第十二章 太赫兹成像在生物医学中的应用

合集下载

太赫兹技术在医学上的作用-概述说明以及解释

太赫兹技术在医学上的作用-概述说明以及解释

太赫兹技术在医学上的作用-概述说明以及解释1.引言1.1 概述概述部分的内容应该对太赫兹技术进行简要介绍,指出它是一种新兴的无线通信技术,工作在太赫兹波段(0.1 THz - 10 THz),介于微波和红外之间。

太赫兹技术具有穿透性强、非破坏性、无辐射危害等优点,因此在医学领域的应用也逐渐受到关注。

此外,概述部分还可以提到太赫兹技术在医学领域的潜在应用,如生物成像、药物检测、癌症诊断等,以引起读者的兴趣并为后续内容的展开做铺垫。

1.2 文章结构:本文主要分为三个部分,即引言、正文和结论。

在引言部分中,将对太赫兹技术在医学上的作用进行概述,介绍文章的结构和目的,为读者提供了解本文主题的基本信息。

正文部分将首先对太赫兹技术进行简要介绍,包括其原理和特点。

接着将详细探讨太赫兹技术在医学上的应用,包括在诊断、治疗和医学影像等方面的应用。

同时也将对太赫兹技术在医学领域的前景进行探讨,展示其潜在的发展空间。

结论部分将总结太赫兹技术在医学上的作用,总结其优势和局限性。

同时展望未来太赫兹技术在医学领域的发展方向和潜力,为读者提供对未来的展望和思考。

最后以简短的结语结束全文,强调太赫兹技术对医学领域的重要性和潜力。

1.3 目的本文旨在探讨太赫兹技术在医学领域中的作用和应用,通过对太赫兹技术的简介和医学上的具体应用进行分析,揭示太赫兹技术在医学诊断、治疗和研究中的潜力和优势。

同时,展望太赫兹技术在医学领域的未来发展方向,为促进医学科学的进步和人类健康事业的发展提供思路和启示。

通过本文的研究和讨论,希望能够更深入地了解太赫兹技术在医学上的意义和影响,为推动医学领域的创新和发展做出贡献。

2.正文2.1 太赫兹技术简介太赫兹技术是一种新兴的电磁波技术,波长在红外光和微波之间,频率范围在0.1 THz到10 THz之间。

太赫兹波具有穿透力强、非破坏性、无辐射危害等特点,因此在医学领域得到广泛关注和应用。

太赫兹技术主要包括太赫兹光谱和太赫兹成像两个方面。

太赫兹辐射在科学研究中的应用

太赫兹辐射在科学研究中的应用

太赫兹辐射在科学研究中的应用太赫兹辐射是介于微波和红外光之间的电磁辐射,其频率范围在0.1 THz至10 THz之间。

太赫兹辐射因其不能被普通的硅、铜等常见材料所穿透,具有很强的穿透力而广泛应用于生物、医学、环境、材料等领域。

本文将讨论太赫兹辐射在科学研究中的应用。

一、在生物医学领域的应用太赫兹辐射在生物医学领域的应用主要体现在生物大分子的结构和相互作用研究中。

对于生物大分子,如蛋白质、核酸、糖等,其分子结构和相互作用是至关重要的。

太赫兹辐射可以通过测试这些分子在不同电磁场下的响应来分析它们的相互作用、结构和动力学。

太赫兹辐射在神经科学研究中也扮演着重要角色。

人脑中的神经元信号传输速度快,且丰富多样,但是常规方法无法直接观察这些信号。

太赫兹辐射可以直接探测单个神经元中的电信号。

二、在环境领域的应用太赫兹辐射在环境领域的应用包括水质检测、大气污染监测、土壤检测、食品质量检测等。

在水质检测方面,太赫兹辐射可以检测水中有机分子的存在情况,例如药物残留等。

在大气污染监测方面,太赫兹辐射可以监测大气中的水蒸汽、甲烷、氧气等气体的浓度。

在土壤检测方面,太赫兹辐射可以检测土壤中的水分含量、有机质含量等。

在食品质量检测方面,太赫兹辐射可以检测食品中的水分、甜度、油分、蛋白质、碳水化合物等。

三、在材料领域的应用太赫兹辐射被广泛应用于材料科学研究中,尤其是对材料的非破坏性检测和成像。

太赫兹辐射具有与X射线或生物医学成像相似的优点,即具有非侵入性和非破坏性。

由于其具有很强的穿透力,可以观测到较深的结构,同时具有成像速度较快的优点,因此在材料检测和成像方面被广泛应用。

太赫兹辐射可以用于检测复合材料中的缺陷、监测陶瓷材料中的坯内裂纹、探测钢铁中的应力、非破坏性测试混凝土中的裂纹等。

总之,太赫兹辐射在生物、医学、环境和材料等领域具有广泛的应用前景。

虽然太赫兹辐射技术还处于学科交叉和前沿研究的阶段,但将来随着设备的不断升级和技术的不断深入,它的应用前景将会更加广泛,更加深入。

太赫兹成像技术在医学诊断中的应用

太赫兹成像技术在医学诊断中的应用

太赫兹成像技术在医学诊断中的应用太赫兹成像技术是一种新型的成像技术,在医学领域中有着广泛和重要的应用。

与传统的X射线和磁共振成像相比,太赫兹成像技术有着更高的分辨率、更好的安全性、以及更多的可能性。

一、太赫兹成像技术的原理太赫兹波,也称为亚毫米波,是介于微波和红外线之间的电磁波。

太赫兹波在物质的介电常数、磁导率、折射率等方面具有很强的敏感性,可以用来研究物质的物理、化学性质,同时还可以进行非破坏性的检验。

太赫兹成像技术的原理是利用太赫兹波在物质中的传输和散射特性,对物体进行成像。

当太赫兹波入射到样品上时,样品会吸收、反射、漫射和透射太赫兹波。

根据吸收、反射、漫射和透射的不同,我们就可以得到样品各个部位的信息,从而对样品进行成像。

太赫兹成像技术的成像分辨率在数百微米到数毫米之间,这是其他成像技术所不能比拟的。

二、1.乳腺癌的检测乳腺癌是女性常见的一种癌症,也是女性健康的重要问题。

传统的乳腺癌检测方法是X射线成像,即乳腺X线照射成像。

但是这种方法有放射线致癌性和乳房压迫不适等问题。

太赫兹成像技术可以在不放射性的条件下检测乳腺癌,同时还可以保护乳房不受过度压迫。

研究表明,太赫兹成像技术能够检测出早期的乳腺癌变,且检测准确率较高。

因此,太赫兹成像技术在乳腺癌检测中有着广泛的应用前景。

2.皮肤癌的检测皮肤癌是一种常见的恶性肿瘤,皮肤癌早期检测和诊断非常重要。

太赫兹成像技术可以在不伤害皮肤和身体其他部位的情况下进行皮肤癌的检测。

与传统的检测方法相比,太赫兹成像技术可以提供更多的信息,如皮肤的厚度和血管分布情况等。

研究表明,太赫兹成像技术可以有效地检测出皮肤癌,且检测准确率较高。

因此,太赫兹成像技术在皮肤癌的检测和诊断中具有广阔的前景。

3.牙齿病的诊断太赫兹成像技术可以在不损伤牙齿表面的情况下,对牙齿进行成像。

因此,太赫兹成像技术在牙齿疾病的诊断中具有很大的潜力。

研究表明,太赫兹成像技术可以有效地检测牙齿的表面结构和材料成分,可用于检测牙髓感染、牙齿补充材料的质量等。

生物光学成像技术在医学中的应用

生物光学成像技术在医学中的应用

生物光学成像技术在医学中的应用随着科学技术的不断发展,生物光学成像技术在医学中的应用越来越广泛。

生物光学成像技术是一种在生物领域中使用的非侵入性成像技术,其基本原理是将光学成像技术与生物医学学结合起来,通过观察身体的组织结构和功能,来检测疾病和指导治疗。

本文将重点探讨生物光学成像技术在医学中的应用。

一、太赫兹光波成像技术及其在医学中的应用太赫兹光波成像技术是近年来新兴的一项光学成像技术,其波长为微米至毫米,具有高分辨率、高灵敏度和非侵入性等优点。

太赫兹成像技术的原理是通过太赫兹光波作用于目标物体,来获取物体的信息。

太赫兹光波成像技术在医学中的应用主要体现在医学成像和诊断中。

太赫兹成像技术可以实现对生物体内部分离子、水分子、低分子化合物和蛋白质等成分的探测和成像,从而使医生更好的了解人体的生理和病理情况。

目前太赫兹成像技术已经被用于测定人体软组织、皮肤内水分等体毛的物理学参数,并成功用于前列腺癌的早期诊断。

二、生物分子荧光成像技术及其在医学中的应用生物分子荧光成像技术是现代医学中结合激光技术与荧光材料的一种非侵入性、高分辨率生物成像技术。

生物分子荧光成像技术通过特定荧光物质标记需要监测的生物分子,通过激光的激发使荧光物质释放出荧光物质并进行图像分析,从而得到相应的成像信息。

生物分子荧光成像技术在医学中的应用主要有两个方面:一是用于药物筛选,二是辅助手术操作。

在药物筛选方面,生物分子荧光成像技术可以通过对药物靶点标记来监测药物的效果,从而快速筛选出对靶点具有良好抑制作用的药物,为临床药物研究提供了强有力的技术支持;在辅助手术操作方面,生物分子荧光成像技术可以使用标记荧光物质在手术操作中定位病变区域,从而实现精准操作,降低手术难度,减少手术风险。

三、多普勒光学成像技术及其在医学中的应用多普勒光学成像技术是近年来新兴的一种成像技术,其结合了多普勒血流检测技术与光学成像技术,可以实现医学领域的高分辨率、无创、实时的血流检测。

太赫兹波技术在生物医学领域的应用

太赫兹波技术在生物医学领域的应用

太赫兹波技术在生物医学领域的应用随着科技的不断发展,太赫兹技术逐渐走进人们的视野。

太赫兹波是介于微波和红外线之间的一种电磁波,具有穿透性强、非破坏性检测、无电离辐射等特点。

近年来,太赫兹技术被广泛应用于生物医学领域中,成为一种潜力巨大的技术手段。

太赫兹技术在生物医学领域展现了广泛的应用前景。

首先,基于太赫兹波的成像技术可以用于病灶、肿瘤等组织的检测和诊断。

由于太赫兹波对生物组织有很强的穿透性,能够在无创伤的情况下获取目标组织的显微结构和成分分布等信息。

例如,利用太赫兹波技术可以非侵入性地检测乳腺癌等疾病,无需进行割除、穿刺等创伤性检查。

此外,太赫兹波成像技术也有助于对生物组织的病情变化进行实时动态观察,是一种非常重要的临床辅助诊断手段。

另外,太赫兹技术在药物研发方面也有着广泛的应用。

目前,大部分药物研发过程依赖于基于动物模型的试验,但这种方法存在诸多缺陷,比如成本高、有效性有待证实等。

而太赫兹技术可以在无需动物模型的前提下,对药物分子的结构和作用机理进行研究,进而提高药物研发的研究速度和准确性,同时降低开发成本。

此外,太赫兹技术在生物材料检测方面也有潜在的应用。

由于其能够对非生物样本进行检测,而且能够在无需直接接触样本的前提下进行检测,因此太赫兹技术具有非常广阔的应用前景。

例如,利用太赫兹技术可以对药品、食品等进行非破坏性检测,同时也可以在无需样本处理的情况下对空气、水等环境中的浓度进行监测,为生命健康提供了更多的保障。

然而,要在生物医学领域中广泛应用太赫兹技术,还需要克服许多技术和应用上的难点。

例如,太赫兹波在传输过程中容易受到大气吸收、散射等影响,导致测量精度不高;另外,太赫兹波对生物组织的穿透深度也存在限制,加强其穿透深度是提高太赫兹技术应用广泛性的关键之一,需要深入实施。

同时,太赫兹技术的标准化和规范化也需要不断优化,以保证太赫兹技术的安全性和稳定性。

这些技术和应用上的难点,需要技术专家和研究人员通过不断地探索和创新来解决。

太赫兹技术应用

太赫兹技术应用

太赫兹技术应用太赫兹技术是一种在电磁波谱中介于微波和红外光之间的频段,其频率介于300 GHz至3 THz之间。

近年来,太赫兹技术在各个领域的应用得到了广泛关注和研究。

本文将着重介绍太赫兹技术的应用,并分析其在医疗、安全、通信和材料科学等领域的重要作用。

一、医疗领域太赫兹技术在医疗领域中有广阔的前景。

其高分辨率、非破坏性、无辐射的特点使其成为医学图像处理和诊断领域中的有效工具。

太赫兹波能够穿透血肉,检测人体内部组织结构和细胞层次的变化,实现早期肿瘤等疾病的精确诊断。

同时,太赫兹技术还可以用于药物分析和药物输送系统的研究,为医学科学的进一步发展提供了新的方法和手段。

二、安全领域太赫兹技术在安全领域中有着广泛应用。

其具有高强度透射性和较强的物质识别能力,使其成为安全防范和探测领域的重要工具。

通过太赫兹技术可以实现对物体隐藏在衣物、纸张等物体中的非金属和低密度物质的探测。

这对于防止潜在的安全威胁和恶意行为具有重要意义,例如在机场、边境安全检查和大型活动中的应用。

三、通信领域太赫兹技术在通信领域中具有巨大的潜力。

由于其频率较高且受大气吸收较少的限制,太赫兹波成为实现高速、远距离无线通信的理想选择。

太赫兹通信技术可以有效解决微波通信和光纤通信之间的传输短板,实现更高的数据传输速度和更远的传输距离。

此外,太赫兹通信还可以应用于对隐蔽物体的探测和定位,具有潜在的军事和安全领域的应用前景。

四、材料科学领域太赫兹技术在材料科学领域中被广泛运用。

太赫兹波能够对物质的晶格结构、热力学性质和光学特性等进行精确测量和分析,为材料的设计、制备和性能研究提供了重要手段。

太赫兹技术对于金属、绝缘体、半导体等各种材料的研究都具有重要意义,并在材料加工、电子元器件等领域中有着广泛的应用。

总结:太赫兹技术作为一种新兴的前沿技术,具有广阔的应用前景。

在医疗、安全、通信和材料科学等领域,太赫兹技术已经取得了显著的成果,并被广泛应用于实际生产和科学研究中。

太赫兹光学成像技术在生物医学领域中的应用研究

太赫兹光学成像技术在生物医学领域中的应用研究

太赫兹光学成像技术在生物医学领域中的应用研究随着现代技术的不断发展,太赫兹光学成像技术在生物医学领域中被广泛应用,开始崭露头角。

太赫兹光学成像技术是一种新兴的非侵入式成像技术,利用太赫兹波段的特殊性质,对生物组织进行高分辨率成像分析,为生物医学领域的疾病诊断提供了一种新的方法。

一、太赫兹光学成像技术简介太赫兹光学成像技术是一种高灵敏度的无损成像技术,具有非常强的穿透力和对物质非常敏感的特点。

它利用太赫兹波段的电磁波辐射,通过物质对太赫兹波段的吸收、反射和散射来成像。

太赫兹波段的特点在很大程度上反映了物质的本质和结构,因此太赫兹光学成像技术成为了研究生物组织和疾病的重要手段。

太赫兹波段的频率范围位于红外和微波之间,波长介于0.1 mm 到1 mm之间。

这个范围的频率和波长使得太赫兹波能够在很多非常重要的物质和结构中穿透,因此它非常适合分析复杂的生物组织和疾病信息。

二、太赫兹光学成像技术应用与研究太赫兹光学成像技术在生物医学领域中的应用主要分为两个方面:医学成像和分子诊断。

1、医学成像太赫兹光学成像技术在医学成像中的应用是非常广泛的。

它可以用来诊断不同类型的癌症、皮肤病、骨骼结构等。

比如,一些研究者使用太赫兹光学成像技术对乳腺癌进行了研究,发现太赫兹成像技术可以对乳房内部的密度变化进行精细的分析和识别。

太赫兹光学成像技术对皮肤病的研究也非常有意义。

许多皮肤病的病征可以反映在皮肤的毛细血管结构上。

太赫兹光学成像技术可以通过对皮肤毛细血管的成像来分析皮肤病的发展与病理变化。

此外,太赫兹光学成像技术还可以应用于骨骼成像,用来诊断骨折、骨质疏松等疾病。

2、分子诊断太赫兹光学成像技术可以利用太赫兹波的特性对生物分子进行分析和诊断,这成为了分子诊断领域的研究热点之一。

利用太赫兹光学成像技术,研究人员可以通过分析生物分子的振动、转动和反射等信号,对生物分子的种类和结构进行识别和分析。

太赫兹光学成像技术在分子诊断中的应用非常广泛,如酶的活性分析、 DNA序列分析、蛋白质分析、糖类分析和药物的结构分析等。

太赫兹成像在医学诊断中的应用研究

太赫兹成像在医学诊断中的应用研究

太赫兹成像在医学诊断中的应用研究引言:太赫兹成像是一种全新的无损检测技术,利用太赫兹波段(0.1-10 THz)的电磁波来实现对物质的显微观察和成像。

它具有渗透力强、不损伤、无辐射危害等特点,逐渐成为现代医学领域的研究热点。

本文将探讨太赫兹成像在医学诊断中的应用研究,并重点介绍其在癌症早期诊断、皮肤病检测和药物分析方面的潜力。

一、太赫兹成像在癌症早期诊断中的应用研究近年来,癌症的发病率不断上升,早期诊断对提高治愈率至关重要。

传统的影像学技术如X射线、CT扫描等在癌症早期诊断中存在局限性,因此需要一种更加精确、无创且无辐射的检测方法。

太赫兹成像的高分辨率和无辐射特性使其成为一种有希望的癌症早期诊断工具。

研究表明,太赫兹波段对癌症组织和正常组织的吸收、散射特性存在差异,这为太赫兹成像在癌症早期诊断中的应用提供了理论基础。

通过对比癌症组织和正常组织的太赫兹图像,可以准确地判别病变组织,实现早期诊断和治疗。

此外,太赫兹成像还可以用于观察肿瘤的内部结构和血液供应情况。

由于太赫兹波可以穿透人体组织,能够直接观察到肿瘤的形态特征,并通过测量组织内的血液流动情况来评估肿瘤的恶性程度。

这为医生提供了更丰富的信息,帮助他们更好地制定治疗方案。

二、太赫兹成像在皮肤病检测中的应用研究皮肤病是临床常见疾病之一,传统的皮肤病检测方法主要依靠经验判断和活体组织切片。

然而,太赫兹成像技术可以实时观察皮肤组织的显微结构,提供更准确的皮肤病诊断结果。

太赫兹波能够穿透表皮层,获得真皮层的显微结构信息,对于诊断表皮癌、黑色素瘤等皮肤病具有潜力。

研究人员通过比对不同类型皮肤组织的太赫兹图像,发现了皮肤病的独特特征,并建立了相应的诊断模型。

借助太赫兹成像技术,医生可以迅速准确地识别皮肤病变,为患者提供合理的治疗方案。

此外,太赫兹成像还可以检测皮肤病的病理变化和治疗效果。

通过太赫兹波的扫描,可以实时监测患者的皮肤组织变化,评估病变的扩散情况,并对治疗效果进行跟踪。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章太赫兹成像在生物医学中的应用12.1 发展机遇太赫兹科学在医学方面存在大量机遇。

例如,它可以帮助人们提高空间分辨率和数据获取速率;还能帮助人们更好地理解太赫兹在复杂介质中的传播;再如发展内窥镜来观察体内的上皮表层。

太赫兹科学在医学中应用的最好例子如图 12-1所示。

利用太赫兹反射式成像,研究人员无需进入到生物体内就可以确定细胞癌肿瘤的范围和深度。

另外,利用太赫兹技术还可以探测X射线所无法成像的龋齿,以及对骨组织的进行三维成像。

12.2 应用潜力太赫兹辐射有望成为一种新的医学成像技术。

水虽能强烈吸收太赫兹辐射,但不同组织中的水含量、结构和化学成分的差异正好产生了成像对比度。

对于牙齿、皮肤、乳房等器官的研究表明:太赫兹成像能发现其它成像技术无法观察到的特征。

图 12-1就表明了太赫兹技术作为诊断工具的潜力。

图中(a)部分给出了一个典型的皮肤癌的图像,从该图很难确定这个体内癌变的范围和深度。

图 (b)和(c)中给出了它的宽带太赫兹反射图。

其中(b)利用表面细节特征进行了一定的优化处理。

(c)对200-300μm米的深度进行了优化处理。

这两副图显示出了(a)中所无法看到的肿瘤范围。

将(d)和(e)中标准的病理学照片与以上这些成像照片作对比,由这些图可以看出太赫兹成像技术在医学上的实力。

图 12-1 皮肤创伤的太赫兹图像12.3 基本原理太赫兹辐射具有对生物材料高分辨率(100μm)成像的潜力,因为它的成像对比度机制和目前的成像技术不同。

虽然核磁共振能在不同深度成像,同时还会提供一些化学信息,但它不适用于表面或很薄的上皮组织层成像。

超声技术基于组织对声波的反射和吸收,其分辨率极限为500μm。

目前,研究人员有可能实现太赫兹技术与超声成像技术的相互结合。

光学层析(OCT)技术利用飞秒近红外光在表面或表面附近成像。

该技术可以提供很高的分辨率和真实的结构信息,但成像的深度限制在1-1.25mm,而且其对比度机制基于组织中光学参数的变化。

另外还有一些采用共焦结构或高频谱成像的光学技术,它们也能用于组织的表征成像。

值得一提的是,上述的所有光学方法和太赫兹成像技术都是相容的。

太赫兹成像可以提供组织表层下1-2cm的信息,而这一深度取决于组织中的水含量。

虽然太赫兹图像的对比度与水含量有关,但局部环境的改变对观察到的信号也有显著的影响。

在波导中传输的太赫兹或许能促进内窥方面的应用,同时探测器技术和成像算法的改进应该会使成像质量得到进一步提高。

12.4 太赫兹在生物医学中的应用在生命科学和医学诊断学领域,太赫兹成像技术势必会与已有的成像技术相抗衡,甚至会超越后者。

在这一领域中,太赫兹成像有着巨大的潜力。

它是研究树木年代学、病理学等的有力工具。

12.4.1 树密度测绘树木的宏观密度是木材和纸厂的一个关键参量,而且在木材加工过程中还是要经常测定它的宏观密度。

但是从科学角度来说,还是木材的微观密度波动比较有研究价值。

特别地,与树的年轮相关的不同密度有着非常高的利用价值,是树木年代学研究领域的中心。

从这些年轮的密度轮廓,树木年代学家能得到气候变化的情况及过去几个世纪的森林燧石信息。

太赫兹成像能够有效的对数密度进行测量。

为证明这一点,现以水青冈(山毛榉)实验为例。

由于太赫兹辐射对水有很高的灵敏度,所以先将14×14×1.7mm3大小的样品作烘干处理。

然而,又由于周围储藏环境的问题,空气中的湿气会被木材重新吸收,最终导致被测样品中还有水分分布,其中水含量约占样品总重的12%。

山毛榉横剖面的太赫兹图像,如图 12-2所示。

其中,a图为山毛榉切片的太赫兹图像,b图为利用重量/体积法所得到的密度图,c图为a图部分的吸收曲线图。

从图中可以看出,树木年轮清晰可见。

图中黑色的区域表示后来长出来的木材部分。

由于其密度很大,因而它对太赫兹有较小的透明度。

而图中灰白色的区域则表示早先生长的树木结构,由于它具有很大的细胞腔和较薄的细胞壁,所以它们太赫兹有很好的透过性。

图 12-2 山毛榉切片的太赫兹图像及其密度图、吸收曲线图太赫兹成像能为树木密度的研究提供次年轮的分辨率。

与喷砂处理方法相比,由于太赫兹成像是非破坏性的,所以这些样品可以被重复进行实验探测。

另外,由于太赫兹辐射对人体无害。

所以用太赫兹波来观测比用X射线直接扫描更具优势。

由于它对水的高灵敏度,太赫兹辐射可以用来探测发现在树木和其他生物样品中的水沉淀物。

12.4.2植物生理学1. 监测植物中水的流动高大植物中的远距离水运输的物理机制至今仍是未解之谜。

由于单靠毛细作用力是不能将水分从树的根部输运到100m高的树叶中的,所以人们猜测是内聚力的功劳,即由水分的蒸腾作用将水从地面有效的吸到树木高处。

而且经大量的实验结果证明蒸腾作用对植物中的水分输运具有举足轻重的作用。

然而,根据最新的实验结果导致人们对内聚力理论的正确性产生了怀疑。

这主要是由于两项测量技术所得到实验结果与内聚力理论表现出了明显的不一致。

这两项技术分别是木质压力探针和压力腔。

显而易见,这项工作需要更多的关于植物中水分流速的精确实验数据。

利用核磁共振技术可以有效的研究水分的蒸腾作用,而且已经有人利用此项技术研究了处于蒸腾状态下的玉米,所得到的结果是玉米中的水分流速率可达2mm/s。

但是这项技术不好的一面是,它的成本太高,用起来不划算。

太赫兹成像技术为监测植物中水输运注入了新的活力,它是基于太赫兹辐射对水的高灵敏性。

水在1THz范围内的吸收光谱如图12-3(a)所示,从图中可以看出,在频率窗口内,没有特征吸收峰,而且吸收强度会随着频率的增加稳定增强。

虽然大家都认同是由于水分子的集体平移导致是它对太赫兹无特征吸收,但相关的具体机制仍还存有争议。

1THz对应的吸收系数是235cm-1。

根据这个值,我们就能得出太赫兹信号的衰减是关于水膜厚度函数(简单起见,可以忽略反射损耗),如图 12-3(b)所示。

从中我们也可以得到这样一个结论:理想的生物样品都应该含有一定量的水分,而相应的水膜厚度则在100到200μm之间。

而实际当中的大部分树叶都能很好地符合这个标准。

图 12-3图(a)水的吸收光谱,图(b)太赫兹信号的衰减是有关水膜厚度的函数大多数情况下,关于植物的太赫兹研究必须限制为单个树叶。

所以,在植物不同部位收集水分流速的信息就显得不太可能。

然而,对水分上升的动力学的相关研究,能够解决干旱严重的植物中的再水化时间。

1. 威灵仙在对这些威灵仙进行实验之前的一周内,先不给它们进行浇水。

把一片活体树叶轻轻的夹到特定的支架上,而后用聚焦后的太赫兹对其扫描。

在整个测量过程之中,可用汞灯对植物进行照射,以促使其能够充分蒸腾。

图 12-4 威灵仙叶子的透射强度分布图威灵仙叶子在浇水当时和浇水后的144分钟所对应的空间分辨透射强度如图12-4所示。

在这里假设空气对太赫兹没有吸收,且忽略反射损失。

从图中可以看出在x=21mm和x=26mm两处有最小的透射强度,而它们又分别对应着含有大量木质导管的维管束。

在对其进行浇水后,由于有水分流进叶子,所以整个透射强度有明显的下降,而且在透射强度最小位置的位置处变化最为明显。

图 12-5浇水后太赫兹通过叶子的总的透射强度为时间的函数如图 12-5所示,浇水后太赫兹对叶子的透射强度为时间的函数。

根据透射强度的减少趋势,我们可以预测出有关叶子的将来的一些信息。

另外,还能粗略估算出叶子中的水含量。

在浇水之前,太赫兹的平均透射比为13.43%。

另外,通过平1−均吸收系数为165cm(对应于0.5THz(见图 12-3),并且忽略反射损耗,这个衰减值对应于121.6μm厚的水膜。

由于威灵仙的叶子厚度在180和220μm之间(只有主干上的叶子的厚度能达到500μm厚),所以得到的这个值是比较合理的。

但在浇水后的三个小时以后,太赫兹对威灵仙叶子的透射强度已经降到12.80%。

利用同样的方法所得到的水膜厚度为124.6μm。

因此,在浇水后三小时内,水分含量以2.5%速度增加。

虽然这里所用的平均吸收系数在某种程度上有些不准确,但我们可以肯定叶子中的水分含量以2-3%的速度增加。

而且需要强调的是:采用其它任何的测量方法来提取活体植物中的这泄信息都是极其困难的。

2. 含羞草植物中的再水化过程一般会持续好几个小时。

然而,有些植物的水分输运表现出了极快的动力学性质,其中之一就有含羞草。

含羞草的图解如图 12-6所示。

当它受到外界的机械刺激之后,它的叶子会做出快速反应。

这是由于叶环、叶枕中水分的迁移所导致的。

这些叶枕有含有维管组织的中央核心,而在维管中则含有许多导管。

这些维管组织被基本的植物组织即薄壁实质细胞的膨胀皮层所包围着。

而且普遍认为:正是由于这些皮层细胞才导致膨压的产生和消失。

图 12-6 含羞草在受激前后的图解如图b所示,主叶枕向下运动,小叶的三级叶枕向上运动,所以树叶才会合起来了。

但这里还有一个问题那就是:在上述运动周期内即叶子由闭合到展开的过程,叶枕中的水分是静增加还是静减少。

为解决上述问题,可以对单对三级叶枕进行测量,但是其中的一片叶子要被轻轻的夹放在两片透明的塑料片之间。

这样就不会因为样品的几何形状的变化而使测得的信号强度发生改变。

而且在实际的实验当中还可采取一些措施,以避免在两片塑料片间形成多次反射。

三级叶枕的太赫兹强度图如图 12-7所示,它同样也是时间的函数,图中所对应的积分范围在0.1-1.0THz之间。

在时间0点对含羞草施加一机械刺激,而相应的太赫兹透射比会骤降6%。

在随后的几秒钟内,太赫兹透射信号会逐渐回复到初始信号强度的98%。

在这个快速恢复过程之后有紧接着一个极其缓慢的恢复过程,后者所需的全部时间可长达30分钟之久。

但在这些过程完成以后,树叶又恢复到了非受激状态了。

图 12-7 受激后三级叶枕对应的太赫兹透射强度图对于太赫兹透射信号的下降的观测,从中可以得到这样的结论:三级叶枕的膨压运动会导致叶枕水分的静增加。

从这些结果我们也可以看出太赫兹成像技术能够对植物各部位的水分富集的变化进行无损害的监测。

12.4.3 医学成像现在已经有人重点研究太赫兹成像在医学诊断中应用。

而且目前已经能够利用太赫兹成像技术来区分“新鲜的”、未经处理的各种组织样品的类型,以及对烧伤进行诊断(可参考第5章的相关部分),对骨溃疡和皮肤癌进行探测等。

图 12-8 猪喉的太赫兹图象太赫兹用于医疗诊断还有非常大的潜力可挖,所以在这里我们只是利用猪喉和人的肝脏为例来说明太赫兹成像技术在医疗诊断方面的神奇。

为了固定文中所用到的生物样品的蛋白质结构,可以先将它们浸泡在福尔马林溶液中数个小时。

随后再用酒精和二甲苯除去它们中的水分。

最后把它们嵌入到石蜡当中就可。

对于组织病理学检查来说,可将石蜡块切成一些厚度在微米量级的切片,再对其进行着色处理,并用光学显微镜检验。

相关文档
最新文档