原子模型发展概述

合集下载

原子模型发展史

原子模型发展史

原子结构理论模型发展史道尔顿的原子模型英国自然科学家约翰·道尔顿将古希腊思辨的原子论改造成定量的化学理论,提出了世界上第一个原子的理论模型。

他的理论主要有以下三点[11]:①所有物质都是由非常微小的、不可再分的物质微粒即原子组成;②同种元素的原子的各种性质和质量都相同,不同元素的原子,主要表现为质量的不同;③原子是微小的、不可再分的实心球体;④原子是参加化学变化的最小单位,在化学反应中,原子仅仅是重新排列,而不会被创造或者消失。

虽然,经过后人证实,这是一个失败的理论模型,但,道尔顿第一次将原子从哲学带入化学研究中,明确了今后化学家们努力的方向,化学真正从古老的炼金术中摆脱出来,道尔顿也因此被后人誉为“近代化学之父”。

葡萄干布丁模型葡萄干布丁模型由汤姆生提出,是第一个存在着亚原子结构的原子模型。

汤姆生在发现电子的基础上提出了原子的葡萄干布丁模型,汤姆生认为[11]:①正电荷像流体一样均匀分布在原子中,电子就像葡萄干一样散布在正电荷中,它们的负电荷与那些正电荷相互抵消;②在受到激发时,电子会离开原子,产生阴极射线。

汤姆生的学生卢瑟福完成的α粒子轰击金箔实验(散射实验),否认了葡萄干布丁模型的正确性。

土星模型在汤姆生提出葡萄干布丁模型同年,日本科学家提出了土星模型,认为电子并不是均匀分布,而是集中分布在原子核外围的一个固定轨道上[16]。

行星模型行星模型由卢瑟福在提出,以经典电磁学为理论基础,主要内容有[11]:①原子的大部分体积是空的;②在原子的中心有一个体积很小、密度极大的原子核;③原子的全部正电荷在原子核内,且几乎全部质量均集中在原子核内部。

带负电的电子在核空间进行高速的绕核运动。

随着科学的进步,氢原子线状光谱的事实表明行星模型是不正确的。

玻尔的原子模型为了解释氢原子线状光谱这一事实,卢瑟福的学生玻尔接受了普朗克的量子论和爱因斯坦的光子概念在行星模型的基础上提出了核外电子分层排布的原子结构模型。

原子结构模型的演变

原子结构模型的演变

氢原子电子云
⒈电子云是用来表示 电子在核外某空间出现 的机会的多少 ⒉氢原子电子云中,每个小黑点表示 电子
在核外空间出现的一次 ;离核近,电
子云密度大,电子出现机会 多,离核
远,电子云密度小,电子出现机会 少。
原子结构模型的发展史
道尔顿原子模型(1803年) 汤姆生原子模型(1904年) 卢瑟福原子模型(1911年) 玻尔原子模型(1913年) 电子云模型(1935年)
早期科学家们眼中的原子是怎么 样的?科学家们是用什么方法去了解 原子内部结构的?
By convention colour,
原子 atom by convention sweet,
(indivisible 不可分割)
by convention cold, but in reality atoms and space. Democritus
万物都是由不可 分割的粒子即原子构 成的。
一.道尔顿的原子结构模型
1803年,英国化
学家道尔顿在综合
研究了质量守恒定
律、定组成定律、
当量定律等通过化
学实验得出的定律
后,提出定量的化
学原子论。
英国化学家道尔顿 (J.Dalton , 1766~1844)
1、物质模型
阴 极 射 线 实 验
【思考】
1、这些带负电的射线是哪来的? 2、为什么不管用什么电极材料,什么气体
所得到的射线都一样?
3、其电荷与质量之比很大又说明了什么?
【结论】
1、阴极射线是由极小的带负电的电子组成。 2、电子应来自管中的气体原子内部或者电极 原子内部。 3、电子是构成所有原子的一种基本微粒。
[思考]
根据实验事实卢瑟福原子模型否定了 汤姆生原子模型,那么两者有没有相同之 处和不同之处呢? 相同之处:①原子都由带负电的电子和带正电 的物质组成,且正负电荷相等. ②电子质量很小,原子的质量几乎 全部集中在带正电的物质上.

原子结构发展与组成

原子结构发展与组成

原子结构发展与组成原子结构模型的演变如下:原子结构模型发展是指从1803年道尔顿提出的第一个原子结构模型开始,经过一代代科学家不断地发现和提出新的原子结构模型的过程。

人类对原子的认识史可以大致划分为5个阶段:(1)古代原子论。

(2)道尔顿原子论。

(3)汤姆森原子模型和卢瑟福原子模型。

(4)波尔原子模型。

(5)原子结构(核外电子运动)的量子力学模型。

一、原子的简介原子是构成化学元素的普通物质的最小单位;原子也是化学变化中最小的粒子及元素化学性质的最小单位。

二、原子的组成原子是由带正电荷的原子核和带负电荷的电子构成。

原子核所带的正电荷数与原子核外电子所带的负电子数相等,故原子呈电中性。

原子可以构成分子,也可以形成离子,也可以直接构成物质。

当质子数与电子数相同时,这原子就是电中性,称为中性原子;否则,就是带有正电荷或者负电荷的离子。

根据质子和中子数量的不同,原子的类型也不同:质子数决定了该原子属于哪种元素,而中子数则确定了该原子是此元素的哪种同位素。

原子的性质:一、衰变放射性每种元素都有一个或以上同位素有不稳定的原子核,从而能放射性衰变,在这过程中,原子核可释放出粒子或电磁辐射。

原子核半径大于强力的作用半径时就可能会放射性衰变,而强力的作用半径仅为几飞米。

二、磁矩基本微粒都有一个固有性质,就像在宏观物理中围绕质心旋转的物体都有角动量一样,在量子力学叫自旋。

但是严格来说,这些微粒仅仅是一些点,不能够旋转。

自旋的单位是约化普朗克常数,电子、质子和中子的自旋都是二分之一。

在原子里,电子围绕原子核运动,所以除了自旋,它们还有轨道角动量。

而对于原子核来说,轨道角动量是起源于自身的自旋。

三、能级原子中,电子的势能与它离原子核的距离成反比。

测量电子的势能,通常的测量将让该电子脱离原子所需要的能量,单位是电子伏特。

在量子力学模型中,电子只能占据一组以原子核为中心的状态,每一个状态就对应于一个能级。

最低的能级就被叫做基态,而更高的能级就被叫做激发态。

原子结构模型发展史

原子结构模型发展史

原子结构模型发展史原子结构模型发展史是物理学领域的一个重要研究方向。

它的发展经历了多位科学家的研究和贡献,最终形成了现代原子理论。

接下来,我们将按照时间顺序分步骤阐述原子结构模型的发展史。

1.道尔顿原子模型:1799年,英国科学家道尔顿提出了原子组成物质的理论。

他认为原子是各种元素的基本微粒,具有不同的质量和大小,且不可分割。

这是原子理论的起点。

2.汤姆逊原子模型:1897年,英国物理学家汤姆逊发现电子,证明了原子内存在电子的存在。

他提出了“西瓜切片”原子模型,认为原子是由一个带正电的球体和分布在球体内的带负电的电子构成的。

这种模型为后来的研究打下了基础。

3.卢瑟福原子模型:1911年,英国物理学家卢瑟福提出了原子核模型。

他通过阿尔法粒子轰击金箔实验,证实了原子核的存在,并指出原子核具有正电荷,电子则在原子核外绕行。

这是目前仍然被广泛接受的模型。

4.玻尔原子模型:1913年,丹麦物理学家玻尔发表了有关原子结构的文章,提出了玻尔原子模型。

他认为原子由电子围绕着原子核旋转,且电子只能沿着特定轨道运动。

这种模型为后来的原子结构理论提供了重要的参考依据。

5.量子力学理论:20世纪20年代,量子理论的发展引起了物理学界的广泛关注。

量子力学理论认为粒子具有波动性质,且只有在特定的能量状态下才能存在。

这种理论得到了广泛验证和应用,成为了现代原子结构理论的基础。

总之,原子结构模型的发展经历了多位科学家的研究和贡献,最终形成了现代原子理论。

每一次的突破都离不开前人的积累和启发,也为后人提供了宝贵的经验和思路。

只有通过不断的探索和研究,才能深入理解原子结构的本质,为未来的科学发展铺平道路。

原子内部结构模型发展史

原子内部结构模型发展史

原子内部结构模型发展史一、经典原子模型从古希腊时期起,人们对物质的组成和性质就有了一定的认识。

然而,直到19世纪末,原子的内部结构才开始引起科学家们的关注。

经典原子模型最早由英国物理学家道尔顿提出,他认为原子是不可分割的、质量均匀的实体,并且原子间的化学反应只涉及原子的重新组合。

这一模型的出现为后续的研究奠定了基础。

二、汤姆孙模型在20世纪初,英国物理学家汤姆孙通过实验证据发现了电子,并提出了汤姆孙模型。

他认为原子是一个由正电荷均匀分布的球体,而电子则嵌入在球体内。

这一模型首次揭示了原子内部存在着带电粒子,并为后续的原子结构研究提供了重要线索。

三、卢瑟福模型1911年,新西兰物理学家卢瑟福进行了著名的金箔散射实验,他射入了高能α粒子到金箔中,观察到了一些粒子被反射、偏转甚至穿透的现象。

基于实验结果,卢瑟福提出了卢瑟福模型,他认为原子是由一个非常小而带正电的核心和围绕核心运动的电子构成。

这一模型首次提出了原子中存在着带电的核,并且核与电子之间存在着静电力。

四、玻尔模型1913年,丹麦物理学家玻尔提出了玻尔模型,他在卢瑟福模型的基础上进一步发展了原子结构理论。

玻尔模型认为电子绕核运动的轨道是量子化的,即只能取特定的能量值。

这一模型成功解释了氢原子光谱线的能级分布规律,并开创了量子力学的先河。

五、量子力学模型随着量子力学的发展,原子结构的研究进入了全新的阶段。

量子力学模型认为原子内部的粒子,如电子和质子,具有波粒二象性,即既表现出粒子性又表现出波动性。

这一模型通过数学方法描述了原子内部粒子的行为,并成功解释了原子的稳定性和化学性质。

六、现代原子模型现代原子模型是基于量子力学模型的进一步发展,它进一步细化了原子内部结构的认识。

现代原子模型认为原子由质子和中子组成的核心,以及围绕核心运动的电子构成。

质子和中子集中在核心,而电子则分布在核外的不同能级轨道上。

这一模型通过量子力学的计算方法,准确描述了原子内部粒子的运动和相互作用。

原子结构模型的演变

原子结构模型的演变

O 得 2e-
O2(- 带2个单位负电荷)
原子得失电子与化合价的联系P30
⒈金属单质Na、Mg能分别与非金属单质O2、Cl2反应生成氧 化物和氯化物,请写出这些氧化物和氯化物的化学式。
Na2O、MgO、NaCl、MgCl2 ⒉根据Na、Mg、O、Cl原子在反应中失去或得到电子
铜由铜原子直 接构成
食盐由离子构成
水由水分子构成
一、原子结构模型的演变:
1、道尔顿原子模型:提出原子论 原子是实心球
2、汤姆生原子模型:发现电子(带负电荷) “葡萄干面包式”
3、卢瑟福原子模型:发现原子核结构
带核的原子结构模型
4、玻尔原子模型:发现核外电子的能量
分层模型
5、现代原子模型:核外电子的运动和电子排
注意:多条规律必须同时兼顾。Βιβλιοθήκη 2、核外电子排布的表示方法:
①原子结构示意图:
原子核
电子层
原子核
第2层 第1层
第3层
+18 核电荷数
Ar
+18 2 8 8
原子核带正电
K层
L层
该电子
核电荷数
层上的
电子
该电子层上的电子数
M层
②离子结构示意图:
辨析原子结构示意图和离子结构示意图: 原 子:核内质子数=核外电子数 阳离子:核内质子数 > 核外电子数 阴离子:核内质子数 < 核外电子数
元素、核素和同位素的关系:
核素 某种元素 核素 同位素
同位素的特性:
(1)化学性质几乎完全相同:
35 17
Cl、17
37
Cl
(2)物理性质不同:N不同,A不同,M不同,m不同
(3)原子个数百分比(即丰度)基本不变:

原子结构模型发展历程

原子结构模型发展历程

玻尔模型 卢瑟福的理论吸引了一位来自丹麦的年轻 人,他的名字叫尼·玻尔,在卢瑟福模型的基础 上,他提出了电子在核外的量子化轨道,解决了 原子结构的稳定性问题,描绘出了完整而令人信 服的原子结构学说。玻尔的原子理论给出这样的 原子图像:电子在一些特定的可能轨道上绕核作 圆周运动,离核愈远能量愈高;当电子在这些可 能的轨道上运动时原子不发射也不吸收能量,只 有当电子从一个轨道跃迁到另一个轨道时原子才 发射或吸收能量。玻尔的理论成功地说明了原子 的稳定性和氢原子光谱线规律。
太阳系模型 英国物理学家卢瑟福年 来到卢瑟福在做他的第一个 实验——放射性吸收实验时 发现了α射线。他把铀、镭 等放射性元素放在一个铅制 的容器里,在铅容器上只留一个小孔。由于铅能挡住放 射线,所以只有一小部分射线从小孔中射出来,成一束 很窄的放射线。卢瑟福在放射线束附近放了一块很强的 磁铁,结果发现有一种射线不受磁铁 的影响,保持直线行进。第二种射线 受磁铁的影响,偏向一边,但偏转得 不厉害。第三种射线偏转得很厉害。 卢瑟福在放射线的前进方向放不同厚
度的材料,观察射线被吸收的情况。第一种射线不受磁 场的影响,说明它是不带电的,而且有很强的穿透力, 一般的材料如纸、木片之类的东西都挡不住射线的前进, 只有比较厚的铅板才可以把它完全挡住,称为γ射线。 第二种射线会受到磁场的影响而偏向一边,从磁场的方 向可判断出这种射线是带正电的,这种射线的穿透力很 弱,只要用一张纸就可以完全挡住它。这就是卢瑟福发 现的α射线。第三种射线由偏转方向断定是带负电的, 性质同快速运动的电子一样,称为β射线。他经过深入 细致的研究后指出,α射线是带正电的粒子流,这些粒 子是氦原子的离子,即少掉两个电子的氦原子。汤姆逊 原子模型不能解释α粒子散射,卢瑟福经过仔细的计算 和比较,发现只有假设正电荷都集中在一个很小的区域 内,α粒子穿过单个原子时,才有可能发生大角度的

原子模型演变史

原子模型演变史

原子模型演变史从古希腊时代到现代,原子模型已经以几何图形来描述原子的大小和结构。

每一次演变都揭示了一个新的层次上我们关于原子的了解,引发了一系列的科学发现。

今天,让我们踏上一次演变的旅程,回顾原子模型的发展史,从一个简单的理论演变成对宇宙有着重大影响的系统。

一、原子模型的演变史1.古希腊时期的“阿基米德原子论”古希腊时期的“阿基米德原子论”被认为是第一个物理学与化学的融合,它认为物质是由构成它的“原子”组成的。

古希腊哲学家阿基米德给出了他的假说:万物都是由“原子”构成的,这些“原子”不可分割,在性质和数量上它们是一样的,只是位置上存在差异。

虽然这些原子理论有些粗糙,但它却引发了许多新发现与研究。

想象一下,阿基米德原子论曾认为水是由火原子和气原子组成的。

换句话说,他认为水可以通过加热和加压而消失,但实际上,这只是表面上的“蒸发”,水并没有真的消失,只是以气体的形式释放出来了。

这恐怕不会惊讶任何人,但在那个时代,这项发现是令人兴奋的,它让哲学家和科学家们开始思考更多有关原子的可能性。

A.承认构成物质的最小单位是原子;从古希腊时期,人们把物质分解到它最小的由植物和动物组成的构件,但直到19世纪中叶,人们才开始承认物质的最小单位是原子。

历史上最具影响力的原子学家之一是英国化学家约翰·斯托克斯(John Dalton),他提出了原子理论,认为原子是物质组成块,且不可分割。

斯托克斯甚至发现,每种原子都有其单独的性质和重量,不同的元素由其特定数量的原子组成。

他的发现通过开发者了一系列元素的公式,为研究其他元素形成的化合物提供了科学原理,也为后续科学发现创造了坚实的基础。

当今,许多著名的科学家认为,斯托克斯的原子理论是承认物质由原子组成的重要前提,并且其分子理论在许多实际应用中仍然存在着重大的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原子模型的发展及量子力学的建立林元兴(安庆师范学院物理与电气工程学院安徽安庆246011 )指导教师:张青林摘要:自从汤姆逊通过阴极射线发现电子以后,人们逐步开始研究原子的内部结构及运动。

通过不断的改进、修正,建立了一个相对完整的原子结构模型。

本文结合物理学史料,从原子模型入手,扼要地对不同时期各种原子模型作以下介绍和表述,目的在于更好地了解近代物理尤其是量子力学思想及其发展过程,加深对原子模型的微观认识。

关键词:原子模型,几率定律,双重解理论,孤子(Soliton)模型1.引言—原子模型建立前奏任何物质都是由原子构成,原子只是物质基本结构的一个层次,物质的这种原子观只是在十六世纪之后才被人们普遍接受。

1806年,法国普鲁斯特(J.L.Proust)发现化合物分子的定组成定律;1807年,英国道尔顿(J.Dalton)发现倍比定律,并提出原子论;1811年,意大利啊伏加德罗(A.Avogadro)提出同体积气体在同温同压下含有同数目之分子的假说;1815年,英国普劳托(Prout)根据许多元素的原子量的都接近于氢原子量的整数倍而提出所有的元素都是由氢构成的假设;1826年,英国布朗(R.Brown)观察到液体中的悬浮微粒作无规则的起伏运动;1833年,英国法拉第(M.Faraday)提出电解定律,并把化学亲和力归为电力;1869年,俄国门捷列夫(D.Mendeleev)提出元素周期律;1881年,美国斯通尼(G.J.Stoney)提出“电子”概念,并用阿伏加德罗常数Na和法拉第常数F推出这一基本电荷的近似值为e=F/Na;1885年,瑞士巴尔未(J.J.Balmer)提出氢原子光谱的巴尔未线系;1889年,瑞士里德泊(J.R.Rydberg)提出里德伯方程ν=1λ=R H(21n-21'n),R H=109677.58cm-1为里德伯常数;1895年,德国伦琴(W.K.Rontgen)发现x射线;1896年,法国贝克勒尔(A.H.Becquerel)发现了铀的放射性;1897年,法国居里夫妇(P.&M.Curie)发现了放射性元素钋和镭;1896年,荷兰塞曼(P.Zeeman)发现处于磁场中的原子光谱分裂的所谓塞曼效应;1897年,英国汤姆逊(J.J.Thomson)确认电子的存在;1897年,德国的卢瑟福(M.Rutherford)发现了射线,1900年又发现了γ射线,到此,拉开了近代物理的序幕。

2.原子的Thomson模型(西瓜模型)自汤姆逊发现电子以来,以原子中正、负电荷提出了许多见解,历经1898年、1903年到1907年,汤姆逊通过不断的完善而提出原子的葡萄干布丁模型(即西瓜模型);原子的正电荷均匀分布在整个半径为10-10米的原子球体(汤姆逊球)内,而电子则象面包中的葡萄干(或象西瓜中的瓜子)那样嵌在各处,为了解释元素周期律,汤姆逊还假设:电子分布在一个个环上,第一个环上只可放5个电子,第二只环上可放10个电子;假如一个原子有70个电子,那么必须有6只同心环,汤姆逊原子模型虽然很快被以后的试验所否定,但它所包含的“同心环”、“环上只能安置有限个电子”的概念,却是十分宝贵的。

3.原子的Rutherford 模型(核式模型)1903年,德国林纳德(P.Lenard )在研究阴极射线物质吸收的实验中得出,“原子是十分空虚的”,在此实验基础上,日本长冈半太郎(Nantaro Nagaka )于1904年提出原子的核式行星模型,认为原子内的正电荷集中于中心,电子绕中心运动,但他没能继续深入下去,直到1909年,卢瑟福的学生盖革(H.Geiger )和马斯登(E.Marsden )在用粒子轰击原子的实验中,发现粒子在轰击原子时有大约八千分之一的几率被反射回来,通过这一实验事实,又经过严谨的理论推导之后,卢瑟福于1911年提出了(但未被人们重视)原子的核式行星模型;正电荷被限制在一个半径约为10-14米的原子核球体内,电子在与汤姆逊球有统一数量级的空间内绕核旋转。

卢瑟福的核式行星模型,不仅大胆肯定了高密度原子核的存在(首次将原子分为核外和核内两个层次),而且由此模型导出著名的卢瑟福散射公式为研究物质结构和材料分析提出了一种有效的方法,同时对近代物理特别是原子物理的发展起了重要的作用,但卢瑟福模型也存在着严重不足,那就是不能解释原子的稳定性,同一性和再生性。

4.原子的Bohr 及 Bohr-Sommerfeld 模型(量子轨道模型)4.1原子的Bohr 模型(圆形轨道模型)1900年4月,英国开尔文(W.T.Kelvin )指出:“物理学晴朗太空的远处,还有两朵令人不安的乌云”,这“两朵乌云”,一个与黑体辐射有关,另一个与迈克耳逊—莫雷(A.A.Aichelson-E.W.Morley )实验有关,而黑体辐射和迈克耳逊—莫雷实验则正是近代物理的两个革命性的原理,那就是量子论和相对论。

1900年10月,德国普克朗(M.Planck )用能量的量子学说E=nh ν,h 为普克朗常数, 338()1kT h d c e νπννμν=-成功地解释了黑体辐射,时隔五年的1905年,爱因斯坦(A.Einstein )发展了普克朗的量子学说,并用光的量子学说成功地解释了光电效应(1923年康普顿(pton )效应进一步证明了光量子性),同年又创立了狭义相对论。

然而,自1885年巴尔未提出氢原子光谱线系公式和1889年里德伯提出起原子光谱线系公式以来,许多科学家都不断致力于原子光谱的研究。

1906年赖曼(T.Lyman )在紫外区域找到了一组氢原子光谱的赖曼线系,1908年帕邢(F.Paschen )又在红外区域找 到了一组氢原子光谱的帕邢线系。

为了解释氢原子光谱的实验事实,1913年丹麦玻尔(N.Bohr )综合普朗克和爱因斯坦的量子学说和卢瑟福的原子模型,提出了行星式的圆形轨道模型:①.电子以原子核为中心沿具有一定半径(r n =22h men 2,ħ=2h π,n=1.2…)或一定能量(En=-422me 21n )分立的圆形轨道绕转(在一定轨道上绕转的电子被称为稳定状态,简称定态,其中能量最低的态称为基态,其余的称为激发态);②.电子从某一定态轨道跃到另一定态轨道时放出或吸收的辐射能为hν=E n -E m 电子在定态轨道运动时不会发生电磁辐射;③.电子运动的角动量是量子化的,L=nћ,n 称为主量子数,ћ=2h π称为狄拉克的普朗克常数。

Bohr 模型的提出,不仅成功地解释了氢原子和类氢原子光谱现象,而且还导出了氢原子和类氢原子体系具有量子性的线度和能量:氢原子的最小线度(称为玻尔半径)a 0=r 1=2820.52910m me -=⨯,最低能量(基态能量)E 1=-4213.62me ev =-;类氢原子的电子轨道半径为r n =a 02n Z ,定态能量为En=-13.622Z n,Z 为原子序数,光谱项T(n)=22E RZ hc n-=,同时更为重要的是肯定了量子论的正确性和必要性(玻尔理论正确性的验证实验为:光谱实验,弗兰克(J.Franck )—赫兹(G.Hretz )实验)。

4.2 原子的 Bohr-Sommerfeld (椭圆轨道模型)在玻尔圆形轨道理论发表后的不久,索末菲(A.Sommerfeld )便于1916年对玻尔理论作了两项修正:其一是把玻尔的一维的圆形轨道推广为二维的椭圆轨道;其二是引入为相对论修正。

从而得到了更为普遍的原子的所谓Bohr-Sommerfeld 模型,亦即椭圆轨道模型。

索末菲认为电子绕原子核在某一平面上作椭圆轨道运动,这是一个二维运动,描述椭圆运动中电子的位置,可用平面极坐标Φ和r ,而与这两个坐标对应的广义动量是角动量L 和径向动量P 。

它们能满足类似于玻尔圆形轨道的量子化条件为∮Ld Φ=n Φh 和∮Pdr=n r h,n Φ=1.2.…n r =0.1…式中的n Φ和n r 分别叫做角量子数和径量子数,它们的总和为主量子数n ,即 n=n Φ+n r 。

根据简单的数学推导,可得椭圆轨道的长、短半轴a 和b 的关系为a b =n n φ,而a=n 21a Z,又得能量的表述式为En=-24222Z e n μ,μ=mM m M+为原子核与电子的折合质量,按照相对论原理,索末菲考虑了椭圆轨道运动电子的相对论效应,经繁复的数学运算,得到体系的能量表述式为E=-12m(ca)223231()()4Z Za n n n n φ⎡⎤+-⎢⎥⎢⎥⎣⎦,由此得光谱项的表述式为T(n,n ф)=-242243()4E RZ RZ a n hc n n n φ=+-,两式中的a=21137e c =称为精细结构常数。

Bohr-Sommerfeld 模型比Bohr 模型更加完善(提出了二维量子数(n,n ф)),该模型所确立的椭圆轨道理论不仅能完满解释一些Bohr 模型所不能恰当解释的问题,而且也能解释氢原子和类氢离子的能级分裂(一谱多线),但却不能令人信服地解释碱金属原子的非单线光谱,更不能解释一般原子的精细结构原因,因而Bohr-Sommerfeld 模型理论仍有缺陷。

巴尔末线系中的七条H a 谱线和钠的黄色D 双线等著名实验表明:造成能级分裂的原因,除了电子与核子间具有静电相互作用外,还必定存在磁相互作用。

正是由于存在磁相互作用,才必须在Bohr-Sommerfeld 理论中两个量子数的基础,再需用另一量子数来描述。

正如主量子数决定体系的能量、角量子数决定轨道的形状那样,它们的量子化条件具有∮P i d qi =n i ħ形式。

根据数学推导,所需的新量子数应是反映轨道平面与磁场方向间的角度有关的所谓“原子在磁场中的取向是量子化的(即空间量子化)”,它同样具有形式L z =m ħcos m n φθ=,若以l 取代n ф之后,l 的取值即为0,1,2,……。

如此,对于每一固定的l,m 有2l+1个取值.l 仍称为角量子数,而m 称为磁量子数。

这样,描述原子中电子状态的量子数就有三个(n,l,m )。

1921年,史特恩(O.Stern )和盖拉赫(W.Gerlach )等进行的实验结果表明:氢原子在磁场中只有两个取向。

这就有力地证明了原子在磁场中的取向是量子化的。

然而史特恩-盖拉赫实验能出现偶数分裂的事实启示:要使2l+1为偶数,只有l 取半整数,而泡利(W.Pauli )仔细分析了原子光谱和强磁场中的塞曼效应后曾建议:为了完整描述电子,除了已有的三个量子数外,还要有第四个量子数,而这个量子数应该是双值的,在经典上不可描述的。

同年他又提出了著名的泡利不相容原理:原子中的每一个状态只能容纳一个电子。

相关文档
最新文档