(完整版)二元一次方程组应用题经典题及答案

合集下载

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。

已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。

为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。

因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。

根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。

二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。

求甲、乙两人的速度。

解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。

根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。

因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。

将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

之阳早格格创做本量问题与二元一次圆程组题型归纳(训练题问案)典型一:列二元一次圆程组办理——路程问题【变式1】甲、乙二人相距36千米,相背而止,如果甲比乙先走2小时,那么他们正在乙出收2.5小时后相逢;如果乙比甲先走2小时,那么他们正在甲出收3小时后相逢,甲、乙二人每小时各走几千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得: x=6,y=3.6问:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时.【变式2】二天相距280千米,一艘船正在其间航止,顺流用14小时,顺流用20小时,供船正在静火中的速度战火流速度.解:设那艘轮船正在静火中的速度x千米/小时,则火流速度y千米/小时,有:20(x-y)=28014(x+y)=280 解得:x=17,y=3问:那艘轮船正在静火中的速度17千米/小时、火流速度3千米/小时,典型二:列二元一次圆程组办理——工程问题【变式】小明家准备拆建一套新住宅,若甲、乙二个化妆公司合做6周完毕需人为5.2万元;若甲公司单独搞4周后,剩下的由乙公司去搞,还需9周完毕,需人为4.8万元.若只选一个公司单独完毕,从俭朴启收的角度思量,小明家应选甲公司仍旧乙公司?请您证明缘由.解:典型三:列二元一次圆程组办理——商品出卖成本问题【变式1】(2011湖北衡阳)李大叔去年启包了10亩天培植甲、乙二种蔬菜,共赢利18000元,其中甲种蔬菜每亩赢利2000元,乙种蔬菜每亩赢利1500元,李大叔去年甲、乙二种蔬菜百般植了几亩?解:设甲、乙二种蔬菜百般植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4问:李大叔去年甲、乙二种蔬菜百般植了6亩、4亩【变式2】某阛阓用36万元买进A、B二种商品,出卖完后共赢利6万元,其进价战卖价如下表:(注:赢利 = 卖价—进价)供该阛阓买进A、B二种商品各几件;解:设买进A的数量为x件、买进B的数量为y件,依据题意列圆程组1200x+1000y=360000(1380-1200)x+(1200-1000)y=60000解得x=200,y=120问:略典型四:列二元一次圆程组办理——银止储备问题【变式2】小敏的爸爸为了给她筹办上下中的费用,正在银止共时用二种办法共存了4000元钱.第一种,一年期整存整与,共反复存了3次,屡屡进款数皆相共,那种进款银止利率为年息2.25%;第二种,三年期整存整与,那种进款银止年利率为2.70%.三年后共时与出共得本钱303.75元(没有计本钱税),问小敏的爸爸二种进款各存进了几元?解:设x为第一种进款的办法,Y第二种办法进款,则 X + Y = 4000 X * 2.25%* 3 + Y * 2.7%* 3 = 303.75 解得:X = 1500,Y = 2500.问:略.典型五:列二元一次圆程组办理——死产中的配套问题【变式1】现有190弛铁皮搞盒子,每弛铁皮搞8个盒身或者22个盒底,一个盒身与二个盒底配成一个完备盒子,问用几弛铁皮造盒身,几弛铁皮造盒底,不妨正佳造成一批完备的盒子?解:设x弛搞盒身,y弛搞盒底,则有盒身8x个,盒底22y个x+y=1908x=22y/2解得x=110,y=80即110弛搞盒身,80弛搞盒底【变式2】某工厂有工人60人,死产某种由一个螺栓套二个螺母的配套产品,每人每天死产螺栓14个或者螺母20个,应调配几人死产螺栓,几人死产螺母,才搞使死产出的螺栓战螺母刚刚佳配套.解:设死产螺栓的工人为x人,死产螺母的工人为y人x+y=6028x=20y解得 x=25,y=35问:略【变式3】一弛圆桌由1个桌里、4条桌腿组成,如果1坐圆米木料不妨搞桌里50个,或者搞桌腿300条.现有5坐圆米的木料,那么用几坐圆米木料搞桌里,用几坐圆米木料搞桌腿,搞出的桌里战桌腿,恰佳配成圆桌?能配几弛圆桌?解:设用X坐圆米搞桌里,用Y坐圆米搞桌腿X+Y=5.........................(1)50X:300Y=1:4......................(2)解得:Y=2,X=5-2=3问:用3坐圆米搞桌里,2坐圆米的木料搞桌腿.典型六:列二元一次圆程组办理——删少率问题【变式2】某皆会现有人心42万,预计一年后乡镇人心减少0.8%,农村人心减少1.1%,那样齐市人心减少1%,供那个皆会的乡镇人心与农村人心.解:设该皆会当前的乡镇人心有x万人,农村人心有y万人. x+y=420.8%×X+1.1%×Y= 42×1%解那个圆程组,得:x=14, y=28问:该市当前的乡镇人心有14万人,农村人心有28万人.典型七:列二元一次圆程组办理——战好倍分问题【变式1】略【变式2】游泳池中有一群小伙伴,男孩戴蓝色游泳帽,女孩戴白色游泳帽.如果每位男孩瞅到蓝色与白色的游泳帽一般多,而每位女孩瞅到蓝色的游泳帽比白色的多1倍,您知讲男孩与女孩各有几人吗?解:设:男有X人,女有Y人,则 X-1=Y 2(Y-1)=X解得:x=4,y=3问:略典型八:列二元一次圆程组办理——数字问题【变式1】一个二位数,减去它的诸位数字之战的3倍,截止是23;那个二位数除以它的诸位数字之战,商是5,余数是1,那个二位数是几?解:设那个二位数十位数是x,个位数是y,则那个数是(10x+y) 10x+y-3(x+y)=23 (1) 10x+y=5(x+y)+1 (2) 由(1),(2)得7x-2y=23 5x-4y=1 解得:x=5 y=6问:那个二位数是56【变式2】一个二位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字接换位子,那么得到的新二位数比本去的二位数的一半还少9,供那个二位数?解:设个位X,十位Y,有X - Y = 5(10X + Y) + (10 + X) = 143即X - Y = 5X + Y = 13解得:X = 9,Y = 4那个数便是49【变式3】某三位数,中间数字为0,其余二个数位上数字之战是9,如果百位数字减1,个位数字加1,则所得新三位数正佳是本三位数诸位数字的倒序排列,供本三位数.解:设本数百位是x,个位是y那么x+y=9x-y=1二式相加得到2x=10 => x=5 => y=5-1=4所以本数是504典型九:列二元一次圆程组办理——浓度问题【变式1】要配浓度是45%的盐火12千克,现有10%的盐火与85%的盐火,那二种盐火各需几?解:设10%的X克,85%的Y克X+Y=12X*10%+Y*85%=12*45%即:X+Y=12X+8.5Y=54解得:问:略【变式2】一种35%的新农药,如密释到1.75%时,治虫最灵验.用几千克浓度为35%的农药加火几千克,才搞配成1.75%的农药800千克?解:800千克1.75%的农药中含杂农药的品量为800×1.75%=14千克含14千克杂农药的35%的农药品量为14÷35%=40千克由40千克农药密释为800千克农药应加火的品量为800-40=760千克问:用40千克浓度为35%的农药增加760千克的火,才搞配成浓度为1.75%的农药800千克.典型十:列二元一次圆程组办理——几许问题【变式1】用少48厘米的铁丝直成一个矩形,若将此矩形的少边剪掉3厘米,补到较短边上去,则得到一个正圆形,供正圆形的里积比矩形里积大几?解:设少圆形的少宽分别为x战y 厘米,则2(x+y) = 48x-3=y+3 解得:x=15 , y=9正圆形的里积比矩形里积大(x-3)(y+3)- x y= (15-3)(9+3)- 15 * 9= 144 - 135= 9( cm²)问:略【变式2】一齐矩形草坪的少比宽的2倍多10m,它的周少是132m,则少战宽分别为几?典型十一:列二元一次圆程组办理——年龄问题【变式1】今年,小李的年龄是他爷爷的五分之一.小李创造,12年之后,他的年龄形成爷爷的三分之一.试供出今年小李的年龄.解:设小李X岁,爷爷Y 岁,则5X=Y3(X+12)=Y+12二式联坐解得:X=12 Y=60所以小李今年12岁,爷爷今年60岁.典型十二:列二元一次圆程组办理——劣化规划问题:【变式】某阛阓计划拨款9万元从厂家买进50台电视机,已知厂家死产三种分歧型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若阛阓共时买进其中二种分歧型号的电视机50台,用去9万元,请您钻研一下阛阓的进货规划;(2)若阛阓出卖一台甲、乙、丙电视机分别可赢利150元、200元、250元,正在以上的规划中,为使赢利最多,您采用哪种进货规划?解:(1)分情况预计:设买进甲种电视机x台,乙种电视机y台,丙种电视机z台.(Ⅰ)买进甲、乙二种电视机解得(Ⅱ)买进甲、丙二种电视机解得(Ⅲ)买进乙、丙二种电视机解得(分歧本量,舍去)故阛阓进货规划为买进甲种25 台战乙种25 台;或者买进甲种35 台战丙种15 台.(2) 按规划( Ⅰ) ,赢利150 ×25 +200 ×25 =8750( 元) ;按规划( Ⅱ) ,赢利150 ×35 +250 ×15 =9000( 元) .∴采用买进甲种35 台战丙种15 台.。

二元一次方程应用题应用精题(附答案)

二元一次方程应用题应用精题(附答案)

二元一次方程组的应用板块一:二元一次方程组解的讨论☞二元一次方程组解的三种情况二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩ ⑴若1122a b a b ≠,则该方程组有唯一解 ⑵若111222a b c a b c =≠,则该方程组无解 ⑶若111222a b c a b c ==,则该方程组有无数组解 1.如果方程组有唯一的一组解,那么a ,b ,c 的值应当满足( )A .a=1,c=1B .a ≠bC .a=b=1,c ≠1D .a=1,c ≠1【解答】解:根据题意得:,∴1﹣x=,∴(a ﹣b )x=c ﹣b ,∴x=, 要使方程有唯一解,则a ≠b ,故选B .2.已知关于x ,y 的方程组,分别求出k ,b 为何值时,方程组:(1)有唯一解;(2)有无数多个解;(3)无解.【解答】解:把y=kx+b 代入y=(3k ﹣1)x+2中,可得:(2k ﹣1)x=b ﹣2,(1)当(2k ﹣1)≠0,即k ≠0.5,方程有唯一解x=,将此x 的值代入y=kx+b 中,得:y=,因而原方程组有唯一一组解; (2)当(2k ﹣1)=0且b ﹣2=0时,即k=0.5,b=2时,方程有无穷多个解,因此原方程组有无穷多组解;(3)当(2k ﹣1)=0且(b ﹣2)≠0时,即k=0.5,b ≠2时,方程无解,因此原方程组无解.板块二、二元一次方程的简单应用☞倍分问题1.(2015•广元)一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.2.(2015•泰安)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y千克,则可列方程组为()A.B.C.D.【解答】解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,由题意得.故选A.3.(2015•盘锦)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据题意所列方程组正确的是()A.B.C.D.【解答】解:设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,由题意得,.故选A.4.(2015•台湾)如图为甲、乙、丙三根笔直的木棍平行摆放在地面上的情形.已知乙有一部分只与甲重迭,其余部分只与丙重迭,甲没有与乙重迭的部分的长度为1公尺,丙没有与乙重迭的部分的长度为2公尺.若乙的长度最长且甲、乙的长度相差x公尺,乙、丙的长度相差y公尺,则乙的长度为多少公尺?()A .x+y+3B .x+y+1C .x+y ﹣1D .x+y ﹣3【解答】解:设乙的长度为a 公尺,∵乙的长度最长且甲、乙的长度相差x 公尺,乙、丙的长度相差y 公尺, ∴甲的长度为:(a ﹣x )公尺;丙的长度为:(a ﹣y )公尺, ∴甲与乙重叠的部分长度为:(a ﹣x ﹣1)公尺;乙与丙重叠的部分长度为:(a ﹣y ﹣2)公尺,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,∴(a ﹣x ﹣1)+(a ﹣y ﹣2)=a ,a ﹣x ﹣1+a ﹣y ﹣2=a ,a+a ﹣a=x+y+1+2,a=x+y+3,∴乙的长度为:(x+y+3)公尺,故选:A .5. 古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮得一样多!”那么驴子原来所驮货物的袋数是多少?【解答】解:设驴子原来所驮货物的袋数是x ,骡子原来所驮货物的袋数是y . 由题意得,解得.答:驴子原来所驮货物的袋数是5.☞年龄问题1.小明问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”设王老师今年x 岁,小明今年y 岁,根据题意,列方程组正确的是( )A .B .C .D .【解答】解:王老师今年x 岁,刘俊今年y 岁,可得:, 故选D☞数字问题1. 一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A 、错误!未找到引用源。

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。

类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。

解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。

类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。

二元一次方程应用题应用精题(附答案)

二元一次方程应用题应用精题(附答案)

二元一次方程组的应用板块一:二元一次方程组解的讨论☞二元一次方程组解的三种情况二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩ ⑴若1122a b a b ≠,则该方程组有唯一解 ⑵若111222a b c a b c =≠,则该方程组无解 ⑶若111222a b c a b c ==,则该方程组有无数组解 1.如果方程组有唯一的一组解,那么a ,b ,c 的值应当满足( )A .a=1,c=1B .a ≠bC .a=b=1,c ≠1D .a=1,c ≠1【解答】解:根据题意得:,∴1﹣x=,∴(a ﹣b )x=c ﹣b ,∴x=, 要使方程有唯一解,则a ≠b ,故选B .2.已知关于x ,y 的方程组,分别求出k ,b 为何值时,方程组:(1)有唯一解;(2)有无数多个解;(3)无解.【解答】解:把y=kx+b 代入y=(3k ﹣1)x+2中,可得:(2k ﹣1)x=b ﹣2,(1)当(2k ﹣1)≠0,即k ≠0.5,方程有唯一解x=,将此x 的值代入y=kx+b 中,得:y=,因而原方程组有唯一一组解; (2)当(2k ﹣1)=0且b ﹣2=0时,即k=0.5,b=2时,方程有无穷多个解,因此原方程组有无穷多组解;(3)当(2k ﹣1)=0且(b ﹣2)≠0时,即k=0.5,b ≠2时,方程无解,因此原方程组无解.板块二、二元一次方程的简单应用☞倍分问题1.(2015•广元)一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.2.(2015•泰安)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y千克,则可列方程组为()A.B.C.D.【解答】解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,由题意得.故选A.3.(2015•盘锦)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据题意所列方程组正确的是()A.B.C.D.【解答】解:设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,由题意得,.故选A.4.(2015•台湾)如图为甲、乙、丙三根笔直的木棍平行摆放在地面上的情形.已知乙有一部分只与甲重迭,其余部分只与丙重迭,甲没有与乙重迭的部分的长度为1公尺,丙没有与乙重迭的部分的长度为2公尺.若乙的长度最长且甲、乙的长度相差x公尺,乙、丙的长度相差y公尺,则乙的长度为多少公尺?()A .x+y+3B .x+y+1C .x+y ﹣1D .x+y ﹣3【解答】解:设乙的长度为a 公尺,∵乙的长度最长且甲、乙的长度相差x 公尺,乙、丙的长度相差y 公尺, ∴甲的长度为:(a ﹣x )公尺;丙的长度为:(a ﹣y )公尺, ∴甲与乙重叠的部分长度为:(a ﹣x ﹣1)公尺;乙与丙重叠的部分长度为:(a ﹣y ﹣2)公尺,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,∴(a ﹣x ﹣1)+(a ﹣y ﹣2)=a ,a ﹣x ﹣1+a ﹣y ﹣2=a ,a+a ﹣a=x+y+1+2,a=x+y+3,∴乙的长度为:(x+y+3)公尺,故选:A .5. 古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮得一样多!”那么驴子原来所驮货物的袋数是多少?【解答】解:设驴子原来所驮货物的袋数是x ,骡子原来所驮货物的袋数是y . 由题意得,解得.答:驴子原来所驮货物的袋数是5.☞年龄问题1.小明问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”设王老师今年x 岁,小明今年y 岁,根据题意,列方程组正确的是( )A .B .C .D .【解答】解:王老师今年x 岁,刘俊今年y 岁,可得:, 故选D☞数字问题1. 一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A 、错误!未找到引用源。

二元一次方程组经典应用题及答案

二元一次方程组经典应用题及答案

实际问题与二元一次方程组题型归纳(练习题答案)一:列二元一次方程组解决——行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,二:列二元一次方程组解决——工程问题小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:三:列二元一次方程组解决——商品销售利润问题李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩四:列二元一次方程组解决——银行储蓄问题小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25%* 3 + Y * 2.7%* 3 = 303.75解得:X = 1500,Y = 2500。

二元一次方程组经典应用题及答案

二元一次方程组经典应用题及答案

实际问题与二元一次方程组题型归纳(练习题答案)一:列二元一次方程组解决——行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,二:列二元一次方程组解决——工程问题小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:三:列二元一次方程组解决——商品销售利润问题李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩四:列二元一次方程组解决——银行储蓄问题小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25%* 3 + Y * 2.7%* 3 = 303.75解得:X = 1500,Y = 2500。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题 【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米? 解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得: x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

 解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题 【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩? 解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表: A B进价(元/件)12001000售价(元/件)13801200(注:获利 = 售价 — 进价)求该商场购进A、B两种商品各多少件;解:设购进A的数量为x件、购进B的数量为y件,依据题意列方程组1200x+1000y=360000(1380-1200)x+(1200-1000)y=60000解得x=200,y=120答:略类型四:列二元一次方程组解决——银行储蓄问题 【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)解:设2000的存款利率是X,则1000的存款利率是3.24%-X,则有: 2000*X*(1-20%)+1000*(3.24%-X)*(1-20%)=43.92即:1600X+25.92-800X=43.92800X=18X=2.25%3.24%-2.25%=0.99%所以,2000的存款利率是2.25%,1000的存款的利息率是0.99%.法二:也可用二元一次方程组解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与二元一次方程组题型归纳(练习题答案)
类型一:列二元一次方程组解决——行程问题
【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?
解:设甲,乙速度分别为x,y千米/时,依题意得:
(2.5+2)x+2.5y=36
3x+(3+2)y=36
解得:x=6,y=3.6
答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

 解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:
20(x-y)=280
14(x+y)=280
解得:x=17,y=3
答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,
类型二:列二元一次方程组解决——工程问题
 【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.
解:
a
n d
A
l l t h i n
g s
类型三:列二元一次方程组解决——商品销售利润问题
【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利
18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?
 解:设甲、乙两种蔬菜各种植了x 、y 亩,依题意得:
①x+y=10
②2000x+1500y=18000解得:x=6,y=4
答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩
类型四:列二元一次方程组解决——银行储蓄问题
【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元? 解:设x 为第一种存款的方式,Y 第二种方式存款,则
X + Y = 4000
X * 2.25%* 3 + Y * 2.7%* 3 = 303.75 解得:X = 1500,Y = 2500。

答:略。

t i m
e a
n d
A
l l t h i n
g s
i n
t h
e i r
类型五:列二元一次方程组解决——生产中的配套问题
【变式1】现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子? 解:设x 张做盒身,y 张做盒底,则有盒身8x 个,盒底22y 个
x+y=1908x=22y/2
解得x=110,y=80
即110张做盒身,80张做盒底
答:略
【变式3】一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做桌面50个,或做桌腿300条。

现有5立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配多少张方桌? 解:设用X 立方米做桌面,用Y 立方米做桌腿
X+Y=5.........................(1)50X :300Y=1:4......................(2)解得:Y=2,X=5-2=3
答:用3立方米做桌面,2立方米的木料做桌腿。

类型六:列二元一次方程组解决——增长率问题
【变式2】某城市现有人口42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求这个城市的城镇人口与农村人口。

 解:设该城市现在的城镇人口有x 万人,农村人口有y 万人。

x +y =42
0.8%×X +1.1%×Y = 42×1%解这个方程组,得:x=14, y=28
答:该市现在的城镇人口有14万人,农村人口有28万人。

类型七:列二元一次方程组解决——和差倍分问题
【变式1】略
 【变式2】游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。

如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?
解:设:男有X人,女有Y人,则
X-1=Y
2(Y-1)=X
解得:x=4,y=3
答:略
类型八:列二元一次方程组解决——数字问题
【变式1】一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1,这个两位数是多少?
解:设这个两位数十位数是x,个位数是y,则这个数是(10x+y)
10x+y-3(x+y)=23 (1)
10x+y=5(x+y)+1 (2)
由(1),(2)得
7x-2y=23
5x-4y=1
解得:x=5
y=6
答:这个两位数是56
【变式2】一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?
解:设个位X,十位Y,有
X - Y = 5
(10X + Y) + (10 + X) = 143

X - Y = 5
X + Y = 13
解得:X = 9,Y = 4
这个数就是49
【变式3】某三位数,中间数字为0,其余两个数位上数字之和是9,如果百位数字减1,个位数字加1,则所得新三位数正好是原三位数各位数字的倒序排列,求原三位数。

 解:设原数百位是x,个位是y那么
x+y=9
x-y=1
两式相加得到2x=10 => x=5 => y=5-1=4
所以原数是504
类型九:列二元一次方程组解决——浓度问题
【变式1】要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?
解:设10%的X克,85%的Y克
X+Y=12
X*10%+Y*85%=12*45%
即:X+Y=12
X+8.5Y=54
解得:Y=5.6
答:略
【变式2】一种35%的新农药,如稀释到1.75%时,治虫最有效。

用多少千克浓度为35%的农药加水多少千克,才能配成1.75%的农药800千克?
解:800千克1.75%的农药中含纯农药的质量为800×1.75%=14千克
含14千克纯农药的35%的农药质量为14÷35%=40千克
由40千克农药稀释为800千克农药应加水的质量为800-40=760千克
答:用40千克浓度为35%的农药添加760千克的水,才能配成浓度为1.75%的农药800千克。

类型十:列二元一次方程组解决——几何问题
 【变式1】用长48厘米的铁丝弯成一个矩形,若将此矩形的长边剪掉3厘
米,补到较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多
少?
解:设长方形的长宽分别为x和y 厘米,则
2(x+y) = 48
x-3=y+3
解得:x=15 ,y=9
正方形的面积比矩形面积大
(x-3)(y+3)- x y= (15-3)(9+3)- 15 * 9= 144 - 135= 9(cm²)
答:略
【变式2】一块矩形草坪的长比宽的2倍多10m,它的周长是132m,则长和宽分别为多少?
i m
e a
n d
A
l l h i n
e
i n g
a r
e g
o o
d f
类型十一:列二元一次方程组解决——年龄问题
【变式1】今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄. 解:设小李X 岁,爷爷Y 岁,则
5X=Y
3(X+12)=Y+12
两式联立解得:X=12 Y=60
所以小李今年12岁,爷爷今年60岁。

类型十二:列二元一次方程组解决——优化方案问题:
【变式】某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。

(1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?
解:(1)分情况计算:设购进甲种电视机x 台,乙种电视机y 台,丙种电视机z 台.
(Ⅰ)购进甲、乙两种电视机
解得
(Ⅱ)购进甲、丙两种电视机
解得
(Ⅲ)购进乙、丙两种电视机
解得
(不合实际,舍去)故商场进货方
案为购进甲种25 台和乙种25 台;或购进甲种35 台和丙种15 台.
(2) 按方案( Ⅰ) ,获利150 ×25 +200 ×25 =8750( 元) ;按方案( Ⅱ) ,获利150 ×35 +250 ×15 =9000( 元) .
∴选择购进甲种35 台和丙种15 台.。

相关文档
最新文档