一般n次曲线切线方程的推导

合集下载

运用导数探究曲线的切线问题

运用导数探究曲线的切线问题

运用导数探究曲线的切线问题山东 黄丽生导数与曲线的切线有缘,因为()0/x f的几何意义是曲线y=f (x)在点(x 0 ,f (x 0))处的切线斜率,其物理意义通常指物体运动时的瞬时速度。

曲线的切线反映了曲线的变化情况,体现了微积分中重要的思想方法——以直代曲。

因此,利用导数求解曲线的问题,几乎是新课程高考每年必考的内容。

在这类问题中,导数所肩负的任务是求切线的斜率,这类问题的核心部分是考查函数的思想方法和解析几何的基本思想方法,真正体现出函数、导数既是研究的对象又是研究的工具。

举例说明。

例1已知函数)0()(>+=t xtx x f 和点)0 , 1(P ,过点P 作曲线)(x f y =的两条切线PM 、PN ,切点分别为M 、N .(1)设)(t g MN =,试求函数)(t g 的表达式;(2)是否存在t ,使得M 、N 与)1 , 0(A 三点共线.若存在,求出t 的值;若不存在,请说明理由.分析:由题意点P 在曲线外,故求切线PM 、PN 的方程,须设出M 、N 两点的横坐标,目的是借助导数求直线的斜率;第二问属探索性问题,往往是先假设存在,看是否能求得符合条件的t 或导出矛盾。

解:(1)设M 、N 两点的横坐标分别为1x 、2x , 21)(x tx f -=', ∴切线PM 的方程为:))(1()(12111x x x tx t x y --=+-,又 切线PM 过点)0,1(P , ∴有)1)(1()(012111x x t x t x --=+-,即02121=-+t tx x , 同理,由切线PN 也过点)0,1(P ,得02222=-+t tx x .由(1)、(2),可得21,x x 是方程022=-+t tx x 的两根,⎩⎨⎧-=⋅-=+∴. ,22121t x x t x x ( * )22211221)()(x t x x t x x x MN --++-=])1(1[)(221221x x t x x -+-= ])1(1][4)[(22121221x x t x x x x -+-+=, 把( * )式代入,得t t MN 20202+=,因此,函数)(t g 的表达式为)0( 2020)(2>+=t t t t g .(2)当点M 、N 与A 共线时,NA MA k k =,∴01111--+x x t x =01222--+x x t x ,即21121x x t x -+=22222x x t x -+,化简,得0])()[(211212=-+-x x x x t x x ,21x x ≠ ,1212)(x x x x t =+∴. 把(*)式代入,解得21=t . ∴存在t ,使得点M 、N 与A 三点共线,且 21=t . 点评:本题以函数为载体,综合考查了函数与导数的有关问题。

空间曲线的切线与法平面曲面的切平面与法线

空间曲线的切线与法平面曲面的切平面与法线

对应于 t t0 t.
x
(1)
z • M
•M
o
y
割线 M的M方程为
z
• M
x x0 y y0 z z0 x y z
x
考察割线趋近于极限位置——切线的过程
上式分母同除以
t ,
x x0 y y0 z z0 ,
x
y
z
t
t
t
•M
o
y
当M M ,即t 0时 ,
曲线在M处的切线方程
曲面的切平面与法线
(求法向量的方向余弦时注意符号)
思考题
如果平面3x y 3z 16 0与椭球面 3 x2 y2 z 2 16相切,求 .
思考题解答
设切点 ( x0 , y0 , z0 ),
依题意知切向量为
n {6 x0 , 2 y0 , 2z0 },
{3, ,3}
6x0 2 y0 2z0
3 3

y0 x0 , z0 3 x0 ,
切点满足曲面和平面方程
3 3
x0 x02
2 2
x0 x02
9 x0 9 x02
16 16
0 ,
0
2.
练习题
一、填空题:
1、曲线 x t , y 1 t , z t 2 再对应于t 1 的点
1 t
t
处切线方程为________________;
处的切平面及法线方程.
解 f ( x, y) x2 y2 1,
n ( 2,1, 4 )
{2x,
2 y, 1}(2,1,4)
{4,
2,1},
切平面方程为
4( x 2) 2( y 1) (z 4) 0,

导数切线斜率公式

导数切线斜率公式

导数切线斜率公式
导数切线斜率公式:两点表示切线的斜率k=(y1-y2)/(x1-x2)。

导数的几何意义是该函数曲线在这一点上的切线斜率。

扩展资料
切线的斜率怎么求:
方法1:用导数求。

第一先求原函数的导函数,第二把切点的横标代入导函数中得到的值就是原函数的图像在该点出切线的斜率。

方法2:有两点表示切线的`斜率k=(y1-y2)/(x1-x2)。

方法3:设出切线方程y=kx+b与函数的曲线方程联立消y,得到关于x的一元二次方程,由Δ=0,解k。

导数切线方程公式:
先算出来导数f'(x),导数的实质就是曲线的斜率,比如函数上存在一点(a.b),且该点的导数f'(a)=c。

那么说明在(a.b)点的切线斜率k=c,假设这条切线方程为y=mx+n,那么m=k=c,且ac+n=b,所以y=cx+b-ac。

公式:求出的导数值作为斜率k,再用原来的点(x0,y0),切线方程就是(y-b)=k(x-a)。

2023高考数学一轮复习专题03 曲线的公切线方程(解析版)

2023高考数学一轮复习专题03 曲线的公切线方程(解析版)

专题03曲线的公切线方程【方法总结】解决此类问题通常有两种方法(1)利用其中一曲线在某点处的切线与另一曲线相切,列出关系式求解;(2)设公切线l 在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=f (x 1)-g (x 2)x 1-x 2.注意:求两条曲线的公切线,如果同时考虑两条曲线与直线相切,头绪会比较乱,为了使思路更清晰,一般是把两条曲线分开考虑,先分析其中一条曲线与直线相切,再分析另一条曲线与直线相切,直线与抛物线相切可用判别式法.【例题选讲】[例1](1)(2020·全国Ⅲ)若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12答案D解析易知直线l 的斜率存在,设直线l 的方程y =kx +b ,则|b |k 2+1=55①.设直线l 与曲线y =x 的切点坐标为kx 0+b③,由②③可得b =12x 0,将b ,所以k =b =12,故直线l 的方程y =12x +12.(2)已知f (x )=e x (e 为自然对数的底数直线l 的方程为.答案y =e x 或y =x +1解析设l ,∴f ′(x 1)=1e x,∴切点为(x 1,1e x)y =1e x·x -11e xx +1e x,①,同理设l 与g (x )=ln x +2的切点为(x 2,y 2),∴y 2=ln x 2+2,g ′(x )=1x ,∴g ′(x 2)=1x 2,切点为(x 2,ln x 2+2),切线斜率k =1x 2,∴切线方程为y -(ln x 2+2)=1x 2(x -x 2)①与②相同,∴111122121e e , e e ln 1,x x x x x x x x -⎧=⇒=⎪⎨⎪-+=+⎩③④把③代入④有-11e x x +1e x =-x 1+1,即(1-x 1)(1e x-1)=0,解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ;当x 1=0时,切线方程为y =x +1,综上,直线l 的方程为y =e x 或y =x +1.(3)曲线C 1:y =ln x +x 与曲线C 2:y =x 2有________条公切线.答案1解析由y =ln x +x 得y ′=1x+1,设点(x 1,ln x 1+x 1)是曲线C 1上任一点,∴曲线C 1在点(x 1,ln x 1+x 1)处的切线方程为y -(ln x 1ln x 1-1.同理可得曲线C 2在点(x 2,x 22)题意知两切线重合,1=2x 2,x 1-1=-x 22,消去x 22x +4ln x -3(x >0),则f ′(x )=-2x 3-2x 2+4x =4x 2-2x -2x 3=当x ∈(1,+∞)时,f ′(x )>0,∴f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴f (x )min =f (1)=0,∴f (x )只有一个零点.即方程①只有一个解,故曲线C 1与C 2只有1条公切线.(4)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =.答案8解析方法一因为y =x +ln x ,所以y ′=1+1x,y ′|x =1=2.所以曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.因为y =2x -1与曲线y =ax 2+(a +2)x +1相切,所以a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由=2x -1,=ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8.方法二同方法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).因为y ′=2ax +(a +2),所以0|x x y ==2ax 0+(a +2).由ax0+(a +2)=2,20+(a +2)x 0+1=2x 0-1,0=-12,=8.(5)(2016·课标全国Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =e x 的切线,则b =________.答案0或1解析设直线y =kx +b 与曲线y =ln x +2的切点为(x 1,y 1),与曲线y =e x 的切点为(x 2,y 2),y =ln x +2的导数为y ′=1x ,y =e x 的导数为y ′=e x ,可得k =e x 2=1x 1.又由k =y 2-y 1x 2-x 1=e x 2-ln x 1-2x 2-x 1,消去x 2,可得(1+ln x 1)·(x 1-1)=0,则x 1=1e 或x 1=1,则直线y =kx +b 与曲线y =ln x +2(1,2),与曲线y =e x 的切点为(1,e)或(0,1),所以k =e -11-1e=e 或k =1-20-1=1,则切线方程为y =e x 或y =x +1,可得b =0或1.a4ln x0有解,令φ(x)=1x2+2x+1+4ln x(x>0),φ′(x)=-2x3-2x2+4x=4x-2x-2x3=2(2x+1)(x-1)x3,当x∈(0,1)时,φ′(x)<0,当x∈(1,+∞)时,φ′(x)>0,∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x)min=φ(1)=4,又x→+∞时,φ(x)→+∞,故φ(x)的值域为[4,+∞),所以4a≥4,即a≥1,故实数a的取值范围是[1,+∞).【对点训练】1.若直线l与曲线y=e x及y=-14x2都相切,则直线l的方程为________.1.答案y=x+1解析设直线l与曲线y=e x的切点为(x0,0x e),直线l与曲线y=-14x2的切点为1y=e x在点(x0,0x e)处的切线的斜率为y′|x=x0=0x e,y=-x24在点1y′|x=x1x=x1=-x12,则直线l的方程可表示为y=0x e x-x0e0x e+0x e或y=-12x1x+14x21=-x12,x0+=x214,所以0x e=1-x0,解得x0=0,所以直线l的方程为y=x+1.2.已知函数f(x)=x2的图象在x=1处的切线与函数g(x)=e xa的图象相切,则实数a等于()A.e B.e e2C.e2D.e e 2.答案B解析由f(x)=x2,得f′(x)=2x,则f′(1)=2,又f(1)=1,所以函数f(x)=x2的图象在x=1处的切线方程为y-1=2(x-1),即y=2x-1.设y=2x-1与函数g(x)=e xa的图象相切于点(x 0,y 0),由g ′(x )=e x a ,可得00000e 2,e 21,x x g x a g x x a ⎧()==⎪⎪⎨⎪()===-⎪⎩′解得x 0=32,a =321e 2=e e 2.3.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为()A .14B .12C .1D .43.答案A解析由题意可知f ′(x )=12x -12,g ′(x )=a x ,由f ′(14)=g ′(14),得12×(14)-12=a14,可得a =14,经检验,a =14满足题意.4.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于()A .1B .2C .3D .3或-14.答案D解析设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x=1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和g (x )=x 2+ax 也相切,故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3.5.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.5.答案1-ln 2解析y =ln x +2的切线为y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x+1)的切线为y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2).=1x 2+1,1+1=ln(x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln2.6.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m =________.6.答案-2解析∵f ′(x )=1x,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,∴m =-2.7.已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点,且在公共点处切线相同,则m 的值为()A .2B .5C .1D .07.答案C解析根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0,由f (x )=-2x 2+m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a ,由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a -1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a -1,解得a =1或a =-34(舍去),又g (1)=-1,即公共点的坐标为(1,-1),将点(1,-1)代入f (x )=-2x 2+m ,可得m =1.8.若直线y =kx +b 是曲线y =e xe2的切线,也是曲线y =e x -1的切线,则k +b 等于()A .-ln 22B .1-ln 22C .ln 2-12D .ln 228.答案D解析设直线y =kx +b 与曲线y =e x e 2相切于点P (x 1,y 1),y ′=e x e2=e x -2,k 1=12e x -;直线y =kx +b 与曲线y =e x -1相切于点Q (x 2,y 2),y ′=e x ,k 2=2e x ,∴l 1:y =1112221e e e x x x x x ---+-,l 2:y =2222e e 1e x x x x x +--,12112222212e e e e e e 1x xx x x x x x ⎧=⎪⎨=⎪⎩---,∴---,∴x 2=-ln 2,∴k +b =2222e e 1e x x x x +--=12+12-1-(-ln 2)×12=ln 22.9.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)在点P 处的切线垂直,则P 的坐标为________.9.答案(1,1)解析y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (m ,n ),y =1x(x>0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).10.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为.10.答案-e34-解析由f (x )=x 3+ax +14,得f ′(x )=3x 2+a .∵f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),又∵g ′(x )=-1x ,ln x 0-14=ax 0,①=-1x 0,②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e34=-e 34-.11.已知曲线y =e x 在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)=()A .-1B .-2C .1D .211.答案B 解析已知曲线y =e x 在点(x 1,1e x )处的切线方程为y -1e x =1e x (x -x 1),即y =1111e e e x x xx x -+,曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由=1x 2,-1x 1=-1+ln x 2,得x 2=11e x ,111e e x x x -=-1+ln x 2=-1+1ln 1e x =-1-x 1,则1e x =x 1+1x 1-1.又x 2=11e x ,所以x 2=x 1-1x 1+1,所以x 2-1=x 1-1x 1+1-1=-2x 1+1,所以(x 1+1)(x 2-1)=-2.12.曲线C 1:y =x 2与曲线C 2:y =a e x (a >0)存在公切线,则a 的取值范围是________.12.答案,4e 2解析设公切线在y =x 2上的切点为(x 1,x 21),在y =a e x(a >0)上的切点为(x 2,2e x a ).函数y =x 2,y =a e x (a >0)的导数分别为y ′=2x ,y ′=a e x ,则公切线的斜率为2x 1=222112e e x x x a a x x =--,整理得a =2241e x x ()-.由a >0可知,x 2>1,令f (x )=4x -1e x,x ∈(1,+∞),则f ′(x )=4e x2-x e x 2=8-4xe x,f ′(x )>0⇒1<x <2;f ′(x )<0⇒x >2,∴f (x )在区间(1,2)上单调递增,在区间(2,+∞)上单调递减,f (x )max =f (2)=4e 2;当x →+∞时,f (x )→0,即0<f (x )≤4e2,∴a ,4e 2.13.若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值.13.解析易知点O (0,0)在曲线y =x 3-3x 2+2x 上.(1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x =2x ,=x 2+a ,得x 2-2x +a =0,依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =y ′|x =x 0=3x 20-6x 0+2,①,又k =y 0x 0=x 20-3x 0+2,②,联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x =-14x ,=x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.14.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.14.解析(1)由已知得f ′(x )=3ax 2+6x -6a ,∵f ′(-1)=0,∴3a -6-6a =0,∴a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).∵g ′(x 0)=6x 0+6,∴切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0),将(0,9)代入切线方程,解得x 0=±1.当x 0=-1时,切线方程为y =9;当x 0=1时,切线方程为y =12x +9.由(1)知f (x )=-2x 3+3x 2+12x -11,①由f ′(x )=0得-6x 2+6x +12=0,解得x =-1或x =2.在x =-1处,y =f (x )的切线方程为y =-18;在x =2处,y =f (x )的切线方程为y =9,∴y=f(x)与y=g(x)的公切线是y=9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x -10;∴y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。

导数中八大切线问题题型总结(学生版)--高中数学

导数中八大切线问题题型总结(学生版)--高中数学

导数中八大切线问题题型总结【考点预测】1.在点的切线方程切线方程y-f(x0)=f (x0)(x-x0)的计算:函数y=f(x)在点A(x0,f(x0))处的切线方程为y-f(x0)=f(x0)(x-x0),抓住关键y0=f(x0) k=f (x0) .2.过点的切线方程设切点为P(x0,y0),则斜率k=f (x0),过切点的切线方程为:y-y0=f (x0)(x-x0),又因为切线方程过点A(m,n),所以n-y0=f (x0)(m-x0)然后解出x0的值.(x0有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.【题型目录】题型一:导数与切线斜率的关系题型二:在点P处切线(此类题目点P即为切点)题型三:过点P的切线(此类题目点P不一定为切点,需要设切点为x0,y0)题型四:已知切线求参数问题题型五:切线的条数问题(判断切线条数以及由切线条数求范围)题型六:公切线问题题型七:切线平行、垂直、重合问题题型八:与切线相关的最值问题【典例例题】题型一:导数与切线斜率的关系【例1】(2022·全国·高三专题练习(文))函数y=f(x)的图像如图所示,下列不等关系正确的是( )A.0<f (2)<f (3)<f(3)-f(2)B.0<f (2)<f(3)-f(2)<f (3)C.0<f (3)<f(3)-f(2)<f (2)D.0<f(3)-f(2)<f (2)<f (3)【例2】函数y=f x 的图象如图所示,f′x 是函数f x 的导函数,则下列大小关系正确的是( )A.2f′4 <f4 -f2 <2f′2B.2f′2 <f4 -f2 <2f′4C.2f′4 <2f′2 <f4 -f2D.f4 -f2 <2f′4 <2f′2【题型专练】1.(2021·福建·泉州鲤城北大培文学校高三期中)(多选题)已知函数f x 的图象如图所示,f x 是f x 的导函数,则下列数值的排序正确的是()A.f 3 <f 2B.f 3 <f 3 -f 2C.f 2 <f 3 -f 2D.f 3 -f 2 <02.(2022·黑龙江齐齐哈尔·高二期末)函数y =f x 的图象如图所示,f x 是函数f x 的导函数,则下列数值排序正确的是( )A.2f 3 <f 5 -f 3 <2f 5B.2f 3 <2f 5 <f 5 -f 3C.f 5 -f 3 <2f 3 <2f 5D.2f 3 <2f 5 <f 5 -f 3题型二:在点P 处切线(此类题目点P 即为切点)【例1】【2019年新课标3卷理科】已知曲线y =ae x +x ln x 在点1,ae 处的切线方程为y =2x +b ,则A.a =e ,b =-1B.a =e ,b =1C.a =e -1,b =1D.a =e -1,b =-1【例2】(2022·全国·高三专题练习(文))已知函数f (x )是定义在R 上的奇函数,且f (x )=-2x 3+3ax 2-f (1)x ,则函数f (x )的图象在点(-2,f (-2))处的切线的斜率为( )A.-21B.-27C.-24D.-25【例3】(2022·河南省浚县第一中学模拟预测(理))曲线y =x ln (2x +5)在x =-2处的切线方程为( )A.4x -y +8=0B.4x +y +8=0C.3x -y +6=0D.3x +y +6=0【例4】过函数f (x )=12e 2x-x 图像上一个动点作函数的切线,则切线领斜角范围为( )A.0,3π4B.0,π2∪3π4,π C.3π4,π D.π2,3π4【例5】(2022·安徽·巢湖市第一中学模拟预测(文))曲线y =2x +ax +2在点1,b 处的切线方程为kx -y +6=0,则k 的值为( )A.-1B.-23C.12D.1【例6】(2022·江西·丰城九中高二期末(理))已知函数f x =f 2 3x 2−x ,x >0g x ,x <0图像关于原点对称,则f (x )在x=-1处的切线方程为( )A.3x-y+2=0B.3x-y-2=0C.3x+y+4=0D.3x+y-4=0【题型专练】1.【2018年新课标1卷理科】设函数f x =x3+a-1x2+ax.若f x 为奇函数,则曲线y=f x 在点0,0处的切线方程为( )A.y=-2xB.y=-xC.y=2xD.y=x2.【2021年甲卷理科】曲线y=2x-1x+2在点-1,-3处的切线方程为__________.3.【2019年新课标1卷理科】曲线y=3(x2+x)e x在点(0,0)处的切线方程为___________.4.【2018年新课标2卷理科】曲线y=2ln(x+1)在点(0,0)处的切线方程为__________.5.【2018年新课标3卷理科】曲线y=ax+1e x在点0,1处的切线的斜率为-2,则a=________.题型三:过点P的切线(此类题目点P不一定为切点,需要设切点为x0,y0)【例1】【2022年新高考2卷】曲线y=ln|x|过坐标原点的两条切线的方程为____________,_____ _______.【例2】(2022·四川·广安二中二模(文))函数f x =x2e x过点0,0的切线方程为( )A.y=0B.ex+y=0C.y=0或x+ey=0D.y=0或ex+y=0【例3】(2022·四川省成都市郫都区第一中学高三阶段练习(文))若过点12,0的直线与函数f(x)=xe x的图象相切,则所有可能的切点横坐标之和为( )A.e+1B.-12C.1D.12【例4】(2022·广东·佛山市南海区九江中学高二阶段练习)直线y=12x-b与曲线y=-12x+ln x相切,则b的值为( )A.2B.-2C.-1D.1【题型专练】1.(2022·陕西安康·高三期末(文))曲线y=2x ln x+3过点-12,0的切线方程是( )A.2x+y+1=0B.2x-y+1=0C.2x+4y+1=0D.2x-4y+1=02.(2022·广东茂名·二模)过坐标原点作曲线y=ln x的切线,则切点的纵坐标为( )A.eB.1C.1eD.1e3.过点(0,-1)作曲线f(x)=x ln x的切线,则切线方程为()A.x+y+1=0B.x-y-1=0C.x+2y+2=0D.2x-y-1=04.已知f (x )=x 2,则过点P (-1,0)且与曲线y =f (x )相切的直线方程为( )A.y =0B.4x +y +4=0C.y =0或4x +y +4=0D.y =0或4x -y +4=0题型四:已知切线求参数问题【例1】(2022·湖南·模拟预测)已知P 是曲线C :y =ln x +x 2+3-a x 上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若π3≤θ<π2,则实数a 的取值范围是( )A.23,0B.22,0C.-∞,23D.-∞,22【例2】(2022·广东·石门高级中学高二阶段练习)若直线y =kx +1-ln2是曲线y =ln x +2的切线,则k =________.【例3】(2022·陕西·千阳县中学高三阶段练习(文))已知曲线y =ae x +x ln x 在点1,ae 处的切线方程为y =2x +b ,则b =_____【例4】(2022·江苏苏州·模拟预测)已知奇函数f x =x 2-2x ax +b a ≠0 在点a ,f a 处的切线方程为y =f a ,则b =( )A.-1或1B.-233或233C.-2或2D.-433或433【题型专练】1.(2022·云南·丽江市教育科学研究所高二期末)已知曲线f (x )=(x +a )e x 在点(-1,f (-1))处的切线与直线2x +y -1=0垂直,则实数a 的值为_________.2.(2022·云南昆明·模拟预测(文))若函数f x =a x +ln x 的图象在x =4处的切线方程为y =x +b ,则( )A.a =3,b =2+ln4B.a =3,b =-2+ln4C.a =32,b =-1+ln4D.a =32,b =1+ln43.(2022·河南·方城第一高级中学模拟预测(理))已知直线l 的斜率为2,l 与曲线C 1:y =x 1+ln x 和圆C 2:x 2+y 2-6x +n =0均相切,则n =( )A.-4B.-1C.1D.4题型五:切线的条数问题(判断切线条数以及由切线条数求范围)【例1】(2022·河南洛阳·三模(文))若过点P 1,0 作曲线y =x 3的切线,则这样的切线共有( )A.0条B.1条C.2条D.3条【例2】(2022·全国·高三专题练习)若过点(a ,b )可以作曲线y =ln x 的两条切线,则( )A.a <ln bB.b <ln aC.ln b <aD.ln a <b【例3】【2021年新高考1卷】若过点a ,b 可以作曲线y =e x 的两条切线,则( )A.e b <aB.e a <bC.0<a <e bD.0<b <e a【例4】(2022·河南洛阳·三模(理))若过点P 1,t 可作出曲线y =x 3的三条切线,则实数t 的取值范围是( )A.-∞,1B.0,+∞C.0,1D.0,1【例5】(2022·河北·高三阶段练习)若过点P (1,m )可以作三条直线与曲线C :y =xe x相切,则m 的取值范围为( )A.-∞,3e 2B.0,1eC.(-∞,0)D.1e ,3e 2【例6】(2022·黑龙江·哈尔滨市第六中学校高二期末)过直线y =x -1上一点P 可以作曲线f x =x -ln x 的两条切线,则点P 横坐标t 的取值范围为( )A.0<t <1B.1<t <eC.0<t <eD.1e<t <1【题型专练】1.(2022·内蒙古呼和浩特·二模(理))若过点P -1,m 可以作三条直线与曲线C :y =xe x 相切,则m 的取值范围是( )A.-3e 2,+∞ B.-1e,0 C.-1e ,-1e2 D.-3e2,-1e 2.(2022·广东深圳·二模)已知a >0,若过点(a ,b )可以作曲线y =x 3的三条切线,则( )A.b <0B.0<b <a 3C.b >a 3D.b b -a 3 =03.(2022·安徽·安庆市第二中学高二期末)若过点a ,b a >0 可以作曲线y =xe x 的三条切线,则()A.0<a <be bB.-ae a <b <0C.0<ae 2<b +4D.-a +4 <be 2<04.(2022·山东枣庄·高二期末)已知函数f x =x +1 e x ,过点M (1,t )可作3条与曲线y =f x 相切的直线,则实数t 的取值范围是( )A.-4e 2,0B.-4e 2,2eC.-6e 3,2e D.-6e 3,05.(2022·山东潍坊·三模)过点P 1,m m ∈R 有n 条直线与函数f x =xe x 的图像相切,当n 取最大值时,m 的取值范围为( )A.-5e 2<m <e B.-5e 2<m <0 C.-1e<m <0 D.m <e题型六:公切线问题【例1】(2023届贵州省遵义市新高考协作体)高三上学期入学质量监测数学(理)试题)若直线y =kx +b 是曲线y =e x +1的切线,也是y =e x +2的切线,则k =( )A.ln2B.-ln2C.2D.-2【例2】(2022·全国·高三专题练习)若函数f x =ln x 与函数g (x )=x 2+x +a (x <0)有公切线,则实数a 的取值范围是( )A.ln12e,+∞ B.-1,+∞C.1,+∞D.ln2,+∞【例3】(2022·河北石家庄·高二期末)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值可能是( )A.1.2B.4C.5.6D.2e【例4】(2022·全国·高三专题练习)已知曲线C 1:f x =e x +a 和曲线C 2:g x =ln (x +b )+a 2a ,b ∈R ,若存在斜率为1的直线与C 1,C 2同时相切,则b 的取值范围是( )A.-94,+∞B.0,+∞C.-∞,1D.-∞,94【例5】(2022·江苏·南京外国语学校模拟预测)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为( )A.0,2eB.0,eC.2e ,+∞D.e ,2e【例6】(2022·重庆市育才中学高三阶段练习)若直线l :y =kx +b (k >1)为曲线f x =e x -1与曲线g x =e ln x的公切线,则l 的纵截距b =( )A.0B.1C.eD.-e【例7】(2022·河南·南阳中学高三阶段练习(理))若直线y =k 1x +1 -1与曲线y =e x 相切,直线y =k 2x +1 -1与曲线y =ln x 相切,则k 1k 2的值为( )A.12B.1C.eD.e 2【题型专练】1.已知函数f x =x ln x ,g x =ax 2-x .若经过点A 1,0 存在一条直线l 与曲线y =f x 和y =g x 都相切,则a =( )A.-1B.1C.2D.32.【2020年新课标3卷理科】若直线l 与曲线y =x 和x 2+y 2=15都相切,则l 的方程为( )A.y =2x +1B.y =2x +12C.y =12x +1D.y =12x +123.(2022·河北省唐县第一中学高三阶段练习)已知函数f x =a ln x ,g x =be x ,若直线y =kx k >0 与函数f x ,g x 的图象都相切,则a +1b 的最小值为( )A.2B.2eC.e 2D.e4.(2022·全国·高三专题练习)若两曲线y =ln x -1与y =ax 2存在公切线,则正实数a 的取值范围是( )A.0,2eB.12e -3,+∞C.0,12e -3 D.2e ,+∞5.(2022·全国·高三专题练习)若仅存在一条直线与函数f (x )=a ln x (a >0)和g (x )=x 2的图象均相切,则实数a =( )A.eB.eC.2eD.2e6.若曲线y =ln x 与曲线:y =x 2−k 有公切线,则实数k 的最大值为( )A.78+12ln2 B.78-12ln2 C.12+12ln2 D.12+12ln2题型七:切线平行、垂直、重合问题【例1】(2023·全国·高三专题练习)函数f (x )=ln x +ax 存在与直线2x -y =0平行的切线,则实数a 的取值范围是( )A.(-∞,2] B.-∞,2-1e ∪2-1e ,2C.2,+∞D.0,+∞【例2】(2022·安徽·合肥一中模拟预测(文))对于三次函数f (x ),若曲线y =f (x )在点(0,0)处的切线与曲线y=xf (x )在点(1,2)处点的切线重合,则f ′(2)=( )A.-34B.-14C.-4D.14【例3】(2022·全国·高三专题练习)若直线x =a 与两曲线y =e x ,y =ln x 分别交于A ,B 两点,且曲线y =e x 在点A 处的切线为m ,曲线y =ln x 在点B 处的切线为n ,则下列结论:①∃a ∈0,+∞ ,使得m ⎳n ;②当m ⎳n 时,AB 取得最小值;③AB 的最小值为2;④AB 最小值小于52.其中正确的个数是( )A.1 B.2C.3D.4【题型专练】1.(2022·山西太原·二模(理))已知函数f x =a sin x +b cos x +cx 图象上存在两条互相垂直的切线,且a 2+b 2=1,则a +b +c 的最大值为( )A.23B.22C.3D.22.(2022·全国·高三专题练习)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( )A.12B.1C.32D.23.(2022·全国·高三专题练习)已知函数f (x )=x 2+x +2a (x <0)-1x(x >0)的图象上存在不同的两点A ,B ,使得曲线y =f (x )在这两点处的切线重合,则实数a 的取值范围是( )A.-∞,-18B.-1,18C.(1,+∞)D.(-∞,1)∪18,+∞题型八:与切线相关的最值问题【例1】(2022·全国·高三专题练习)若点P 是曲线y =32x 2-2ln x 上任意一点,则点P 到直线y =x -3的距离的最小值为( )A.724B.332C.2D.5【例2】(2022·山东省淄博第一中学高三开学考试)动直线l 分别与直线y =2x -1,曲线y =32x 2-ln x 相交于A ,B 两点,则AB 的最小值为( )A.510B.55C.1D.5【例3】(2022·河南·许昌高中高三开学考试(理))已知函数y =e 2x +1的图象与函数y =ln x +1 +12的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为( )A.2ln22B.2ln24C.24+ln22D.24+ln2【例4】(2022·山东聊城·二模)实数x 1,x 2,y 1,y 2满足:x 21-ln x 1-y 1=0,x 2-y 2-4=0,则x 1-x 2 2+y 1-y 22的最小值为( )A.0B.22C.42D.8【题型专练】1.(2022·山西·高二期末)已知点P 是曲线y =x 2-3ln x 上一点,若点P 到直线2x +2y +3=0的距离最小,则点P 的坐标为___________.2.(2022·江苏·高三专题练习)已知a ,b 为正实数,直线y =x -a 与曲线y =ln (x +b )相切,则a 22-b的取值范围是()A.(0,+∞)B.(0,1)C.0,12D.[1,+∞)3.(2022·全国·高三专题练习)曲线y =e 2x 上的点到直线2x -y -4=0的最短距离是( )A.5B.3C.2D.14.(2022·河北衡水·高三阶段练习)已知函数f(x)=ln x x-2x2在x=1处的切线为l,第一象限内的点P(a,b)在切线l上,则1a+1+1b+1的最小值为( )A.2+324 B.3+424 C.4+235 D.3+245.(2022·河南·灵宝市第一高级中学模拟预测(文))已知直线y=kx+b是曲线y=x+1的切线,则k2+b2 -2b的最小值为( )A.-12B.0C.54D.3。

导数中的公切线问题--2024年新高考数学一轮复习题型归纳与方法总结 解析版

导数中的公切线问题--2024年新高考数学一轮复习题型归纳与方法总结 解析版

导数中的公切线问题知识点梳理一、公切线问题一般思路两个曲线的公切线问题,主要考查利用导数的几何意义进行解决,关键是抓住切线的斜率进行转化和过渡.主要应用在求公切线方程,切线有关的参数,以及与函数的其他性质联系到一起.处理与切线有关的参数,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.考法1:求公切线方程已知其中一曲线上的切点,利用导数几何意义求切线斜率,进而求出另一曲线上的切点;不知切点坐标,则应假设两切点坐标,通过建立切点坐标间的关系式,解方程.具体做法为:设公切线在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=f x 1 -g x 2x 1-x 2.考法2:由公切线求参数的值或范围问题由公切线求参数的值或范围问题,其关键是列出函数的导数等于切线斜率的方程.题型精讲精练1若直线y =kx +b 是曲线y =e x 的切线,也是曲线y =ln x +2 的切线,则k =______.【解析】设y =kx +b 与y =e x 和y =ln x +2 ,分别切于点x 1,e x 1,x 2,ln x 2+2 ,由导数的几何意义可得:k =e x 1=1x 2+2,即x 2+2=1ex 1,①则切线方程为y -e x 1=e x 1x -x 1 ,即y =e x 1x -e x 1x 1+e x 1,或y -ln x 2+2 =1x 2+2x -x 2 ,即y -ln x 2+2 =1x 2+2x -x 2 ,②将①代入②得y =e x 1x +2e x 1-1-x 1,又直线y =kx +b 是曲线y =e x 的切线,也是曲线y =ln x +2 的切线,则-e x 1x 1+e x 1=2e x 1-1-x 1,即e x 1-1 x 1+1 =0,则x 1=-1或x 1=0,即k =e 0=1或k =e -1=1e ,故答案为1或1e.2已知直线y =kx +b 与函数y =e x 的图像相切于点P x 1,y 1 ,与函数y =ln x 的图像相切于点Q x 2,y 2 ,若x 2>1,且x 2∈n ,n +1 ,n ∈Z ,则n =______.【解析】依题意,可得e x 1=k =1x 2y 1=e x 1=kx 1+by 2=ln x 2=kx 2+b,整理得x 2ln x 2-ln x 2-x 2-1=0令f x =x ln x -ln x -x -1x >1 ,则f x =ln x -1x在1,+∞ 单调递增且f 1 ⋅f 2 <0,∴存在唯一实数m ∈1,2 ,使f m =0f x min =f m <f 1 <0,f 2 =ln2-3<0,f 3 =2ln3-4<0,f 4 =3ln4-5<0,f 5 =4ln5-6>0,∴x 2∈4,5 ,故n =4.【题型训练】1.求公切线方程一、单选题1(2023·全国·高三专题练习)曲线y =1x与曲线y =-x 2的公切线方程为()A.y =-4x +4B.y =4x -4C.y =-2x +4D.y =2x -4【答案】A【分析】画出图象,从而确定正确选项.【详解】画出y =1x,y =-x 2以及四个选项中直线的图象如下图所示,由图可知A 选项符合.故选:A2(2023·全国·高三专题练习)对于三次函数f (x ),若曲线y =f (x )在点(0,0)处的切线与曲线y =xf (x )在点(1,2)处点的切线重合,则f ′(2)=()A.-34B.-14C.-4D.14【答案】B【分析】由f(0)=0得d=0,然后求得f (x),由f (0)=2-01-0求得c=2,设g(x)=xf(x),由g(1)=2得f(1)=2及a+b=0,再由g (1)=2得3a+2b+2=0,解得a,b后可得f (2).【详解】设f(x)=ax3+bx2+cx+d(a≠0),∵f(0)=d=0,∴f(x)=ax3+bx2+cx,∴f′(x)=3ax2+2bx+c∴f′(0)=c=2-01-0=2,设g(x)=xf(x),则g(1)=f(1)=a+b+2=2,即a+b=0⋯⋯①又∵g′(x)=f(x)+xf′(x),∴g′(1)=f(1)+f′(1)=2,∴f′(1)=0,即3a+2b+2=0⋯⋯②由①②可得a=-2,b=2,c=2,∴f′(2)=-14.故选:B.3(2023·全国·高三专题练习)已知函数f x =x ln x,g x =ax2-x.若经过点A1,0存在一条直线l与曲线y=f x 和y=g x 都相切,则a=()A.-1B.1C.2D.3【答案】B【分析】先求得f(x)在A(1,0)处的切线方程,然后与g x =ax2-x联立,由Δ=0求解【详解】解析:∵f x =x ln x,∴f x =1+ln x,∴f 1 =1+ln1=1,∴k=1,∴曲线y=f x 在A1,0处的切线方程为y=x-1,由y=x-1y=ax2-x得ax2-2x+1=0,由Δ=4-4a=0,解得a=1.故选:B4(2023·全国·高三专题练习)已知函数f(x)=x2-4x+4,g(x)=x-1,则f(x)和g(x)的公切线的条数为A.三条B.二条C.一条D.0条【答案】A【分析】分别设出两条曲线的切点坐标,根据斜率相等得到方程8n3-8n2+1=0,构造函数f x =8x3-8x2+1,f x =8x3x-2,研究方程的根的个数,即可得到切线的条数.【详解】设公切线与f x 和g x 分别相切于点m,f m,n,f n,f x =2x-4,g x =-x -2,gn =fm =g n -f m n -m ,解得m =-n -22+2,代入化简得8n 3-8n 2+1=0,构造函数f x =8x 3-8x 2+1,f x =8x 3x -2 ,原函数在-∞,0 ↗,0,23 ↘,23,+∞ ↗,极大值f 0 >0,极小值,f 23<0故函数和x 轴有交3个点,方程8n 3-8n 2+1=0有三解,故切线有3条.故选A .【点睛】这个题目考查了利用导数求函数在某一点处的切线方程;步骤一般为:一,对函数求导,代入已知点得到在这一点处的斜率;二,求出这个点的横纵坐标;三,利用点斜式写出直线方程.考查了函数零点个数问题,即转化为函数图像和x 轴的交点问题.5(2023·全国·高三专题练习)已知函数f x =x 2-2m ,g x =3ln x -x ,若y =f x 与y =g x在公共点处的切线相同,则m =()A.-3B.1C.2D.5【答案】B【分析】设曲线y =f x 与y =g x 的公共点为x 0,y 0 ,根据题意可得出关于x 0、m 的方程组,进而可求得实数m 的值.【详解】设函数f x =x 2-2m ,g x =3ln x -x 的公共点设为x 0,y 0 ,则f x 0 =g x 0 f x 0 =g x 0 ,即x 20-2m =3ln x 0-x 02x 0=3x 0-1x 0>0,解得x 0=m =1,故选:B .【点睛】本题考查利用两函数的公切线求参数,要结合公共点以及导数值相等列方程组求解,考查计算能力,属于中等题.6(2023·全国·高三专题练习)函数f (x )=ln x 在点P (x 0,f (x 0))处的切线与函数g (x )=e x 的图象也相切,则满足条件的切点的个数有A.0个B.1个C.2个D.3个【答案】C【分析】先求直线l 为函数的图象上一点A (x 0,f (x 0))处的切线方程,再设直线l 与曲线y =g (x )相切于点(x 1,e x 1),进而可得ln x 0=x 0+1x 0-1,根据函数图象的交点即可得出结论.【详解】解:∵f (x )=ln x ,∴f ′(x )=1x ,∴x =x 0,f ′(x 0)=1x 0,∴切线l的方程为y-ln x0=1x0(x-x0),即y=1x0x+ln x0-1,①设直线l与曲线y=g(x)相切于点(x1,e x1),∵g (x)=e x,∴e x1=1x0,∴x1=-ln x0.∴直线l也为y-1x0=1x0(x+ln x0)即y=1x0x+ln x0x0+1x0,②由①②得ln x0=x0+1 x0-1,如图所示,在同一直角坐标系中画出y=ln x,y=x+1x-1的图象,即可得方程有两解,故切点有2个.故选:C二、填空题7(2023·吉林长春·长春吉大附中实验学校校考模拟预测)与曲线y=e x和y=-x24都相切的直线方程为.【答案】y=x+1【分析】分别设出直线与两曲线相切的切点,然后表示出直线的方程,再根据切线是同一条直线建立方程求解.【详解】设直线与曲线y=e x相切于点x1,e x1,因为y =e x,所以该直线的方程为y-e x1=e x1x-x 1,即y=e x1x+e x11-x1,设直线与曲线y=-x24相切于点x2,-x224,因为y =-x2,所以该直线的方程为y+x224=-x22x-x2,即y=-x22x+x224,所以e x1=-x22e x11-x1=x224,解得x1=0,x2=-2,所以该直线的方程为y=x+1,故答案为:y=x+1.8(2023·全国·高三专题练习)已知f x =e x-1(e为自然对数的底数),g x =ln x+1,请写出f x 与g x 的一条公切线的方程.【答案】y=ex-1或y=x【分析】假设切点分别为m,e m-1,n,ln n+1,根据导数几何意义可求得公切线方程,由此可构造方程求得m,代入公切线方程即可得到结果.【详解】设公切线与f x 相切于点m,e m-1,与g x 相切于点n,ln n+1,∵f x =e x,g x =1x,∴公切线斜率k=e m=1n;∴公切线方程为:y-e m+1=e m x-m或y-ln n-1=1nx-n,整理可得:y=e m x-m-1e m-1或y=1nx+ln n,∴e m=1nm-1e m+1=-ln n,即m=-ln nm-1e m +1=-ln n,∴m-1e m+1-m=m-1e m-1=0,解得:m=1或m=0,∴公切线方程为:y=ex-1或y=x.故答案为:y=ex-1或y=x.9(2023春·安徽·高三合肥市第六中学校联考开学考试)已知直线l与曲线y=e x、y=2+ln x都相切,则直线l的方程为.【答案】y=x+1或y=ex【分析】分别求出两曲线的切线方程是y=e x1x+e x11-x1和y=1x2x+1+ln x2,解方程e x1=1x2,e x11-x1=1+ln x2,即得解.【详解】解:由y=e x得y =e x,设切点为x1,e x1,所以切线的斜率为e x1,则直线l的方程为:y=e x1x+e x11-x1;由y =2+ln x 得y =1x ,设切点为x 2,2+ln x 2 ,所以切线的斜率为1x 2,则直线l 的方程为:y =1x 2x +1+ln x 2.所以e x 1=1x 2,e x 11-x 1 =1+ln x 2,消去x 1得1x 2-11+ln x 2 =0,故x 2=1或x 2=1e,所以直线l 的方程为:y =x +1或y =ex .故答案为:y =x +1或y =ex 10(2023春·浙江金华·高三浙江金华第一中学校考阶段练习)已知直线y =kx +b 是曲线y =ln 1+x 与y =2+ln x 的公切线,则k +b =.【答案】3-ln2【分析】分别设两条曲线上的切点,写出切线方程,建立方程组,解出切点,计算k +b .【详解】设曲线y =ln 1+x 上切点A x 1,ln 1+x 1 ,y =11+x,切线斜率k =11+x 1,切线方程y -ln 1+x 1 =11+x 1x -x 1 ,即y =11+x 1x -x 11+x 1+ln 1+x 1同理,设曲线y =2+ln x 上切点B x 2,2+ln x 2 ,y =1x,切线斜率k =1x 2,切线方程y -2+ln x 2 =1x 2x -x 2 ,即y =1x 2x +1+ln x 2,所以11+x 1=1x 2-x11+x 1+ln (1+x 1)=1+ln x 2,解得x 1=-12x 2=12,所以k =2,b =1-ln2,k +b =3-ln2.故答案为:3-ln2.2.公切线中的参数问题一、单选题1(2023·陕西渭南·统考一模)已知直线y =ax +b (a ∈R ,b >0)是曲线f x =e x 与曲线g x =ln x +2的公切线,则a +b 等于()A.e +2B.3C.e +1D.2【答案】D【分析】由f x 求得切线方程,结合该切线也是g x 的切线列方程,求得切点坐标以及斜率,进而求得直线y =ax +b ,从而求得正确答案.【详解】设t ,e t 是f x 图象上的一点,f x =e x ,所以f x 在点t ,e t 处的切线方程为y -e t =e t x -t ,y =e t x +1-t e t ①,令g x =1x=e t ,解得x =e -t ,g e -t=ln e -t+2=2-t ,所以2-t -e te -t-t=e t ,1-t =1-t e t ,所以t =0或t =1(此时①为y =ex ,b =0,不符合题意,舍去),所以t =0,此时①可化为y -1=1×x -0 ,y =x +1,所以a +b =1+1=2.故选:D2(2023·陕西榆林·校考模拟预测)若直线l 与曲线y =e x 相切,切点为M x 1,y 1 ,与曲线y =x +32也相切,切点为N x 2,y 2 ,则2x 1-x 2的值为()A.-2B.-1C.0D.1【答案】B【分析】根据导数求出切线的斜率,得到切线方程,根据两切线方程即可得解.【详解】因为直线l 与曲线y =e x 相切,切点为M x 1,y 1 ,可知直线l 的方程为y =e x 1x -x 1 +e x 1=e x 1x +1-x 1 e x 1,又直线l 与曲线y =x +3 2也相切,切点为N x 2,y 2 ,可知直线l 的方程为y =2x 2+3 x -x 2 +x 2+3 2=2x 2+3 x -x 22+9,所以e x 1=2x 2+3 1-x 1 e x 1=-x 22+9,两式相除,可得21-x 1 =3-x 2,所以2x 1-x 2=-1.故选:B3(2023春·河南·高三校联考阶段练习)已知曲线y =x 在点x 0,x 0 0<x 0<14处的切线也与曲线y =e x 相切,则x 0所在的区间是()A.0,14e 4B.14e 4,14e 2C.14e 2,14eD.14e ,14【答案】C【分析】设切线l与曲线y=e x的切点为m,e m,通过导数分别写出切线方程,由两条切线重合得出方程,再通过此方程有解得出结果.【详解】设该切线为l,对y=x求导得y =12x,所以l的方程为y-x0=12x0x-x0,即y=12x0x+x02.设l与曲线y=e x相切的切点为m,e m,则l的方程又可以写为y-e m=e m x-m,即y=e m x+1-me m.所以e m=12x0,x02=1-me m.消去m,可得x0=1+ln2x0,0<x0<1 4,令t=2x0∈0,1,则ln t-t24+1=0.设h t =ln t-t24+1,当0<t<1时,h t =1t-t2>0,所以h t 在0,1上单调递增,又h1e=-14e2<0,h1e=12-14e>0,所以t0=2x0∈1e,1e,所以x0∈14e2,14e.故选:C.4(2023·全国·高三专题练习)若函数f x =2a ln x+1与g x =x2+1的图像存在公共切线,则实数a的最大值为()A.eB.2eC.e22D.e2【答案】A【分析】分别设公切线与g x =x2+1和f(x)=2a ln x+1的切点x1,x21+1,x2,2a ln x2+1,根据导数的几何意义列式,再化简可得a=2x22-2x22ln x2,再求导分析h(x)=2x2-2x2⋅ln x(x >0)的最大值即可【详解】g x =2x,f x =2a x,设公切线与g x =x2+1的图像切于点x1,x21+1,与曲线f(x)=2a ln x+1切于点x2,2a ln x2+1,所以2x1=2ax2=2a ln x2+1-x21+1x2-x1=2a ln x2-x21x2-x1,故a=x1x2,所以2x1=2x1x2ln x2-x21x2-x1,所以x1=2x2-2x2⋅ln x2,因为a=x1x2,故a=2x22-2x22ln x2,设h(x)=2x2-2x2⋅ln x(x>0),则h (x)=2x(1-2ln x),令h (x)=0⇒x=e当h (x)>0时,x∈(0,e),当h (x)<0时,x∈(e,+∞),所以h x 在(0,e)上递增,在(e,+∞)上递减,所以h(x)max=h(e)=e,所以实数a的最大值为e,故选:A.5(2023·湖南郴州·统考模拟预测)定义:若直线l与函数y=f x ,y=g x 的图象都相切,则称直线l为函数y=f x 和y=g x 的公切线.若函数f x =a ln x a>0和g x =x2有且仅有一条公切线,则实数a的值为()A.eB.eC.2eD.2e【答案】C【分析】设直线与g x =x2的切点为x1,x21,然后根据导数的几何意义可推得切线方程为y=2x1x-x21,y=ax2x+a ln x2-1.两条切线重合,即可得出a=4x22-4x22ln x2有唯一实根.构造h x =4x2-4x2ln x x>0,根据导函数得出函数的性质,作出函数的图象,结合图象,即可得出答案.【详解】设直线与g x =x2的切点为x1,x21,因为g x =2x,根据导数的几何意义可知该直线的斜率为2x1,即该直线的方程为y-x21=2x1x-x1,即y=2x1x-x21.设直线与f x =a ln x的切点为(x2,a ln x2),因为f x =ax,根据导数的几何意义可知该直线的斜率为ax2,即该直线的方程为y-a ln x2=ax2x-x2,即y=ax2x+a ln x2-1.因为函数f x =a ln x a>0和g x =x2有且只有一条公切线,所以有2x1=ax2a ln x2-1=-x21 ,即a=4x22-4x22ln x2有唯一实根.令h x =4x2-4x2ln x x>0,则h x =8x-8x ln x-4x=4x1-2ln x.解h x =0,可得x= e.当4x1-2ln x>0时,0<x<e,所以h x 在0,e上单调递增;当4x1-2ln x<0时,x>e,所以h x 在e,+∞上单调递减.所以h x 在x=e处取得最大值h e=4e-4e×12=2e.当x→0时,h x →0,h e =4e2-4e2ln e=0,函数h x 图象如图所示,因为a>0,a=4x2-4x2ln x有唯一实根,所以只有a=2e.故选:C6(2023春·广东汕头·高三汕头市潮阳实验学校校考阶段练习)已知函数f x =2+ln x,g x = a x,若总存在两条不同的直线与函数y=f x ,y=g x 图象均相切,则实数a的取值范围为()A.0,1B.0,2C.1,2D.1,e【答案】B【分析】设函数y=f x ,y=g x 的切点坐标分别为x1,2+ln x1,x2,a x2,根据导数几何意义可得a2=4ln x1+4x1,x1>0,即该方程有两个不同的实根,则设h x =4ln x+4x,x>0,求导确定其单调性与取值情况,即可得实数a的取值范围.【详解】解:设函数f x =2+ln x上的切点坐标为x1,2+ln x1,且x1>0,函数g x =a x 上的切点坐标为x2,a x2,且x2≥0,又f x =1x,g x =a2x,则公切线的斜率k=1x1=a2x2,则a>0,所以x2=a24x21,则公切线方程为y-2+ln x1=1x1x-x1,即y=1x1x+ln x1+1,代入x 2,a x 2 得:a x 2=1x 1x 2+ln x 1+1,则a 22x 1=1x 1⋅a 24x 21+ln x 1+1,整理得a 2=4ln x 1+4x 1,若总存在两条不同的直线与函数y =f x ,y =g x 图象均相切,则方程a 2=4ln x 1+4x 1有两个不同的实根,设h x =4ln x +4x,x >0,则h x =4x⋅x -4ln x +4x2=-4ln xx,令h x =0得x =1,当x ∈0,1 时,h x >0,h x 单调递增,x ∈1,+∞ 时,h x <0,h x 单调递减,又h x =0可得x =1e,则x →0时,h x →-∞;x →+∞时,h x →0,则函数h x 的大致图象如下:所以a >00<a 2<4,解得0<a <2,故实数a 的取值范围为0,2 .故选:B .【点睛】本题考查了函数的公切线、函数方程与导数的综合应用,难度较大.解决本题的关键是,根据公切线的几何意义,设切点坐标分别为x 1,2+ln x 1 ,且x 1>0,x 2,a x 2 ,且x 2≥0,可得k =1x 1=a 2x 2,即有x 2=a 24x 21,得公切线方程为y =1x 1x +ln x 1+1,代入切点x 2,a x 2 将双变量方程a x 2=1x 1x 2+ln x 1+1转化为单变量方程a 22x 1=1x 1⋅a 24x 21+ln x 1+1,根据含参方程进行“参变分离”得a 2=4ln x 1+4x 1,转化为一曲一直问题,即可得实数a 的取值范围.7(2023·全国·高三专题练习)若曲线y =ln x +1与曲线y =x 2+x +3a 有公切线,则实数a 的取值范围()A.2ln2-36,3-ln22B.1-4ln212,3-ln22C.2ln2-36,+∞ D.1-4ln212,+∞【答案】D【分析】分别求出两曲线的切线方程,则两切线方程相同,据此求出a 关于切点x 的解析式,根据解析式的值域确定a 的范围.【详解】设x 1,y 1 是曲线y =ln x +1的切点,设x 2,y 2 是曲线y =x 2+x +3a 的切点,对于曲线y =ln x +1,其导数为y =1x ,对于曲线y =x 2+x +3a ,其导数为y =2x +1,所以切线方程分别为:y -ln x 1+1 =1x 1x -x 1 ,y -x 22+x 2+3a =2x 2+1 x -x 2 ,两切线重合,对照斜率和纵截距可得:1x 1=2x 2+1ln x 1=-x 22+3a,解得3a =ln x 1+x 22=ln 12x 2+1+x 22=-ln 2x 2+1+x 22x 2>-12 ,令h x =-ln 2x +1 +x 2x >-12,hx =-22x +1+2x =4x 2+2x -22x +1=2x +1 2x -1 2x +1=0,得:x =12,当x ∈-12,12时,h x <0,h x 是减函数,当x ∈12,+∞时,h x >0,h x 是增函数,∴h min x =h 12 =14-ln2且当x 趋于-12时,,h x 趋于+∞;当x 趋于+∞时,h x 趋于+∞;∴3a ≥14-ln2,∴a ≥1-4ln212;故选:D .8(2023·河北·统考模拟预测)若曲线f (x )=3x 2-2与曲线g (x )=-2-m ln x (m ≠0)存在公切线,则实数m 的最小值为()A.-6eB.-3eC.2eD.6e【答案】A【分析】求出函数的导函数,设公切线与f x 切于点x 1,3x 21-2 ,与曲线g x 切于点x 2,-2-m ln x 2 ,x 2>0 ,即可得到m =-6x 1x 2,则x 1=0或x 1=2x 2-x 2ln x 2,从而得到m =12x 22ln x 2-12x 22,在令h x =12x 2ln x -12x 2,x >0 ,利用导数求出函数的最小值,即可得解;【详解】因为f (x )=3x 2-2,g (x )=-2-m ln x (m ≠0),所以f (x )=6x ,g (x )=-mx,设公切线与f x 切于点x 1,3x 21-2 ,与曲线g x 切于点x 2,-2-m ln x 2 ,x 2>0 ,所以6x 1=-m x 2=-2-m ln x 2-3x 21-2 x 2-x 1=-m ln x 2-3x 21x 2-x 1,所以m =-6x 1x 2,所以6x 1=6x 1x 2ln x 2-3x 21x 2-x 1,所以x 1=0或x 1=2x 2-x 2ln x 2,因为m ≠0,所以x 1≠0,所以x 1=2x 2-x 2ln x 2,所以m =-62x 2-x 2ln x 2 x 2=12x 22ln x 2-12x 22,令h x =12x 2ln x -12x 2,x >0 ,则h x =12x 2ln x -1 ,所以当0<x <e 时h x <0,当x >e 时h x >0,所以h x 在0,e 上单调递减,在e ,+∞ 上单调递增,所以h x min =h e =-6e ,所以实数m 的最小值为-6e.故选:A【点睛】思路点睛:涉及公切线问题一般先设切点,在根据斜率相等得到方程,即可找到参数之间的关系,最后构造函数,利用导数求出函数的最值.二、多选题9(2023·湖北·统考模拟预测)若存在直线与曲线f x =x 3-x ,g x =x 2-a 2+a 都相切,则a 的值可以是()A.0B.-24C.log 27D.e π+πe【答案】ABC【分析】设该直线与f x 相切于点x 1,x 31-x 1 ,求出切线方程为y =3x 21-1 x -2x 31,设该直线与g x 相切于点x 2,x 22-a 2+a ,求出切线方程为y =2x 2x -x 22-a 2+a ,联立方程组,得到-a 2+a =94x 41-2x 31-32x 21+14,令h x =94x 4-2x 3-32x 2+14,讨论h x 的单调性,从而得到最值,则可得到-a 2+a ≥-1,解出a 的取值范围,四个选项的值分别比较与区间端点比较大小即可判断是否在区间内.【详解】设该直线与f x 相切于点x 1,x 31-x 1 ,因为f x =3x 2-1,所以f x 1 =3x 21-1,所以该切线方程为y -x 31-x 1 =3x 21-1 x -x 1 ,即y =3x 21-1 x -2x 31.设该直线与g x 相切于点x 2,x 22-a 2+a ,因为g x =2x ,所以g x 2 =2x 2,所以该切线方程为y -x 22-a 2+a =2x 2x -x 2 ,即y =2x 2x -x 22-a 2+a ,所以3x 21-1=2x 2-2x 31=-x 22-a 2+a ,所以-a 2+a =x 22-2x 31=3x 21-122-2x 31=94x 41-2x 31-32x 21+14,令h x =94x 4-2x 3-32x 2+14,∴h x =9x 3-6x 2-3x ,所以当x ∈-∞,-13 ∪0,1 时,hx <0;当x ∈-13,0 ∪1,+∞ 时,h x >0;∴h x 在-∞,-13和0,1 上单调递减;在-13,0 和1,+∞ 上单调递增;又h -13 =527,h 1 =-1,所以h x ∈-1,+∞ ,所以-a 2+a ≥-1,解得1-52≤a ≤1+52,所以a 的取值范围为1-52,1+52,所以A 正确;对于B ,-24-1-52=25-2+2 4>0,所以1-52<-24<0,所以B 正确;对于C ,因为0<log 27<log 222=32<1+52,所以C 正确;对于D ,因为e π+πe>2e π⋅πe=2>1+52,所以D 不正确.故选:ABC10(2023·全国·高三专题练习)函数f x =ln x +1,g x =e x -1,下列说法正确的是( ).(参考数据:e 2≈7.39,e 3≈20.09,ln2≈0.69,ln3≈1.10)A.存在实数m ,使得直线y =x +m 与y =f x 相切也与y =g x 相切B.存在实数k ,使得直线y =kx -1与y =f x 相切也与y =g x 相切C.函数g x -f x 在区间23,+∞ 上不单调D.函数g x -f x 在区间23,+∞上有极大值,无极小值【答案】AB【分析】对AB ,设直线与y =f x 、y =g x 分别切于点P x 1,y 1 ,Q x 2,y 2 ,利用点在线上及斜率列方程组,解得切点即可判断;对CD ,令h x =g x -f x ,由二阶导数法研究函数单调性及极值.【详解】对AB ,设直线l 与y =f x 、y =g x 分别切于点P x 1,y 1 ,Q x 2,y 2 ,f x =1x,gx =ex,则有y1=f x1=ln x1+1y2=g x2=e x2-1y1-y2x1-x2=1x1=e x2⇒ln x1+1-e x2-1x1-x2=e x2⇒-x2+1-e x2-11e x2-x2=e x2⇒e x2-1x2-1=0,解得x2=0或x2=1.当x2=0,则y2=0,x1=1,y1=1,公切线为y=x,此时存在实数m=0满足题意;当x2=1,则y2=e-1,x1=1e,y1=0,公切线为y=e x-1e=ex-1,此时存在实数k=1满足题意,AB对;对CD,令h x =g x -f x =e x-ln x-2,x∈0,+∞,则m x =h x =e x-1 x,由m x =e x+1x2>0得h x 在0,+∞单调递增,由h23=e23-32=e2-278e232+32e23+94>0得,x∈23,+∞时,h x >0,h x 单调递增,CD错.故选:AB.三、填空题11(2023·全国·高三专题练习)若曲线y=ax2与y=ln x有一条斜率为2的公切线,则a= .【答案】1ln2e【分析】根据导数的几何意义以及切线方程的求解方法求解.【详解】设公切线在曲线y=ax2与y=ln x上的切点分别为A(x1,y1),B(x2,y2),由y=ln x可得y =1x,所以1x2=2,解得x2=12,所以y2=ln x2=-ln2,则B12,-ln2 ,所以切线方程为y+ln2=2x-1 2,又由y=ax2,可得y =2ax,所以2ax1=2,即ax1=1,所以y1=ax21=x1,又因为切点A(x1,y1),也即A(x1,x1)在切线y+ln2=2x-1 2上,所以x1+ln2=2x1-1 2,解得x1=ln2+1,所以a =1x 1=1ln2+1=1ln2e .故答案为:1ln2e.12(2023·河北唐山·统考三模)已知曲线y =ln x 与y =ax 2a >0 有公共切线,则实数a 的取值范围为.【答案】12e,+∞【分析】设公切线与曲线的切点为x 1,ln x 1 ,x 2,ax 22 ,利用导数的几何意义分别求y =ln x 和y =ax 2上的切线方程,由所得切线方程的相关系数相等列方程求参数关系,进而构造函数并利用导数研究单调性求参数范围.【详解】设公切线与曲线y =ln x 和y =ax 2的切点分别为x 1,ln x 1 ,x 2,ax 22 ,其中x 1>0,对于y =ln x 有y =1x ,则y =ln x 上的切线方程为y -ln x 1=1x 1x -x 1 ,即y =xx 1+ln x 1-1 ,对于y =ax 2有y =2ax ,则y =ax 2上的切线方程为y -ax 22=2ax 2x -x 2 ,即y =2ax 2x -ax 22,所以1x 1=2ax 2ln x 1-1=-ax 22,有-14ax21=ln x 1-1,即14a=x 21-x 21ln x 1x 1>0 ,令g x =x 2-x 2ln x ,g x =x -2x ln x =x 1-2ln x ,令gx =0,得x =e 12,当x ∈0,e12时,g x >0,g x 单调递增,当x ∈e 12,+∞ 时,g x <0,g x 单调递减,所以g x max =g e12=12e ,故0<14a ≤12e ,即a ≥12e.∴正实数a 的取值范围是12e,+∞.故答案为:12e,+∞.13(2023·浙江金华·统考模拟预测)若存在直线l 既是曲线y =x 2的切线,也是曲线y =a ln x 的切线,则实数a 的最大值为.【答案】2e【分析】设切线与两曲线的切点分别为(n ,n 2),(m ,a ln m ),根据导数的几何意义分别求出切线方程,可得a4m2=1-ln m,由题意可知a4=m2(1-ln m)有解,故令g(x)=x2(1-ln x),(x>0),利用导数求得其最值,即可求得答案.【详解】由题意知两曲线y=x2与y=a ln x,(x>0)存在公切线,a=0时,两曲线y=x2与y=0,(x>0),不合题意;则y=x2的导数y =2x,y=a ln x的导数为y =a x,设公切线与y=x2相切的切点为(n,n2),与曲线y=a ln x相切的切点为(m,a ln m),则切线方程为y-n2=2n(x-n),即y=2nx-n2,切线方程也可写为y-a ln m=am(x-m),即y=amx-a+a ln m,故2n=am-n2=-a+a ln m,即a24m2=a-a ln m,即a4m2=1-ln m,即a4=m2(1-ln m)有解,令g(x)=x2(1-ln x),(x>0),则g (x)=2x(1-ln x)+x2-1 x=x(1-2ln x),令g (x)=0可得x=e,当0<x<e时,g (x)>0,当x>e时,g (x)<0,故g(x)在(0,e)是增函数,在(e,+∞)是减函数,故g(x)的最大值为g(e)=e 2,故a4≤e2,所以a≤2e,即实数a的最大值为2e,故答案为:2e。

利用导数求曲线的切线和公切线知识讲解

利用导数求曲线的切线和公切线知识讲解

利用导数求曲线的切线和公切线一. 求切线方程【例1】.已知曲线f(x)=x 3-2X12+1.(1) 求在点P( 1,0 )处的切线l i的方程;⑵ 求过点Q( 2,1 )与已知曲线f(x)相切的直线丨2的方程.提醒:注意是在某个点处还是过某个点!二. 有关切线的条数【解答】解:(I)由 f (x) =2x3- 3x 得f'( x) =6x2- 3,令f,( x) =0 得, x= - ■-或x= ■-,2 2•- f (-2) =- 10, f (-二)=",f ( = ) =- ", f (1) =- 1,••• f (x)在区间[-2, 1]上的最大值为二.(n)设过点P (1, t)的直线与曲线y=f (x)相切于点(X0, y°),则y o=2・” -3x。

,且切线斜率为k=6 :匚-3,•••切线方程为y-y o= (6:,二-3)(x -x o),••• t - y°= (6 :,二-3)( 1 - x o),即卩4- 6 . F +t+3=0,设g (x) =4x? - 6x?+t+3 , 则“过点P (1, t)存在3条直线与曲线y=f (x)相切”,等价于“ g (x)有3 个不同的零点”.T g'(x) =12x2- 12x=12x (x- 1),•g (0) =t+3是g (x)的极大值,g (1) =t+1是g (x)的极小值.•g (0)> 0 且g (1)v 0,即-3v t v- 1,•当过点过点P (1, t)存在3条直线与曲线y=f (x)相切时,t的取值范围是(-3,- 1).(rn)过点A (- 1, 2)存在3条直线与曲线y=f (x)相切;过点B (2, 10)存在2条直线与曲线y=f (x)相切;过点C (0, 2)存在1条直线与曲线y=f (x)相切.【作业1】.(2017?莆田一模)已知函数 f (x) =2x3- 3x+1, g (x) =kx+1 - Inx .(fM y<1(1)设函数hW二’、,当k v 0时,讨论h (x)零点的个数;g lx)』x^l(2)若过点P (a,- 4)恰有三条直线与曲线y=f (x)相切,求a的取值范围.三. 切线与切线之间的关系【例4】.(2018?绵阳模拟)已知a, b, c€ R,且满足b2+c2=1,如果存在两条互相垂直的直线与函数f (x) =ax+bcosx+csinx的图象都相切,则a+/HW:c 的取值范围是.解:f '(x) = a + b cos x—c sin x = a +c' cos(x + ^?) = a +cos(x + p)令H + e = 则码 + 0 =环巧+e = g. f\x) ~+dtj题意’存在x r x2E R使得厂(xj厂(兀)= T* 0p(a+cos^X fl + cos^)=_l»即关于。

切线与切平面PPT课件

切线与切平面PPT课件

2.空间曲线方程为
F ( x, G( x,
y, z) y, z)
0 ,
0
切线方程为
x x0 y y0 z z0 ,
Fy Fz
Fz Fx
Fx Fy
Gy Gz 0 Gz Gx 0 Gx Gy 0
法平面方程为
Fy Gy
Fz Gz
(x
0
x0 )
Fz Gz
0.
Fx Gx
(y
0
y0 )
Fx Gx
x x0 y y0 z z0 . f x ( x0 , y0 ) f y ( x0 , y0 ) 1
第11页/共24页
全微分的几何意义 因为曲面在M处的切平面方程为
z z0 f x ( x0 , y0 )( x x0 ) f y ( x0 , y0 )( y y0 )
切平面 上点的 竖坐标 的增量
四、求椭球面 x 2 2 y 2 z 2 1上平行于平面 x y 2z 0的切平面方程.
五、试证曲面 x y z a(a 0)上任何点处的
切平面在各坐标轴上的截距之和等于a .
第22页/共24页
练习题答案
x 一、1、
1 2
y
2
z
1 ,2x
8y
16z
1
0;
1 4 8
2、x
•M
x
y
z x o
Hale Waihona Puke y考察割线趋近于极限位置——切线的过程
上式分母同除以 t,
x x0 y y0 z z0 , x y z
t
t
t
第1页/共24页
当M M ,即t 0时 , 曲线在M处的切线方程
x x0 y y0 z z0 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一般n 次曲线切线方程的推导
光信1001 黄飞洪 关键词:一般n 次曲线,某点的切线方程,
提要:在求曲线上某点的切线时,通常会使用先求导得到斜率后再求切线,此法在二次曲线中尚可使用,但如果是n 次曲线就不大现实了,因此如果能找到该类曲线切线的某些规律,在求高次曲线的切线方程时会节省很多时间
首先,我们先来分析几个比较特殊的例子:
○1圆A :x 2+y 2=r 2在(x 0,y 0)处的切线方程为x 0x+ y 0y= r 2
○2椭圆B :A 2a)x +(+B b y 2
)(+=1在(x 0,y 0)处的切线方程为1))(())((00=+++++B
b y b y A a x a x ○3双曲线C :A 2a)x +(-B b y 2
)(+在(x 0,y 0
)处的切线方程为1))(())((00=++-++B
b y b y A a x a x ○4抛物线C :y 2
=2px 在(x 0,y 0)处的切线方程为y 0y=p(x+x 0) 以上都是几个比较典型的二次曲线在某点切线的方程,总结起来就是在原曲线方程框架的基础上将x 2(或y 2)型变为x 0x (或y 0y )型,x(或y)型转变为2
0x x +(或20y y +)型,但在一般的二次曲线中包含了xy 的项,那么,这种一般型曲线的切线是否仍存在某种规律呢? 设f(x,y)=Ax 2+Bxy+Cy 2+Dx+Ey+F=0,求在(x 0,y 0)处的切线方程
方程两边求导得2Ax+By+Bxy ’+2Cyy ’+D+Ey ’=0
y’= -E
Cy Bx D By Ax ++++220 ∴在(x 0,y 0)处的切线方程为y-y 0= -
E Cy Bx D By Ax ++++220(x-x 0)
整理可得Ax 0x+B 200y y x x ++Cy 0.y+D 2
0x x ++E 20y y ++F=0 由分析可发现,一般曲线与特殊曲线的切线在框架上是类似的,只是将xy 项转变为2
00x y y x +若将y 换为x ,得到的仍为x 2→x 的变化。

因而二次曲线求某点的切线时,可看作在原 框架上作变化为a 20a a +→,ab 2
00a b b a +→(a,b 为变量) 同样的方法,对于三次曲线
F(x,y)=Ax 3+Bx 2y+Cxy 2+Dy 3+Ex 2+Fxy+Gy 2+Hx+Iy+J
在(x 0,y 0)处的切线方程为
Ax 2
0x+B 320020x y x y x ++C 3200.20y y x x y ++Dy 20y+E 32200x x x ++F 30000x y y x y x +++G 32200y y y ++H 320x x ++I 3
20y y ++J=0 推到这里规律也比较明显了:
对于一个n 次曲线,每一项不含系数部分可看作x 1x 2…x n 型(x 1,x 2,…,x n 为变量或1),再将曲线转化为切线的过程中,可看作在原框架的基础上
x 1x 2…x n n
x x x n i n i ∑=→
11......0 其中当x i =1时,其对应x 0i =1 用过这样一条规律,就可以比较快速的求高次曲线在某一点的切线方程,从而省去了中间较为繁琐的求导过程。

相关文档
最新文档