《三角形全等的判定SAS》 同步练习

三角形全等的判定(二)SAS要点感知1 两边和它们的夹角分别相等的两个三角形______(可以简写成“______〞或“______〞). 预习练习1-1 以下图中全等的三角形有( )3 C.图2和图4要点感知2 有两边和其中一边的对角分别相等的两个三角形______全等.预习练习2-1 下面各条件中,能使△ABC≌△DEF的条件的是( )A.AB=DE,∠A=∠D,BC=EFB.AB=BC,∠B=∠E,DE=EFC.AB=EF,∠A=∠D,AC=DFD.BC=EF,∠C=∠F,AC=DF知识点1 用“SAS〞判定两个三角形全等1.:如图,OA=OB,OC=OD,求证:△AOD≌△BOC.2.:如图,OA=OB,OC平分∠AOB,求证:△AOC≌△BOC.3.∥ED,AB=CE,BC=ED.求证:△ABC≌△CED.知识点2 利用“SAS〞判定三角形全等来证明线段或角相等4.(武汉中考)如图,AC和BD相交于点O,OA=OC,OB=OD.求证:DC∥AB.5.(云南中考)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.知识点3 利用“SAS〞判定三角形全等来解决实际问题6.如下图,有一块三角形镜子,小明不小心将它打破成1、2两块,现需配成同样大小的一块.为了方便起见,需带上______块,其理由是______.7.如图,AB=AC,AD=AE,假设要得到“△ABD≌△ACE〞,必须添加一个条件,那么以下所添条件不成立的是( )A.BD=CEB.∠ABD=∠ACEC.∠BAD=∠CAED.∠BAC=∠DAE8.(陕西中考)如图,在四边形ABCD中,AB=AD,CB=CD,假设连接AC、BD相交于点O,那么图中全等三角形共有( )9.如图,点A在BE上,AD=AE,AB=AC,∠1=∠2=30°,那么∠3的度数为______ .10.如下图,A,B,C,D是四个村庄,B,D,C在一条东西走向公路的沿线上,BD=1 km,DC=1 km,村庄AC,AD间也有公路相连,且公路AD是南北走向,AC=3 km,只有AB之间由于间隔了一个小湖,所以无直接相拉桥,测得AE=1.2 km,BF=0.7 km.试求建造的斜拉桥长至少有______km.11.如下图,AD是△ABC的高线,AD=BD,DE=DC,∠C=75°,求∠AEB的度数.12.如图,点A,E,B,D在同一条直线上,AE=DB,AC=DF,AC∥DF.请探索BC与EF有怎样的位置关系?并说明理由.13.如下图,A,F,C,D四点同在一直线上,AF=CD,AB∥DE,且AB=DE.求证:(1)△ABC≌△DEF;(2)∠CBF=∠FEC.挑战自我14.如图,D,E分别是△ABC的边AB,AC的中点,点F在DE的延长线上,且EF=DE,求证:(1)BD=FC;(2)AB∥CF.参考答案课前预习要点感知1 全等边角边 SAS预习练习1-1 D要点感知2 不一定预习练习2-1 D当堂训练1.证明:在△AOD和△BOC中,OA=OB,∠O=∠O(公共角),OD=OC,∴△AOD≌△BOC(SAS).2.证明:∵OC平分∠AOB,∴∠1=∠△AOC和△BOC中,OA=OB,∠1=∠2(已证),OC=OC(公共边),∴△AOC≌△BOC(SAS).3.证明:∵AB∥ED,∴∠B=∠△ABC和△CED中,AB=CE,∠B=∠E,BC=ED,∴△ABC≌△CED(SAS).4.证明:∵在△ODC和△OBA中,OD=OB,∠DOC=∠BOA,OC=OA,∴△ODC≌△OBA(SAS).∴∠C=∠A(或∠D=∠B).∴DC∥AB.5.证明:在△ADB和△BAC中,AD=BC,∠DAB=∠CBA,AB=BA,∴△ADB≌△BCA(SAS).∴AC=BD.6.1 有两边及其夹角分别相等的两个三角形全等 课后作业7.B 8.C 9.30° 10.1.1 11.在△BDE 和△ADC 中,BD=AD,∠ADB=∠ADC ,DE =DC ,∴△BDE ≌△ADC(SAS).∴∠BED=∠C=75°.∴∠AEB=105°.12.BC ∥EF.理由:∵AE=DB,∴AE+BE=DB+BE.∴AB=DE.∵AC ∥DF,∴∠A=∠D.∵AC=DF,∴△ACB ≌△DFE.∴∠FED=∠CBA.∴BC ∥EF.13.(1)证明:∵AB ∥DE,∴∠A=∠∵AF =CD,∴AF+FC=CD+FC.∴AC=DF.∵AB =DE,∴△ABC ≌△DEF(SAS).(2)证明:∵△ABC ≌△DEF,∴BC =EF,∠ACB =∠DFE.∵FC=CF,∴△FBC ≌△CEF(SAS).∴∠CBF =∠FEC. 14.(1)证明:∵E 是AC 的中点,∴△ADE 和△CFE 中,AE=CE,∠AED=∠CEF,DE=FE,∴△ADE ≌△CFE(SAS).∴AD=CF.∵D 是AB 的中点,∴AD=BD.∴BD=FC.(2)证明:由(1)知△ADE ≌△CFE,∴∠A=∠ECF.∴AB ∥CF. 【知识稳固】1、 分解因式:7a 2b 2-14ab 3c= 2、 假设xy=6,x-y=5,那么x 2y-xy 2= 3、 在以下四个式子中:①6a 2b=2a 2 .3b ;②x 2-4-3x=(x+2)(x-2)-3x ; ③ab 2-2ab=a b(b-2); ④-a 2+4=(2-a)(2+a)。
三角形全等SAS课后练习

O D C B AP E D C BA 11.2三角形全等的判定(二)课后练习设计:吉裕艳 夏晓芳 审核:冒光明 班级______姓名_________学号____得分_______1.△ABC 和△A′B ′C ′中若AB=A′B ′,B C = B ′C ′ ,则补充条件 ________________可得到△ABC ≌△A′B ′C ′. 2.如图,AB 、CD 相交于O ,且AO =OB 观察图形,图中已具备的另一个相等的条件是 , 联想SAS 公理,只需补充条件 ,则有△AOC ≌△BOD 。
第2题图3.下列条件中,能让△ABC ≌△DFE 的条件是( )A. AB=DE ,∠A=∠D , BC=EFB. AB=BC ,∠B=∠E , BE=EFC. AB=EF ,∠A=∠D , AC=DFD. BC=EF ,∠C=∠F , AC=DF4.下面命题错误的是( )A .边长相等的两个等边三角形全等B .两条直角边对应相等的两个直角三角形全等C .有两条边对应相等的两个等腰三角形全等D .形状和大小完全相同的两个三角形全等5.如图所示,△ABD 和△CBD 都是等边三角形,AC 与BD 交于点O ,图中全等三角形的对数有( ) A.2对 B.4对 C.6对 D.8对第5题图 第6题图6.如图所示,已知AB=AC ,PB=PC ,下面结论:(1)EB=EC ;(1)AD ⊥BC ;(3)AE 平分∠BEC ;(4)∠PBC =∠PCB ,其中正确的是( )A.1个B.2个C.3个D.4个7.如图,∠DAB =∠CAE ,AB =AE ,AD =AC ,求证:BC =DE.ODC B A ED CB A21C B AE DF E D C B A 8.已知,如图所示,BE=DF ,AE=CF ,AE ∥CF ,求证:AD ∥BC9.已知如图所示,AB=AD ,BC=DE ∠1=∠2,求证:(1)AC=AE (2)∠CAE =∠CDE10.如图,△ABC 为等边三角形,点M 、N 分别在BC 、AC 上,且BM=CN ,AM 与BN 交于Q 点,当点M 在BC 上移动时,∠AQN 的的大小是否变化?证明你的结论。
全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

D CB A 全等三角形的判定(一)(SSS )1、如图1,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD 与BC 交于点O ,且AC=BD ,AD=BC ,•则下面的结论中不正确的是( ) A.△ABC ≌△BAD B.∠CAB=∠DBA C.OB=OC D.∠C=∠D3、在△ABC 和△A 1B 1C 1中,已知AB=A 1B 1,BC=B 1C 1,则补充条件____________,可得到△ABC ≌△A 1B 1C 1.4、如图3,AB=CD ,BF=DE ,E 、F 是AC 上两点,且AE=CF .欲证∠B=∠D ,可先运用等式的性质证明AF=________,再用“SSS ”证明______≌_______得到结论.5、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .6、如图,AC 与BD 交于点O ,AD=CB ,E 、F 是BD 上两点,且AE=CF ,DE=BF.请推导下列结论:⑴∠D=∠B ;⑵AE ∥CF .7、已知如图,A 、E 、F 、C 四点共线,BF=DE ,AB=CD.⑴请你添加一个条件,使△DEC ≌△BFA ; ⑵在⑴的基础上,求证:DE ∥BF.全等三角形的判定(SAS)1、如图1,AB ∥CD ,AB=CD ,BE=DF ,则图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B.AD ∥BC C.∠A=∠C D.∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明. ①AB=DE ;②AC=DF ;③∠ABC=∠DEF ;④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由.⑵如图⑵,若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变化)全等三角形(三)AAS 和ASA【知识要点】1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS ):有两角和其中一角的对边对应相等的两个三角形全等. 【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CD例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 交于O ,请问O 点有何特征?【经典练习】 1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠3.在△ABC 和△C B A ''' ) ①A A '∠=∠B B '∠=∠,BC =C A C A ''='③A A '∠=∠B B '∠=∠,AC =C A B A ''=' A . 1个B. 2个C. 3个D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN 5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是__________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的判定方法SAS专题练习
1.如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )
A.∠1=∠2
B.∠B=∠C
C.∠D=∠E
D.∠BAE=∠CAD
2.能判定△ABC≌△A′B′C′的条件是()
A.AB=A′B′,AC=A′C′,∠C=∠C′
B. AB=A′B′,∠A=∠A′,BC=B′C′
C. AC=A′C′,∠A=∠A′,BC=B′C
D. AC=A′C′,∠C=∠C′,BC=B′C
3.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据_________可得到△AOD≌△COB,从而可以得到AD=_________.
4.如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,
则还需添加的条件是。
5.如图,AD=BC,要根据“SAS”判定△ABD≌△BAC,
则还需添加的条件是
6.如图,已知△ABC中,AB=AC,AD平分∠BAC,
请补充完整过程说明△ABD≌△ACD的理由.
解:∵AD平分∠BAC,
∴∠________=∠_________(角平分线的定义).
在△ABD和△ACD中,
∵
∴△ABD≌△ACD()
7.如图,AC与BD相交于点O,已知OA=OC,OB=OD,
求证:△AOB≌△COD
证明:在△AOB和△COD中
∵第1题
第3题
第4题第6题
第7题
第5题
∴△AOB ≌△COD( )
8.已知:如图,AB=CB ,∠1=∠2 △ABD 和△CBD 全等吗?
9.已知:如图,AB=AC ,AD=AE ,∠1 =∠2 。
试说明:△ABD ≌△ACE 。
10.已知:如图,△ABC 中, AD ⊥BC 于D ,AD=BD , DC=DE , ∠C=50°。
求∠ EBD 的度数。
【经典练习】
1.在△ABC 和△C B A '''中,若AB=B A '',AC=C A '',还要加一个角的条件,使△ABC ≌△
C B A ''',那么你加的条件是( )
A .∠A=∠A ' B.∠B=∠
B ' C.∠C=∠
C ' D.∠A=∠B ' 2.下列各组条件中,能判断△ABC ≌△DEF 的是( ) A .AB=DE ,BC=EF ;CA=C
D B.CA=CD ;∠C=∠F ;AC=EF
C .CA=C
D ;∠B=∠
E D.AB=DE ;BC=E
F ,两个三角形周长相等
3.已知△ABC 的6个元素,则下面甲乙丙三个三角形中,和△ABC 全等的图形是( )
B 50
a
c
a
c
a
b 乙 50
50
72丙
甲
A.甲和乙
B. 乙和丙
C. 没有乙
D. 没有甲
4.如图工作师傅做门时,常用木条EF 固定矩形门框ABCD ,使其不变形这种做法根据是( ).
A 、两点之间线段最短
B 、矩形的对称性
C 、矩形的四个角都是直角
D 、三角形的稳定性
5.如果△ABC ≌△DEF ,且△ABC 的周长95cm ,A 、B 分别与D 、E 对应并且AB=30cm ,DF=25 cm ,
那么BC 的长等于( )
A .40cm
B .35cm
C .30cm
D .25cm
6.如图,AB ∥DE ,CD=BF ,若△ABC ≌△DEF ,还需要补充的条件可以是( ) A .AC=EF B .AB=DE C .∠B=∠E D .不用补充 7.如图,∠CAB =∠DBA ,AC=BD ,则下列结论中,不正确的是( )
A 、BC=AD
B 、CO=DO
C 、∠C =∠
D D 、∠AOB=∠C +∠D
8.如图,AB=AC ,若AD 平分∠BAC ,则AD 与BC 的位置关系是 .
9.阅读理解题:
如图:已知AC ,BD 相交于O ,OA=OB ,OC=OD.
那么△ABC 与△BAD 全等吗?请说明理由.△ABC 与△BAD 全等吗?请说明理由. 小明的解答:
21∠=
∠ AOD ≌△BOC
而BAD=△AOD+△ADB △ABC=△BOC+△AOB
所以△ABC ≌△BAD
(1)你认为小明的解答有无错误;
(2)如有错误给出正确解答;
OA=OB OD=OC
D A
C
F
B
E
A D B
C
F
E
C D A
B
O
10.如图,点C 是AB 中点,CD ∥BE ,且CD=BE ,试探究AD 与CE
11.如图,AE 是,BAC 的平分线
AB=AC
(1)若D 是
AE 上任意一点,则△ABD ≌△ACD ,说明理由.
(2)若
D 是AE
12.如图,已知AB=AC ,EB=EC ,请说明BD=CD 的理由
13. 如图,△ABC ,△BDF 为等腰直角三角形。
求证:(1)CF=AD ;(2
【典型例题】
例1已知:如图,AB=AC ,AD=AE ,求证:BE=CD.
例2 如图,已知:点D 、E 在BC 上,且BD=CE ,AD=AE ,∠1=∠2,求证:△ADB ≌△AEC
D
A
D B
E C
例3 如图已知:AE=AF ,AB=AC ,∠A=60°,∠B=24°,求∠BOE 的度数.
例4 如图,已知等腰△ABC 与△ADE 中,AB=AC,AD=AE ,且∠BAC=∠DAE ,试说明△ABD ≌△ACE.
例5 如图,已知AB ⊥AC ,AD ⊥AE ,AB=AC ,AD=AE ,求证:(1)BE=DC ,(2)BE ⊥DC.
A
B
D E
C
1 2 B E
A
F
C
O
D
A
B
Q
C
P。