手机照相镜头的光学设计

合集下载

光学镜头的设计原理

光学镜头的设计原理

光学镜头的设计原理光学镜头是光学仪器中的重要组成部分,广泛应用于相机、望远镜、显微镜等设备中。

其设计原理是基于光学的折射、反射和散射规律,通过合理设计镜片的形状、曲率和材料,实现对光线的聚焦、成像和校正。

本文将从光学原理、镜头结构和设计要点等方面介绍光学镜头的设计原理。

一、光学原理光学镜头的设计原理基于光的折射和反射规律。

当光线从一种介质射入另一种介质时,会发生折射现象,其折射角度与入射角度、两种介质的折射率有关。

根据折射定律,可以计算出光线在不同介质中的传播路径。

而反射则是光线在介质表面发生反射,其反射角度等于入射角度。

利用折射和反射规律,可以实现光线的聚焦和成像。

二、镜头结构光学镜头通常由凸透镜、凹透镜、棱镜等组成。

其中凸透镜可以使光线发生向内的折射,从而实现光线的聚焦;凹透镜则可以使光线发生向外的折射,用于校正光线的散焦。

通过合理组合这些镜片,可以实现对光线的控制和调节,从而达到理想的成像效果。

此外,镜头的曲率半径、厚度、材料的折射率等参数也会影响镜头的光学性能。

三、设计要点1. 焦距:焦距是光学镜头的重要参数,决定了镜头的聚焦能力。

焦距越短,光线聚焦的能力越强,成像距离也越近;焦距越长,成像距离越远。

设计镜头时需要根据具体应用需求选择合适的焦距。

2. 光圈:光圈大小会影响镜头的透光量和景深。

较大的光圈可以提高透光量,适用于低光条件下的拍摄;较小的光圈可以增加景深,适用于需要大景深的场景。

设计镜头时需要根据拍摄需求选择合适的光圈大小。

3. 畸变和色差:镜头在成像过程中会产生畸变和色差现象,影响成像质量。

设计镜头时需要采取措施减小畸变和色差,如选择合适的镜片材料、优化镜片结构等。

4. 对焦方式:镜头的对焦方式有自动对焦和手动对焦两种。

自动对焦通过镜头内置的电机实现对焦,适用于快速拍摄;手动对焦则需要通过手动旋转镜头环实现对焦,适用于需要精细调节焦距的场景。

综上所述,光学镜头的设计原理基于光学的折射、反射和散射规律,通过合理设计镜片的形状、曲率和材料,实现对光线的聚焦、成像和校正。

手机相机的光学变焦技术

手机相机的光学变焦技术

手机相机的光学变焦技术随着科技的不断发展,手机相机已经成为了人们生活中必备的工具之一。

而手机相机的光学变焦技术作为其关键功能之一,在提高照片质量、拍摄体验的同时,也成为了手机相机竞争的焦点之一。

本文将介绍手机相机的光学变焦技术原理和应用,以及其在拍摄中的优势和不足之处。

一、光学变焦技术原理光学变焦技术是通过调整镜头的焦距来实现画面放大或缩小的效果。

手机相机的光学变焦技术采用了与专业相机类似的机械结构,即通过在镜头内部的镜片组合进行移动和调整,以改变光线的聚焦点,从而实现放大或缩小的效果。

二、光学变焦技术的应用1. 近距离拍摄光学变焦技术可以在近距离拍摄时,对被摄物体进行放大,使细节更加清晰可见。

例如,当我们想要拍摄花朵的细节时,可以利用光学变焦功能将焦点调整到花朵上,从而捕捉到更加清晰、细致的图像。

2. 远距离拍摄手机相机的光学变焦技术还可以应对远距离拍摄的需求。

与数字变焦相比,光学变焦技术通过调整镜头焦距来实现放大效果,避免了数字放大所产生的像素损失和画质下降的问题。

在拍摄远距离景物时,光学变焦功能可以保持相对较高的画质,使远处的细节更加清晰可见。

三、光学变焦技术的优势1. 保持图像质量相比起数字变焦,光学变焦技术能够在放大图像的同时保持较高的图像质量。

因为光学变焦是通过调整镜头的焦距来实现放大效果,而不是简单地进行像素放大。

这样可以最大限度地保留图像细节,减少图像失真和模糊。

2. 提供更多拍摄可能性光学变焦技术使得用户在拍摄时能够更加灵活地选择不同的焦距和视角。

无论是拍摄远距离的风景,还是近距离的微距摄影,光学变焦技术都能提供更多的拍摄可能性,让用户获得更多样化的照片作品。

3. 改善拍摄体验光学变焦技术的应用不仅仅可以提升图像质量,也改善了用户的拍摄体验。

用户可以通过调整焦距来捕捉到更多细节,更准确地表达拍摄主题和意图,从而增强了摄影的创作和表现力。

四、光学变焦技术的不足之处尽管光学变焦技术有很多优点,但仍然存在一些不足之处。

手机相机镜头的工作原理

手机相机镜头的工作原理

手机相机镜头的工作原理手机相机镜头是手机摄像功能的核心组成部分,其主要作用是将光线聚焦在图像传感器上,从而实现图像的采集和成像。

手机相机镜头的工作原理主要包括光学原理、物理原理和传感器技术等方面。

首先,手机相机镜头的工作原理基于光学物理原理,通过透镜的折射和聚焦作用实现对光线的控制。

通常,手机相机采用复杂的透镜系统,其中包括凸透镜、凹透镜、凸凹透镜等不同形状和类型的透镜。

这些透镜的组合和排列可以实现光线的折射、散射、聚焦和矫正等操作,从而使得图像能够清晰地投射在图像传感器上。

其次,手机相机镜头的工作原理离不开物理原理的应用,例如光的传播、成像和光学畸变等。

光线在通过透镜系统时会发生折射、散射和透射等物理变化,这些变化会导致图像的聚焦、畸变和色散等问题。

因此,手机相机镜头通过优化透镜组件的曲率、厚度和折射率等参数,以及附加滤光片和光学涂层等技术手段,来改善图像的质量和色彩还原能力,从而使得用户能够获得更加清晰和自然的照片效果。

同时,手机相机镜头的工作原理还与图像传感器技术密切相关。

图像传感器是手机相机的重要部件,用于转化光信号为电信号。

目前,主流手机相机主要采用的是CMOS(Complementary Metal Oxide Semiconductor)图像传感器。

CMOS图像传感器通过光敏元件和像素阵列等技术,将光信号转化为电信号,并进一步进行信号传输和数字处理。

传感器的性能和特性直接决定了手机相机的灵敏度、动态范围、噪声水平和色彩还原效果等。

因此,手机相机镜头的工作原理也涉及到图像传感器的工作原理和特点。

最后,值得一提的是,手机相机镜头的工作原理受到手机厂商的技术水平和创新能力的影响。

随着科技的发展,手机相机镜头的设计和制造有了长足的进步。

目前,一些高端手机已经开始采用多镜头系统,如广角镜头、长焦镜头、微距镜头和深度传感器等。

这些技术创新不仅扩展了手机相机的功能和应用场景,更提升了用户的拍摄体验和成像效果。

基于ZEMAX的手机照相镜头的光学设计(可编辑)

基于ZEMAX的手机照相镜头的光学设计(可编辑)

基于ZEMAX的手机照相镜头的光学设计(可编辑)基于ZEMAX的手机照相镜头的光学设计本科毕业设计论文题目:手机照相镜头的光学设计院、系: 光电工程学院学科专业: 光电信息工程学生:学号:指导教师:年 6月手机照相镜头的光学设计摘要随着市场的发展,可拍照手机逐渐取代普通手机,而手机的小型超薄化也是必然趋势,手机的照相功能的提升和小型超薄化应并进,而二者又是相互制约的,因此尽量减小手机照相镜头的体积并提高其性能成为必然趋势。

本文后半部分运用ZE对所设计的镜头进行了调整和优化,用缩放法对初始模型反复调试和修改,并根据课题要求进行了数据分析,最终得出了符合设计要求的结果。

最终设计结果为:镜头总长:10.07mm,后焦距:1.27mm。

畸变范围-1.07到1.76?之间。

中心视场MTF@160lp/mm值为0.52。

边缘视场MTF@120lp/mm值为0.53。

关键字:可拍照手机镜头小型化 ZE 优化。

Mobile lens designAbstractAlong with the market’ development demand, p hones which can take photos will replace the common phone. And the phones which is small and thin will be the main product. For this , smaller and thinner should go along with each. But it’s difficult to complete. So the trend of mobile lens’ future is to monish the volume and make the assemble better In the second part of this thesis, I use ZE to design the lens and try my best to make it better, zoom the original lens to debug and alter it. And analysis the data according the task require. In final, I reach the design purpose. Final design: total length of the lens is 10.07mm, back focal length is 1.27mm, distortion is from -1.07 to 1.76, theMTF@160lp/mm at zero field is 0.52, the MTF@120lp/mm at 0.7 field is0.53Keywords: mobile which can take photos; lens; smaller; ZE; optimizations.目录摘要 (?)Abstract (?)目录 (1)1 绪论 (1)1.1 研究的目的和意义…………………………………………………(1) 1.2 可拍照手机和镜头设计的国内外发展………………………… (1) 1. 2. 1 可拍照手机国内外发展状况 (1)1.2.2 现今镜头设计的国内外发展状况 (2)2 手机照相镜头的成像原理介绍 (3)2.1 可拍照手机照相原理....................................... ............ (3) 2.2 感光元件简介............................................. ...............(3) 2. 3 镜头结构分类及选择........................... (3)2.4手机镜头的性能指标和相关术语…………………………………(4) 2.4.1镜头类型选择的依据[7] (4)2.4.2数码镜头鉴别率 (4)2.4.3光圈范围 (4)2. 4. 4影响像质的几个因素 (5)3光学系统设计 (6)3.1光学设计软件简介…………………………………………………(6) 3.1.1 ZE MTF函数 (6)3.1.2缺省的评价函数及优化 (6)3. 1. 3归一化的视场和光瞳坐标 (7)3.2设计要求及分析……………………………………………………(7) 3.3初始结构的选择……………………………………………………(8) 3. 3. 1 视场角的确定 (10)3.3.2 F数的确定 (10)3.3.3 工作波长的选择 (10)3.3.4调制传递函数图如下 (11)3.3.5七种塞得像差分别为 (11)3.3.6场曲和畸变图 (12)3.3.7点列图如下 (12)3.3.8光线特性曲线图 (13)3.4 像差的初步校正…………………………………………………(13) 3.4.1初步校正后的数据 (13)3.4.2二维光路图如下 (15)3.4.3调制传递函数图如下: (15)3.4.4场曲畸变图 (16)3.4.5点列图 (17)3.4.6光线特性曲线图 (17)3.5系统优化 (18)3.5.1优化数据 (18)3. 5. 2二维光路图 (19)3.5.3 点列图 (20)3.5.4场曲畸变示意图 (20)3.5.5 MTF分析图 (21)3.5.6光线特性曲线图 (23)3.6公差分析 (24)3. 6. 1公差分析的一般过程 (24)3.6.2公差分析方式介绍 (24)3. 6. 3此课题所进行的公差分析结果 (25)3.7设计结果 (27)4 结论 (29)致谢 (30)参考文献 (31)1 绪论1.1 研究的目的和意义随着手机镜头相关工艺的实践,低端的数码相机已逐步被可拍照手机所取代。

手机摄像头原理解析

手机摄像头原理解析

手机摄像头原理解析手机摄像头是现代手机的重要组成部分,它的原理是基于光学成像和图像传感的技术。

本文将对手机摄像头的工作原理,以及其所使用的传感器技术进行解析。

一、摄像头分类及工作原理手机摄像头根据其成像方式可以分为主摄像头和前置摄像头。

主摄像头通常用于拍摄高质量的照片和视频,而前置摄像头则主要用于自拍和视频通话。

1. 主摄像头工作原理主摄像头的工作原理是基于光学成像和传感器技术。

当我们按下拍照按钮时,光线首先通过摄像头镜头进入摄像头模组。

摄像头模组通常由透镜、光圈和滤光片等组成。

透镜用于聚焦光线,使其尽可能地聚集在传感器上。

光圈则控制光线进入的数量,通过调节光圈大小可以调节拍摄的景深。

滤光片用于过滤不同波长的光线,使得图像色彩更加真实。

聚焦后的光线到达传感器上,传感器根据光线的强弱转化为电信号。

这些电信号经过模数转换后就变为数字图像信号,可以被手机处理器进行二次处理,最后呈现在手机屏幕上。

2. 前置摄像头工作原理前置摄像头与主摄像头的工作原理类似,也是通过光学成像和传感器技术来实现图像的捕捉和传输。

不同之处在于前置摄像头通常使用广角镜头,以便于用户进行自拍。

前置摄像头的图像通常会经过一些增强处理,例如美颜、滤镜等,以提供更好的自拍效果。

这些处理通常是通过手机软件来实现的。

二、摄像头传感器技术摄像头的传感器类型决定了其感光能力和图像质量。

目前主流的摄像头传感器技术包括CMOS和CCD。

1. CMOS传感器CMOS(Complementary Metal-Oxide-Semiconductor)传感器是目前手机摄像头主要采用的技术。

它具有功耗低、集成度高和成本低等优势。

CMOS传感器通过图像传感单元(Pixel)阵列来捕捉图像。

每个Pixel都包含一个光敏元件和一个电荷转换电路。

当光线照射到光敏元件上时,会生成电荷,并通过电荷转换电路转换为电信号。

2. CCD传感器CCD(Charge-Coupled Device)传感器在早期的手机摄像头中比较常见,但由于其成本和功耗较高,目前在手机摄像头中使用较少。

基于ZEMA的手机摄像镜头设计

基于ZEMA的手机摄像镜头设计

基于ZEMA的手机摄像镜头设计1. 本文概述本研究论文旨在探讨基于ZEMA(假设为一种先进的光学设计与仿真技术)的手机摄像镜头设计方法与实践应用。

随着移动通信技术的飞速发展和智能手机摄像头功能需求的不断提升,对微型化、高性能摄像镜头的研发提出了更高的要求。

ZEMA作为一款创新的光学设计解决方案,通过精确模拟光路传播、优化像差校正以及改进镜头结构布局,有效地助力了新一代手机摄像镜头的设计挑战。

本文首先介绍ZEMA技术的基本原理及其在镜头设计中的核心优势,随后分析其在手机摄像镜头小型化、高分辨率、大光圈及广角拍摄等关键技术指标上的具体应用策略。

进一步地,我们将深入探讨采用ZEMA设计并优化的手机摄像镜头实例,展示其相较于传统设计方法所实现的技术突破与性能提升。

本文还将展望基于ZEMA技术的手机摄像镜头在未来发展趋势和可能带来的行业变革。

通过这一系列详尽的研究与讨论,我们旨在为手机摄像技术领域提供有价值的参考和启示,推动行业的技术创新与发展。

2. 技术在手机摄像镜头中的应用原理随着科技的不断进步,手机摄像镜头的设计和应用已经达到了一个新的高度。

在本章节中,我们将探讨几种关键技术及其在手机摄像镜头设计中的应用原理。

光学设计是手机摄像镜头的核心。

通过使用Zemax (ZEMA) 软件,设计师可以模拟和优化镜头的光学性能,包括分辨率、对比度和色彩还原等。

ZEMA软件的强大功能使得设计师能够精确计算光线在镜头中的传播路径,以及如何通过改变透镜的形状、大小和材料来优化成像质量。

图像稳定技术对于减少摄像过程中的手抖影响至关重要。

现代手机摄像镜头通常采用光学防抖(OIS)或电子防抖(EIS)技术。

OIS通过在镜头模组中加入可移动的组件来物理稳定图像,而EIS则通过软件算法在捕捉图像后进行补偿。

这两种技术的应用大大提升了拍摄稳定性,尤其是在低光环境下或长焦距拍摄时。

再者,多摄像头系统的设计允许手机在不同的焦距和视角下进行拍摄。

智能手机光学镜头的设计与制造

智能手机光学镜头的设计与制造

智能手机光学镜头的设计与制造引言随着移动互联网时代的到来,智能手机的普及已经改变了人们的生活和工作方式。

在这个过程中,智能手机摄像头所扮演的角色不容忽视。

如今,手机拍照已经成为一个普及化的文化现象,再也不是那样朦胧和模糊。

因此,在手机摄像头中,光学镜头的设计与制造不断受到人们的关注。

本文将阐述智能手机光学镜头的设计与制造。

一、智能手机光学镜头的分类和结构从分类上讲,智能手机光学镜头主要包括定焦镜头和变焦镜头两大类别。

1. 定焦镜头定焦镜头(Fixed-focus lens)是指手机摄像头的镜头焦距固定,其焦点一般设定在一定距离以外(例如0.5米或1米处),以便拍摄普通近景或中景。

在光线条件较好的环境下,定焦镜头拍摄的照片轮廓清晰,成像质量较高。

但其在拍摄远景或近距离物体时效果就无法显著,因为无法改变焦距。

2. 变焦镜头变焦镜头(Zoom lens)可以改变其镜头的焦距,从而让物体向前或向后移动,不同的位置对应不同的焦距。

虽然变焦镜头的成像质量较高,但相较于定焦镜头,其制造成本较高,重量与体积也较大。

从结构上讲,智能手机光学镜头主要由聚光透镜、虹彩光学棱镜、滤光器等多种光学元素组成。

在这些光学元素的协同作用下,手机光学镜头能够准确捕捉光线并将其投射在丝印膜上,形成照片。

不同品牌和型号的智能手机光学镜头,在材料、光学元素数量、结构等方面都存在差异。

二、智能手机光学镜头的设计智能手机光学镜头的设计非常重要。

设计好与坏,直接决定了其制造成本、成像效果等。

在设计光学镜头时,需要考虑以下几个主要因素:1. 对焦方式的选择对焦方式的选择直接影响着手机光学镜头的成像效果。

目前主流的对焦方式包括固定对焦(Fixed Focus)、手动对焦(Manual Focus)和自动对焦(Auto Focus)。

其中,固定对焦方式最为简单,不需要额外元器件的支持,因此制造成本较低。

但其在应对拍摄距离变化时能力较差。

手动对焦方式需要用户手动调整镜头的聚焦位置,虽然能够拍摄出特别的画面效果,但其操作相对麻烦,对镜头的精度和稳定性要求较高。

手机摄像头成像原理

手机摄像头成像原理

手机摄像头成像原理手机摄像头成像原理是指手机摄像头是如何将被拍摄物体的光线信息转化为数字图像的过程。

了解手机摄像头的成像原理可以帮助我们更好地理解手机摄像头的工作原理,从而更好地使用手机拍摄照片和视频。

手机摄像头的成像原理主要包括光学成像和数字成像两个方面。

首先,我们来看光学成像原理。

当我们使用手机摄像头拍摄照片时,光线首先通过镜头进入到摄像头的内部。

镜头会将光线聚焦在摄像头的感光元件上。

感光元件是手机摄像头的核心部件,它可以将光线转化为电信号。

在感光元件的作用下,光线的信息被转化为电信号,然后传输到手机的处理器进行处理。

接下来,我们来看数字成像原理。

在手机的处理器的作用下,感光元件传输过来的电信号被转化为数字信号。

处理器会对这些数字信号进行处理和编码,然后将它们转化为数字图像。

最后,这些数字图像会被显示在手机屏幕上,我们就可以看到通过手机摄像头拍摄的照片或视频了。

总的来说,手机摄像头的成像原理是通过光学成像和数字成像两个过程来实现的。

光学成像是指利用镜头将光线聚焦在感光元件上,感光元件将光线转化为电信号;数字成像是指处理器将感光元件传输过来的电信号转化为数字信号,并最终转化为数字图像。

这样,我们就可以通过手机摄像头拍摄照片和视频了。

除了了解手机摄像头的成像原理,我们还可以通过一些方法来提高手机摄像头的拍摄效果。

比如,保持镜头的清洁,调整光线和角度,使用手机相机的一些特殊功能等等。

这些方法可以帮助我们更好地利用手机摄像头拍摄出高质量的照片和视频。

总之,了解手机摄像头的成像原理可以帮助我们更好地理解手机摄像头的工作原理,从而更好地使用手机拍摄照片和视频。

同时,我们还可以通过一些方法来提高手机摄像头的拍摄效果,让我们的拍摄作品更加出色。

希望本文对大家有所帮助,谢谢阅读!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业设计论文手机照相镜头的光学设计摘要随着市场的发展,可拍照手机逐渐取代普通手机,而手机的小型超薄化也是必然趋势,手机的照相功能的提升和小型超薄化应并进,而二者又是相互制约的,因此尽量减小手机照相镜头的体积并提高其性能成为必然趋势。

本文后半部分运用ZEMAX对所设计的镜头进行了调整和优化,用缩放法对初始模型反复调试和修改,并根据课题要求进行了数据分析,最终得出了符合设计要求的结果.最终设计结果为:镜头总长:10.07mm,后焦距:1.27mm。

畸变范围-1.07到1。

76 之间.中心视场MTF@160lp/mm值为0.52.边缘视场MTF@120lp/mm值为0.53。

关键字:可拍照手机镜头小型化ZEMAX 优化。

目录摘要 (Ⅰ)Abstract (Ⅱ)目录 (1)1 绪论 (1)1。

1 研究的目的和意义 (1)1。

2 可拍照手机和镜头设计的国内外发展 (1)1。

2。

1 可拍照手机国内外发展状况 (1)1。

2。

2 现今镜头设计的国内外发展状况 (2)2 手机照相镜头的成像原理介绍 (3)2.1 可拍照手机照相原理....................................... (3)2。

2 感光元件简介............................................. (3)2。

3 镜头结构分类及选择........................... (3)2.4手机镜头的性能指标和相关术语 (4)2.4。

1镜头类型选择的依据[7] (4)2.4.2数码镜头鉴别率 (4)2。

4。

3光圈范围 (4)2. 4. 4影响像质的几个因素 (5)3光学系统设计 (6)3。

1光学设计软件简介 (6)3.1.1 ZEMAX MTF函数 (6)3。

1.2缺省的评价函数及优化 (6)3。

1. 3归一化的视场和光瞳坐标 (7)3。

2设计要求及分析 (7)3.3初始结构的选择 (8)3。

3。

1 视场角的确定 (10)3.3.2 F数的确定 (10)3。

3。

3 工作波长的选择 (10)3.3.4调制传递函数图如下 (11)3.3.5七种塞得像差分别为 (11)3。

3.6场曲和畸变图 (12)3.3。

7点列图如下 (12)3.3.8光线特性曲线图 (13)3。

4 像差的初步校正 (13)3.4.1初步校正后的数据 (13)3.4。

2二维光路图如下 (15)3.4。

3调制传递函数图如下: (15)3.4。

4场曲畸变图 (16)3。

4.5点列图 (17)3.4.6光线特性曲线图 (17)3。

5系统优化 (18)3.5。

1优化数据 (18)3. 5。

2二维光路图 (19)3.5.3 点列图 (20)3。

5。

4场曲畸变示意图 (20)3.5.5 MTF分析图 (21)3.5。

6光线特性曲线图 (23)3。

6公差分析 (24)3. 6. 1公差分析的一般过程 (24)3.6。

2公差分析方式介绍 (24)3. 6. 3此课题所进行的公差分析结果 (25)3.7设计结果 (27)4 结论 (29)致谢 (30)参考文献 (31)1 绪论1。

1 研究的目的和意义随着手机镜头相关工艺的实践,低端的数码相机已逐步被可拍照手机所取代。

手机正逐步成为集通信、拍照、MP3、MP4等功能一体化的便捷式电子产品。

由于现有的手机厚度较薄,限制了镜头的总长,从而使得手机镜头的性能提高较难。

本课题要求设计一个体积小,高像素的手机镜头,从而减小手机镜头所占空间,进而提高手机的综合性能。

实现小型化和多功能化.1.2 可拍照手机和镜头设计的国内外发展1。

2.1 可拍照手机国内外发展状况从诺基亚7650、松下GD88和NEC N8在中国掀起拍照风潮以来,手机拍照在中国已经历了三年的发展,谈到中国市场的可拍照手机,我们就躲不开索爱的T68lie和T628这条线.T68作为爱立信在中国市场推出的第一款彩屏手机,在当时可拍照手机还没有开始流行的时候,选择了使用外置摄像头来增加拍照功能无疑是一个明智的选择.而在爱立信和索尼合并之后,又推出了T68lie,且支持MMS 功能。

这两款机型可以使用爱立信和索尼爱立信前后推出的多款外置摄像头,虽然基本上没有后期处理功能,拍照的效果也不佳,但毕竟是开先河的第一次,也是可拍照手机在中国市场的探索者。

后来索尼爱立信又推出了T618成为2003年最成功的可拍照手机,其内置10万像素的摄像头,有强大的数据处理功能。

在T618出世之前,可拍照手机市场几乎是诺基亚的天下。

中国市场上第一款30万像素的可拍照手机7650就是诺基亚的.和T68不同的是,7650使用的是内置摄像头,这也造就了7650硕大的身形。

而在当时的时代,拥有30万像素的摄像头效果是相当不错的。

在2004年NEC N830配置了130万像素的CCD摄像头,有多种拍摄模式选择,内置闪光灯、最多9连拍功能、定时拍摄功能等。

此摄像头还具备了一般可拍摄手机并不具备的微距拍摄功能。

在更高像素的手机出现以后,三菱M900,号称200万像素的手机,采用的是富士的Super CCD,这种感光材料拥有比普通手机CCD更敏锐的成像效果。

而三星震撼全球的500万像素手机SCH-S250,配备了光学变焦,这款手机实际上是在数码相机的机身上加上了手机的功能。

此外,大唐G20N、三菱M900等手机出现了微距拍摄功能,以及百万像素以上级别手机普遍支持的存储卡功能。

这些都预示着,未来的拍照手机,将会使用更专业的镜头和更好的感光元件以得更好的成像质量。

2004年3月,索尼爱立信在国内推出首款具有130万像素的拍照手机S700.2004年6月,日本卡西欧公司已推出三款具有320万像素的拍照手机。

2004年10月,三星在韩国汉城推出第一款500万像素拍照手机SCHS 250.2005年初,三星公司又在德国汉诺信息通讯展览会上推出了一款700万像素拍照手机SCH—V770,配置了700万像素的CCD,160万色顶级TFT材质屏幕,还具备3倍光学变焦、4倍数码变焦功能。

拍照手机的像素数从初始的10万飞跃到700万,仅仅经过不到3年的时间。

可以预言,随着CMOS和CCD制造技术的不断进步,高像素的拍照手机在不久的将来一定会成为大众化的电子消费产品。

1。

2。

2 现今镜头设计的国内外发展状况现今的镜头设计是基于镜头的资料库中的成千上万的设计专利的,并且有许多是公开发表的。

似乎可以从大致的设计构思着手,然后利用高速的计算机系统为你的设计草图进行优化,达到实际想要达到的目标。

但问题是,计算机不能自动生成一个优秀的镜头设计。

真正的设计其实是源自于人的大脑,就如导航仪器只能在给它指定明确的目标之后才可以找到正确的航线一样.商业镜头设计系统当然可以优化镜头设计,但如果设计的出发点本身是不足的,那么是很难更正它的。

在光学设计部门中目前大量使用了计算机,但它也毫不例外地表明了计算机及其计算机程序本身是无法给出全部答案的。

镜头设计是极具创造力的工作,它必须基于经验和敏锐的洞察力来了解各种各样光学象差的特性.任何镜头,不管是新的还是老的,都可以用“镜头描述”这个术语来区分镜片的数量、玻璃的种类、镜片的曲面半径、镜片的厚度、镜片及镜片之间的距离、以及每个镜片的直径等等.这些都是用来全面描述一个镜头的参数。

当发自于某个物体的光线穿过玻璃表面时,该束光线会被折射,就如物理知识所描述的那样. 光线折射量取决于玻璃的折射率.如果镜头设计者能知道光线射入镜头前镜片时的确切入射位置以及入射角度,就可以通过光线理论系统精确地追踪光路。

角度和距离可以通过三角函数的正弦和余弦算出来。

因此通过简单的平面几何,光线途经的线路就可以被追踪到。

由于任何一个点光源发出的能量都是散射的,并无任何方向行可言。

只有部分能量通过镜头,假设通过简单的数学来计算通过镜头的能量(那些被视为一系列的各自独立的光线)可以追踪那些光线的路径。

镜头设计者首先从光轴上的某点开始追踪少量的光线。

这里所假设的是每个物象点都会在胶片平面上形成于之相对应的点,所以发自物体的光线都将被转化为这样的成相点,并且具有同样的相对位置.这就是高斯成像(Gaussian Fiction).对应那些靠近光轴的点,可以有理由相信高斯成象是相当精确的,这就是平行光轴光学(Paraxial Optics)。

尽管计算公式相当简单(至少对有经验的设计者来说),但要求对于这些数字的计算精确到小数点后5~8位[2]。

2 手机照相镜头的成像原理介绍2。

1 可拍照手机照相原理拍照手机的照相原理及数码相机的照相原理相似.传统相机是把光学系统捕捉到的光打在胶卷上,然后可以通过一个化学过程对其进行曝光和冲洗。

而数码相机或摄影手机的光要通过由多个单元镜头和一个镜筒组成的光学系统,不同的是,现在光是打在由行和列组成的数字传感器阵列上,这一阵列由几百万个微小像素组成。

当光打在像素阵列上,它要通过彩色滤光片,确保只有蓝、红或绿色光到达每个像素上。

在每个像素上,首先要生成一个模拟信号,该模拟信号通过模数转换器(ADC)转变为数字信号,然后再通过处理系统输出图像[3]。

其实可拍照手机镜头就是数码照相物镜的一个微型化,是在有限的空间上实现照相功能。

2。

2 感光元件简介市面上的拍照手机镜头一般上只有两种:CMOS和CCD。

无论是CCD还是CMOS,它们都采用感光元件作为影像捕获的基本手段,CCD/CMOS感光元件的核心都是一个感光二极管(photodiode),该二极管在接受光线照射之后能够产生输出电流,而电流的强度则及光照的强度对应。

现在的消费级数码产品使用的影像传感器主要有2/3英寸、1/1.8英寸、1/2。

7英寸、1/3.2英寸四种。

CCD/CMOS尺寸越大,感光面积越大,成像效果越好[4]。

2。

3 镜头结构分类及选择镜头是指由不同的透镜经系统组合而成的整体。

基本结构包括四个部分: 透镜、隔圈、镜筒、压圈[5]。

隔圈结构类型比较多, 它受前后透镜直径和通光孔径的差别影响较大,也受其它结构要素影响。

镜筒结构大体可以分为两类:直筒式和台阶式。

压圈的结构形式包括外螺纹压圈和内螺纹压圈,在实际应用中大多采用外螺纹压圈,以镜筒和压圈的结构形式组合就可以把镜头结构分为以下六种形式:(如图2.4所示)。

图 2。

4 镜头的结构类型2。

4手机镜头的性能指标和相关术语镜头通常有两个较为重要的指标。

一个是光圈,它是安装在镜头上控制通过镜头到达传感器的光线多少的装置,除了控制通光量,光圈还具有控制景深的功能,即光圈越大,则景深越小。

另一个是焦距,它基本上就是从镜头的中心点到传感器平面上所形成的清晰影像之间的距离,也就是相当于物和像的比例尺。

镜头的焦距决定了该镜头拍摄的物体在传感器上所形成影像的大小。

相关文档
最新文档