七年级数学上册第三单元试卷

合集下载

七年级上册数学第三单元测试卷【含答案】

七年级上册数学第三单元测试卷【含答案】

七年级上册数学第三单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少?A. 240立方厘米B. 120立方厘米C. 60立方厘米D. 48立方厘米4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形二、判断题(每题1分,共5分)1. 两个质数相乘的结果一定是合数。

()2. 一个等腰三角形的两个底角相等。

()3. 一个长方体的六个面都是长方形。

()4. 0是最小的自然数。

()5. 平行四边形的对边相等且平行。

()三、填空题(每题1分,共5分)1. 最大的两位数是______。

2. 一个等边三角形的三个角都是______度。

3. 一个长方体的体积是长×宽×______。

4. 6是______和______的公倍数。

5. 两条平行线的特点是对边______且______。

四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。

2. 请解释等腰三角形的特点。

3. 请列举三个不同的长方体物品。

4. 请简述平行四边形的性质。

5. 请解释因数和倍数的概念。

五、应用题(每题2分,共10分)1. 一个长方体的长是10厘米,宽是6厘米,高是4厘米,求它的体积。

2. 一个等腰三角形的底边长是8厘米,腰长是10厘米,求它的周长。

3. 一个数的因数有1、2、3、4、6,请找出这个数。

4. 两个质数相乘,积是35,请找出这两个质数。

5. 一个平行四边形的对边分别是8厘米和12厘米,求它的面积。

六、分析题(每题5分,共10分)1. 请分析一个长方体和正方体的相同点和不同点。

最新人教版初中数学七年级数学上册第三单元《一元一次方程》测试(包含答案解析)

最新人教版初中数学七年级数学上册第三单元《一元一次方程》测试(包含答案解析)

一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±82.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x 3.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x ) 4.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ 5.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .116.下列各式中,符合代数书写规则的是( )A .273xB .14a ⨯C .126p -D .2y z ÷ 7.下列去括号运算正确的是( )A .()x y z x y z --+=---B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ 8.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6 9.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ 10.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31 11.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B = C .A B < D .无法确定 12.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a二、填空题13.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______. 14.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.15.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___. 16.a -b ,b -c ,c -a 三个多项式的和是____________17.合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列) (2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列) 18.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.19.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.20.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________三、解答题21.计算:(1)()()312⨯-+-(2)2235223x x x x -+-+-22.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.23.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?24.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?25.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.26.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由.(3)若18a =,15b = ,求正确结果的代数式的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据单项式的定义可得8mx y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数. 2.D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D .【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.3.B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.4.D解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.6.A解析:A【分析】根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.7.D解析:D【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确.故选:D【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.8.C解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.9.A解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误;D.1xx是分式,故错误.故选A.【点睛】本题主要考查了整式,关键是掌握整式的概念.10.C解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n(n+1)和12(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【详解】∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.11.A解析:A【分析】作差进行比较即可.【详解】解:因为A-B=(x2-5x+2)-( x2-5x -6)=x2-5x+2- x2+5x +6=8>0,所以A>B.故选A.【点睛】本题考查了整式的加减和作差比较法,若A-B>0,则A>B,若A-B<0,则A<B,若A-B=0,则A=B.12.C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A.﹣ab与4abc所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键. 二、填空题13.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0 解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值.【详解】 解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =, 故答案为19. 【点睛】 本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0.14.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 15.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可.【详解】∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环,所以2020÷3=673…1,则a 2020=a 1=2.故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.16.0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0 解析:0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0,故答案为0.17.【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】 (1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.18.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算.19.2【分析】根据四次三项式的定义可知该多项式的最高次数为4项数是3所以可确定m的值【详解】解:∵多项式3x|m|y2+(m+2)x2y-1是四次三项式∴+2=4∴m=2故答案为2【点睛】本题考查了与多解析:2【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【详解】解:∵多项式3x|m|y2+(m+2)x2y-1是四次三项式,m+≠∴m+2=4,20∴m=2.故答案为2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.20.-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.三、解答题21.(1)5-;(2)241x x --【分析】(1)直接根据有理数的混合运算法则即可求解.(2)直接根据整式的加减混合运算法则即可求解.【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 22.1020100【分析】由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.23.-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b 的代数式相加为0,即可说明.【详解】解()()222221324223212a b ab a a b a ab a b ⎛⎫-+--++- ⎪⎝⎭ =222223244621a b ab a a b a ab a b -+-+++-=101a -当2a =-时原式=()1021⨯--=-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键. 24.1099989;1199988;1299987;1399986;(1)如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.25.(1)2a b c -+;(2)-9(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.26.(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0.【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可.【详解】解:(1)∵2A B C +=,∴2B C A =-.B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+-2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++--2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关;(3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= . 【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键.。

沪科版数学七年级上第三单元测试卷原创

沪科版数学七年级上第三单元测试卷原创

沪科版数学七年级(上)第三章单元测试卷一、选择题(每题3分,共30分)1、若关于x 的方程2x -4=3m 与x+2=m 有相同的根,则m 的值是( )A. 10 B.-8 C.-10 D. 82、代数式 2k-13 与代数式 14k +3 的值相等时,k 的值为( )A. 7 B. 8 C. 9 D. 103、满足方程组⎩⎨⎧=++=+ay x a y x 32253解的x 与y 之与为2,则a 的值为( )A 、一4 B 、4 C 、0 D 、任意数4、某商店有两个进价不同的计数器都卖了64元,其中一个盈利60℅,另一个亏本20℅,在这次买卖中,这家商店( ) A.不赔不赚 B. 赚了8元 C. 赔了8元 D. 赚了32元5、如图1,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一 个小长方形的面积为( )A 、400 cm 2B 、500 cm 2C 、600 cm 2D 、4000 cm 26、.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场 B.4场 C.5场 D.6场 7.方程325x y+=与下面那个方程所组成的方程组的解是22x y =⎧⎨=-⎩ ( ) A.25x y -= B.434x y += C.1y x += D.432x y -=8、小明在解关于x 的方程5a +x=10时,误将“+x ”看作“-x ”,得方程的解为x=3,则原方程的解为( )A 、x=-4 B 、x=-3 C 、x=-2 D 、x=-19、有m 辆客车及n 名乘客,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘45人,则有一辆客车缺少15人,下列四个等式,其中正确的是( ) ①、40m+10=45m-15 ②45154010-=+n n ③40m-10=45m+15 ④45154010+=-n n A 、①② B 、②③ C 、③④ D 、①④10、古代有这样一个寓言故事:驴子与骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )A 、5 B 、6 C 、7 D 、8二、 填空题(每题5分,共30分).11、已知关于x 的方程3x + a = 0的解比方程2x – 3 = x + 5的解大2,则a = . 12.若23,x y a x y a +=⎧⎨-=⎩则x y= 。

人教版七年级上册数学第三章检测试卷(附答案)

人教版七年级上册数学第三章检测试卷(附答案)

人教版七年级上册数学第三章检测试卷(附答案)一、单选题(共5题;共10分)1.若与kx-1=15的解相同则k的值为().A. 2B. 8C. -2D. 62.已知a=b,则下列等式不成立的是()A. a﹣=b﹣B. 5﹣a=5﹣bC. ﹣4a﹣1=﹣1﹣4bD. +2= ﹣23.下列说法正确的是()A. 半圆是弧,弧也是半圆B. 三点确定一个圆C. 平分弦的直径垂直于弦D. 直径是同一圆中最长的弦4.七年级男生入住的一楼有x间,如果每间住6人,恰好空出一间;如果每间住5人就有4人没有房间住,则一楼共有()间.A. .7B. .8C. .9D. 105.李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为x,那么可得方程()A. 2000(1+x)=2120B. 2000(1+x%)=2120C. 2000(1+x•80%)=2120D. 2000(1+x•20%)=2120二、填空题(共2题;共2分)6.“*”是规定的一种运算法则:a*b=a2-b2,则(-3)*4=________.7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c >0;④2c<3b;⑤b2>4ac;其中正确的结论有________.(填序号)三、计算题(共3题;共25分)8.解方程:(1)10 - x = 3x - 2 (2) = 1 - .9.解方程:4x﹣3(5﹣x)=6;10.(1);(2).四、综合题(共2题;共30分)11.(2011•梧州)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?12.某中学对七年级学生数学学期成绩的评价规定如下:学期评价得分由期末测试成绩(满分100分)和期中测试成绩(满分100分)两部分组成,其中期末测试成绩占70%,期中测试成绩占30%,当学期评价得分大于或等于85分时,该生数学学期成绩评价为优秀.(1)小明的期末测试成绩和期中成绩两项得分之和为170分,学期评价得分为87分,则小明期末测试成绩和期中测试成绩各得多少分?(2)某同学期末测试成绩为75分,他的综合评价得分有可能达到优秀吗?为什么?(3)如果一个同学学期评价得分要达到优秀,他的期末测试成绩至少要多少分(结果保留整数)?答案一、单选题1. B2.D3.D4. D5.C二、填空题6.-77. ③④⑤三、计算题8. (1)解:10 - x = 3x - 2移项,得10+2=3x+x,合并同类项,得4x=12,系数化为1 ,得x=3;(2)解:方程两边都乘以21 ,得3(x-3)=21-7(2-5x),去括号,得3x-9=21-14+35x ,移项合并同类项,得32x=-16,系数化为1 ,得x=-.9.解:4x﹣3(5﹣x)=6,4x﹣15+3x=6,7x=21,x=310.(1)解:,,(2)解:.,四、综合题11. (1)解:设今年甲型号手机每台售价为x元,由题意得,.解得x=1500.经检验x=1500是方程的解,且符合题意.故今年甲型号手机每台售价为1500元.(2)解:设购进甲型号手机m台,由题意得,17600≤1000m+800(20﹣m)≤18400,8≤m≤12.因为m只能取整数,所以m取8、9、10、11、12,共有5种进货方案.(3)解:设总获利W元,购进甲型号手机m台,则W=(1500﹣1000)m+(1400﹣800﹣a)(20﹣m),W=(a﹣100)m+12000﹣20a.所以当a=100时,(2)中所有的方案获利相同.12.(1)解:设小明同学期末测试成绩为x分,期中测试成绩为y分,由题意,得,解得.答:小明同学期末测试成绩为90分,期中测试成绩为80分.(2)解:不可能.由题意可得:85-75×70%=32.5,32.5÷30% >100,故不可能.(3)解:设他的期中测试成绩为满分,即100分,则学期评价得分期中部分为100×30%=30.设期末测试成绩为a分,根据题意,可得30+70%a≥85,解得a≥78.6答:他的期末测试成绩应该至少为79分.。

七年级上册数学第三单元试卷【含答案】

七年级上册数学第三单元试卷【含答案】

七年级上册数学第三单元试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 30答案:B2. 一个等腰三角形的底边长为8厘米,腰长为5厘米,那么这个三角形的周长是多少厘米?A. 18厘米B. 20厘米C. 22厘米D. 24厘米答案:C3. 下列哪个数是偶数?A. 101B. 102C. 103D. 104答案:D4. 一个正方形的边长为6厘米,那么这个正方形的面积是多少平方厘米?A. 24平方厘米B. 36平方厘米C. 48平方厘米D. 60平方厘米答案:B5. 下列哪个数是奇数?A. 120B. 121C. 122D. 123答案:D二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。

(×)2. 一个三角形的两边之和一定大于第三边。

(√)3. 一个数的因数一定比这个数小。

(×)4. 两个奇数的和一定是偶数。

(×)5. 两个偶数的和一定是偶数。

(√)三、填空题(每题1分,共5分)1. 23和29之间的质数是______。

答案:292. 一个等边三角形的周长是15厘米,那么它的边长是______厘米。

答案:53. 一个数的最大因数是它本身,这个数是______。

答案:任何数4. 一个正方形的对角线长度是10厘米,那么它的边长是______厘米。

答案:约7.075. 下列哪个数既是偶数又是合数?______答案:4四、简答题(每题2分,共10分)1. 请列举出前五个质数。

答案:2, 3, 5, 7, 112. 请简述等边三角形的性质。

答案:等边三角形的三条边都相等,三个角也都相等,每个角都是60度。

3. 请简述偶数和奇数的区别。

答案:偶数是2的倍数,奇数不是2的倍数。

4. 请简述正方形的性质。

答案:正方形的四条边都相等,四个角也都相等,每个角都是90度。

5. 请简述因数和倍数的区别。

答案:因数是能够整除一个数的数,倍数是一个数的整数倍。

(好题)初中数学七年级数学上册第三单元《一元一次方程》检测(答案解析)

(好题)初中数学七年级数学上册第三单元《一元一次方程》检测(答案解析)
(1)单项式中的数字因数叫做这个单项式的系数;
(2)多项式中不含字母的项叫常数项;
(3)多项式里次数最高项的次数,叫做这个多项式的次数.
10.D
解析:D
【分析】
根据N=M+N-M列式即可解决此题.
【详解】
依题意得,N=M+N-M= ;
故选D.
【点睛】
此题考查的是整式的加减,列式是关键,注意括号的运用.
6.D
解析:D
【分析】
根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.
【详解】
A. ,故错误;
B. ,故错误;
C. ,故错误;
D. ,正确.
故选:D
【点睛】
本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.
7.D
解析:D
【分析】
根据合并同类项系数相加字母及指数不变,可得答案.
【详解】
解:A、x3与x2不是同类项,不能合并,故A错误;
B、合并同类项错误,正确的是2x﹣3x=﹣x,故B错误;
C、合并同类项错误,正确的是﹣a2﹣2a2=﹣3a2,故C错误;
D、系数相加字母及指数不变,故D正确;
故选:D.
【点睛】
一、选择题
1.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A—B—C为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为( )
A.5次B.6次C.7次D.8次
2.某养殖场2018年年底的生猪出栏价格是每千克a元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克()

人教版七年级数学上册第三单元测试题及答案(第三章 一元一次方程)

人教版七年级数学上册第三单元测试题及答案(第三章 一元一次方程)

人教版七年级数学上册第三单元测试卷(第三章 一元一次方程)(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列方程中,是一元一次方程的是( D )A .5x -2y =9B .x 2-5x +4=0 C.5x +3=0 D.x 5-1=32.当1-(3m -5)2取得最大值时,关于x 的方程5m -4=3x +2的解是( A ) A.79 B.97 C .-79 D .-973.下列方程变形中,正确的是( D )A .方程3x -2=2x +1,移项,得3x -2x =-1+2B .方程3-x =2-5(x -1),去括号,得3-x =2-5x -1C .方程23t =32,未知数系数化为1,得t =1D .方程x -10.2-x0.5=1化成3x =6 4.用“”“”“”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“”的个数为( A )A .5个B .4个C .3个D .2个5.将方程0.9+0.5x -0.20.2=1.5-5x0.5变形正确的是( D )A .9+5x -22=15-50x 5B .0.9+5x -22=15-5x5C .9+5x -22=15-5x 5D .0.9+5x -22=3-10x6.下列运用等式的性质,变形不正确的是( D )A .若x =y ,则x +5=y +5B .若a =b ,则ac =bcC .若a c =b c ,则a =bD .若x =y ,则x a =y a7.已知关于x 的方程(2a +b)x -1=0无解,那么ab 的值是( D ) A .负数 B .正数 C .非负数 D .非正数8.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( A )A .0.8x -10=90B .0.08x -10=90C .90-0.8x =10D .x -0.8x -10=909.当x =1时,代数式12ax 3-3bx +4的值是7,则当x =-1时,这个代数式的值是( C )A .7B .3C .1D .-710.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.有下列四个等式:①40m +10=43m -1;②n +1040=n +143;③n -1040=n -143;④40m +10=43m +1.其中正确的是( D )A .①②B .②④C .②③D .③④ 二、填空题(每小题3分,共24分)11.方程(a -2)x |a|-1+3=0是关于x 的一元一次方程,则a =__-2__. 12.已知x -2y +3=0,则代数式-2x +4y +2017的值为__2023__.13.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/小时,则A 港和B 港相距__504__千米.14.已知x -42与25互为倒数,则x 等于__9__.15.王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了__5__千克.16.已知a 5=b 7=c8,且3a -2b +c =9,则2a +4b -3c =__14__.17.对于实数a ,b ,c ,d ,规定一种数的运算:错误!))=ad -bc ,那么当错误!))=10时,x =__-1__.18.某车间原计划13小时生产一批零件,后来每小时多生产了10件,用了12小时不但完成了任务,而且还多生产了60件.设原计划每小时生产y 个零件,则可列方程为__12(y +10)=13y +60__.三、解答题(共66分) 19.(10分)解下列方程:(1)x -12=4x 3+1; (2)0.1x -0.20.02-x +10.5=3.解:x =-95解:x =520.(8分)已知方程2-3(x +1)=0的解与关于x 的方程k +x2-3k -2=2x 的解互为倒数,求k 的值.解:解方程2-3(x +1)=0,得x =-13,则k +x 2-3k -2=2x 的解为x =-3,代入得k -32-3k -2=-6,解得k =121.(8分)已知x =3是方程3[(x 3+1)+m (x -1)4]=2的解,m ,n 满足关系式|2n +m|=1,求m +n的值.解:把x =3代入方程3[(x3+1)+m (x -1)4]=2,得m =-83,将m =-83代入|2n +m|=1,得|2n -83|=1,解得n =116或56,所以m +n =-56或-11622.(8分)小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染了:x +12-5x -□3=-12,“□”是被污染的数,他很着急,翻开书后面的答案,这道题的解是x =2,你能帮他补上“□”的数吗?解:设“□”的数为m ,因为所给方程的解是x =2,所以2+12-5×2-m 3=-12,解得m =4.所以“□”的数为423.(10分)甲、乙两人同时从相距25千米的A 地去B 地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B 地停留40分钟,然后从B 地返回A 地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?解:设乙的速度为x 千米/小时,则甲的速度为3x 千米/小时,依题意得(3-4060)×3x +3x =25×2,解得x =5,所以3x =15,答:甲、乙两人的速度分别为15千米/小时和5千米/小时24.(10分)某工厂第一车间人数比第二车间人数的45少30人,如果从第二车间调10人到第一车间,那么第一车间人数就是第二车间人数的34,求原来每个车间的人数.解:设原来第二车间有x 人,则第一车间有(45x -30)人,依题意得45x -30+10=34(x -10),解得x =250,所以45x -30=170,答:原来第一车间有170人,第二车间有250人25.(12分)“中国竹乡”安吉县有着丰富的毛竹资源,某企业已收购毛竹52.5吨.根据市场信息,将毛竹直接销售,每吨可获得100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获得1000元;如果进行精加工,每天可加工0.5吨,每吨可获得5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售.为此研究了两种方案:方案一:将毛竹全部粗加工后销售,则可获利__1000×52.5=52500__元;方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利__0.5×30×5000+(52.5-0.5×30)×100=78750__元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.解:存在,方案三:设粗加工x天,则精加工(30-x)天,依题意得8x+0.5(30-x)=52.5,解得x =5,所以30-x=25,则1000×5×8+5000×25×0.5=102500(元),答:销售后所获利润为102500元人教版七年级数学上册第四单元测试卷(第四章几何图形初步)(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是( C)2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的度数为( C)A.69° B.111° C.141° D.159°,第2题图) ,第3题图),第4题图)3.如图,点A,B,C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点,若想求出MN 的长度,那么只需条件( A)A.AB=12 B.BC=4 C.AM=5 D.CN=24.如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分 (小正方形之间至少有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是( C)A.7 B.6 C.5 D.45.如图,点O在直线l上,∠1与∠2互余,∠α=116°,则∠β的度数是( C)A.144° B.164° C.154° D.150°,第5题图) ,第6题图) ,第7题图)6.(2016·凉山州)如图,是由若干个大小相同的正方体搭成的几何体,从不同方向看所得到的平面图形,该几何体所用的正方体的个数是( A)A.6个 B.4个 C.3个 D.2个7.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( D)A.垂线段最短 B.经过一点有无数条直线C.经过两点,有且仅有一条直线 D.两点之间,线段最短8.已知线段AB=10 cm,点C是直线AB上一点,BC=4 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是( D)A.7 cm B.3 cm C.7 cm或3 cm D.5 cm9.钟表在8:25时,时针与分针的夹角是( B)度.A.101.5 B.102.5 C.120 D.12510.如果∠1与∠2互补,∠2与∠3互余,那么∠1与∠3的关系是( C)A.∠1=∠3 B.∠1=180°-∠3 C.∠1=90°+∠3 D.以上都不对二、填空题(每小题3分,共24分)11.用“度分秒”来表示:8.31度=__8__度__18__分__36__秒.12.一个角的余角比这个角的补角的一半小40°,则这个角为__80__度.13.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB=60,BC=40,则MN 的长为__50或10__.14.如图,点O在直线AB上,射线OC平分∠DOB,若∠COB=35°,则∠AOD=__110__°.,第14题图) ,第15题图) ,第17题图) ,第18题图)15.如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数是__135__度.16.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=__4__.17.把一张长方形纸条按如图的方式折叠后,量得∠AOB′=110°,则∠B′OC=__35°__.18.如图,OA的方向是北偏东15°,OC的方向是北偏西40°,若∠AOC=∠AOB,则OB的方向是__北偏东70°__.三、解答题(共66分)19.(8分)根据下列语句,画出图形.已知四点A,B,C,D.①画直线AB;②连接AC,BD,相交于点O;③画射线AD,BC,交于点P.解:略20.(8分)一个角的余角比这个角的12少30°,请你计算出这个角的大小.解:设这个角为x ,则它的余角为(90°-x ),依题意得12x -(90°-x )=30°,解得x =80°,答:这个角是80°21.(8分)如图,点M 是线段AC 的中点,点B 在线段AC 上,且AB =4 cm ,BC =2AB ,求线段MC 和线段BM 的长.解:因为AB =4 cm ,BC =2AB ,所以BC =8 cm ,所以AC =AB +BC =12 cm ,因为M 是线段AC 中点,所以MC =AM =12AC =6 cm ,所以BM =AM -AB =2 cm22.(8分)如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间的距离是10 cm ,求AB ,CD 的长.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm ,因为点E ,F 分别为AB ,CD 的中点,所以AE =12AB =1.5x cm ,CF =12CD =2x cm ,所以EF =AC -AE -CF =6x -1.5x -2x =2.5x (cm ),因为EF =10 cm ,所以2.5x =10,解得x =4,所以AB =12 cm ,CD =16 cm23.(10分)如图,已知直线AB 和CD 相交于点O ,∠COE 是直角,OF 平分∠AOE ,∠COF =34°,求∠BOD 的度数.解:因为∠COE 是直角,∠COF =34°,所以∠EOF =56°,又因为OF 平分∠AOE ,所以∠AOF =∠EOF =56°.因为∠COF =34°,所以∠AOC =∠AOF -∠COF =22°,所以∠BOD =∠AOC =22°24.(12分)如图,点C 在线段AB 上,AC =8 cm ,CB =6 cm ,点M ,N 分别是AC ,BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任意一点,满足AC +CB =a cm ,其他条件不变,你能猜想出MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC -CB =b cm ,点M ,N 分别为AC ,BC 的中点,你能猜想出MN 的长度吗?请画出图形,写出你的结论,并说明理由.解:(1)因为点M ,N 分别是AC ,BC 的中点,所以MC =12AC =4 cm ,NC =12BC =3 cm ,所以MN =MC +NC =7 cm (2)MN =MC +NC =12AC +12BC =12AB =12a cm (3)图略,MN =12b cm.理由:MN =MC -NC =12AC -12BC =12(AC -BC )=12b cm25.(12分)如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图①,当∠AOB 是直角,∠BOC =60°时,∠MON 的度数是多少? (2)如图②,当∠AOB =α,∠BOC =60°时,猜想∠MON 与α的数量关系;(3)如图③,当∠AOB =α,∠BOC =β时,猜想∠MON 与α,β有数量关系吗?如果有,写出你的结论,并说明理由.解:(1)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =45° (2)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12α (3)∠MON =12α.理由:∠MON =∠MOC-∠NOC =12(α+β)-12β=12α。

(典型题)初中数学七年级数学上册第三单元《整式及其运算》测试题(有答案解析)

(典型题)初中数学七年级数学上册第三单元《整式及其运算》测试题(有答案解析)
25.某校举办了主题为“畅想十四五共筑新征程”的2021年元旦晚会,七年级一班同学利用彩纸条自己制作彩带.将一些长30厘米,宽10厘米的长方形纸条,按图所示方法粘合起来,粘合部分的宽为3厘米.
(1)求8张彩纸条粘合后的彩带总长度为多少厘米?
(2)设x张彩纸条粘合后的彩带总长度为y厘米,请写出y与x之间的表达式?
(3)求当 时,彩带一面的面积.
26.用火柴棒按下面的方式搭图形
(1)把下表填完整:
图形编号



火柴棒根数
7
(2)第n个图形需要火柴棒的根数为s,则 _____(用含字母n的代数式表示)
(3)是否存在一个图形共有117根火柴棒?若存在,求出是第几个图形,如不存在,请说明理由.
【参考答案】***试卷处理标记,请不要删除
解得c=-1,
a+b+c=b+c+2,
解得a=2,
所以数据从左到右依次为-1、2、b、-1、2、b,
22.已知多项式 , ,当 , 时,求 的值.
23.计算
(1)
(2)
(3)
(4)
24.滴滴快车已成为我们日常出行的一种便捷工具,某市滴滴快车计价方式如下表:
计费项目
起程价
里程价
停车等待时长价
价格(单价)
6元(2千米)
1.4元/千米
0.3元/分
注:车费由起程价、里程价、停车等待时长价三部分构成.其中,起程价为6元,2千米以内(包括2千米)的车费为6元;里程价为:超过2千米后,每行驶1千米收费1.4元(不足1千米按1千米计算);停车等待时长价为:在等待红灯或堵车时,按车辆停止时间收费,每分钟0.3元(不足1分钟按1分钟计算).如,行驶里程为3千米,停车等待2分钟的计价方式为:6+1.4×(3-2)+0.3×2=8元.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.540. 结果是_______
2 4/9 . 13.如图|x-2|+(y-3)2=0,那么 yx=________ 14.已知 31=3,32=9,33=27,34=81,35=243,36=729,37
1 . =2 187,……,推测 32 016 的个位数字是____
三、解答题(共 44 分) 15.(12 分)计算: 2 3 1 (1)42×(-3)+(-4)÷(-4); 1 1 (2)(-15)÷(3-12-3)×6;
(3)根据上面猜想的结论,求 212-211-210-29-28-27-26 的值.
原式=64
7.下列说法:①0 是绝对值最小的有理数;②a2=(-a)2;③若|a| >b,则 a2>b2;④当 n 为正整数时,(-1)2n+1 与(-1)2n 互为相反数; ⑤若 a<b,则 a3<b3.其中正确的个数有( D ) A.1 个 B.2 个 C.3 个 D.4 个
8.有一列数 a1,a2,a3,…,an,从第二个数开始每个数都等于 1 与它前面那个数的倒数的差,若 a1=2,则 a2 016 为( D ) 1 A.2 016 B.2 C.2 D.-1 二、填空题(每小题 4 分,共 24 分) a+b -1. 9.新定义一种运算:a*b= ,则 2*3=____ 1-ab
2. 10.若 a3=-8,则 a 的绝对值是____
11.(2016· 营口)在网络上搜索“奔跑吧,兄弟”,能搜索到与之 相关的结果为 35 800 000 个,将 35 800 000 用科学记数法表示为
7 3.58×10 ________ .
12.近似数 40.31 万精确到_____ 百 位,把 0.539 5 精确到千分位的
一、选择题(每小题 4 分,共 32 分) 1 1.(2016· 东营)-2的倒数是( A ) 1 1 A.-2 B.2 C.2 D.-2
1 1 2. 下列计算: ①(-6)×(-8)=-48; ②(-4)×[-(-2)]=-4×2 -12 1 1 =-2;③(-6)÷(-6)=1;④ 36 =3;⑤(-0.75)÷(-0.25)=3.其中正 确的个数有( B ) A.1 个 B.2 个 C.3 个 D.4 个
解:(15-1)÷0.8×100=1750(米)
|a| |b| |ab| 17.(10 分)已知 ab>0,试求 a + b + ab 的值.
解:由 ab>知 a,b 同号且 a,b 都不为 0.当 a>0,b>0 时,|a| a b ab =a,|b|=b,|ab|=ab,∴原式= + + =3;当 a<0,b<0 时, b b ab -a -b ab |a|=-a,|b|=-b,|ab|=ab,∴原式= + + =-1 a b ab
3 3.若[(-3.4)-△]÷(-65)=0,则△表示的数为( B ) 3 A.3.4 B.-3.4 C.65 D.0 x 4.|x|=3,|y|=5,若 xy<0,则y的值等于( B ) 3 3 5 5 A.5 B.-5 C.3 D.-3
5.设 a=-3×42,b=(3×4)2,c=-(3×4)2,则 a,b,c 的大小 关系为( B ) A.a<c<b B.c<a<b C.c<b<a D.a<b<c 6.计算(-2)11+(-2)10 的结果是( D ) A.-2 B.(-2)21 C.0 D.-210
18.(12 分)探究规律: (1)计算:
1 ; ①2-1=____ 1; ②22-2-1=____ 1 ; ③23-22-2-1=____
④24-23-22-2-1=____ 1 ;
1 . ⑤25-24-23-22-2-1=____
(2)根据上面的计算结果猜想:
1; 22 016-22 015-22 014-…-22-2-1 的值为____ 1 . 2n-2n-1-2n-2-…-22-2-1 的值为____
108 5
-25
52 (3)-3 +(-2) -(-2)2+|-2)-2 -[(-3) -2 ×4-8.5]÷(-2) .
3 2 2
-6
16.(10 分)十一期间,小红与小莉姐妹俩同爸爸、妈妈一起去游 武当山,他们想知道山的高度,小红说可以利用温差测量山峰的高 度.他们在山脚下测得气温为 15 ℃,坐缆车到达山顶后测得气温为 1 ℃,已知该地区的高度每增加 100 m,气温大约降低 0.8 ℃.聪明的你 算一算,武当山的高度大约是多少米?
相关文档
最新文档