六年级下册奥数专题练习-余数问题-全国通用
六年级下册数学专题练习:数论(五) 余数问题-全国通用 无答案

【知识点概述】一、带余除法的定义及性质:1.带余除法的定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r, 0≤r<b;(1)当0r=时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商2.和余数相关的一些重要性质:(以下a,b,c均为自然数)性质1:余数小于除数性质2:=⨯+被除数除数商余数除数(被除数-余数)商=÷=÷商(被除数-余数)除数性质3:a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即前两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2.性质4:a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以(2316)⨯除以5的余数等于⨯=。
313当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以(2319)⨯除以5的余数等于⨯=除以5的余数,即2.3412【注】对于上述性质3,4,我们都可以推广到多个自然数的情形,尤其是性质4,对于我们求一个数的n次方除以一个数的余数时非常的有用。
二、数的同余1.同余定义若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m )同余式读作:a同余于b,模m由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)这个性质非常重要,是将同余问题与前面学过的整除问题相联系的纽带,一定要熟练掌握。
六年级下册数学试题-奥数专题训练:第二讲 余数问题(无答案)全国通用

第二讲余数问题【知识要点】三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c 所得的余数。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a同余于b,模m。
由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b) 【经典例题】【例1】用某自然数a去除1992,得到商是46,余数是r ,求a和r .【基础巩固】甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数.【例2】有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【基础巩固】有一个整数,除39,51,147所得的余数都是3,求这个数.a ,求ab×ba.【例3】两位自然数ab与ba除以7都余1,并且b【基础巩固】学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班?【例4】有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【基础巩固】用自然数n去除63,91,129得到的三个余数之和为25,那么n=________【自我检测】1.有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?2. 22003与20032 的和除以7的余数是________.3.号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?4.六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买《成语大词典》.一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本.这种《成语大词典》的定价是多少元?5.某年的10月有五个星期六,4个星期日,这年的10月1日是星期几?【兴趣拓展】一个大于1的数去除290,235,200时,得余数分别为a,2a,++a,5则这个自然数是多少?。
小学数学六年级奥数专项训练题《求余数》

小学数学六年级奥数专项训练题《求余数》
1、《求余数》难度:★★★★
22019+20192除以7的余数是多少?
答:余数是。
解析:【】
2、《实际工期》难度:★★★
一项工程,甲、乙两人合做8天可完成。
甲单独做需12天完成。
现两人合做几天后,余下的工程由乙独自完成,使乙前后两段所用时间比为1:3?
:两人合做天后,余下的工程由乙独自完成,使乙前后两段所用时间比为1:3。
解析:【】
3、《正方形》难度:★★★
洋洋家有一块正方形的地,它的周长和它的面积相等,这块正方形地的面积是多少平方米?边长是多少米?
答:面积是16平方米,边长是4米。
解析:【】
4、《赔还是赚》难度:★★★
王婶的水果商店进了两批水果,售出价都是96元,第一批水果热销,比成本价高20%卖出,第二批水果滞销,在成本价基础上降价1/5卖出,总的来说这两批水果(填赚或赔)了多少元?
:这两批水果了元钱。
解析:【】
5、《让利销售》难度:★★★★
孙某的小杂货店新进一批皮球,进价每只1.5元,卖出价每只2元。
卖到只剩20只皮球时,开始让利,以9折售出。
皮球全部卖完后,共得利润86元。
这批皮球的总数是多少只?
答:这批皮球的总数是只。
解析:【】。
六年级奥数专题练习:余数问题

六年级奥数专题练习:余数问题
一、同余的定义:
①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(modm),读作a同余于b模m。
二、同余的*质:
①自身*:a≡a(modm);
②对称*:若a≡b(modm),则b≡a(modm);
③传递*:若a≡b(modm),b≡c(modm),则a≡c(modm);
④和差*:若a≡b(modm),c≡d(modm),则a+c≡b+d(modm),a-c≡b-d(modm);
⑤相乘*:若a≡b(modm),c≡d(modm),则a×c≡b×d(modm);
⑥乘方*:若a≡b(modm),则an≡bn(modm);
⑦同倍*:若a≡b(modm),整数c,则a×c≡b×c(modm×c);
三、关于乘方的预备知识:
①若A=a×b,则MA=Ma×b=(Ma)b
②若B=c+d则MB=Mc+d=Mc×Md
四、被3、9、11除后的余数特征:
①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod9)或(mod3);
②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M 的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod11);
五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(modp)。
投诉。
小学奥数题库《数论》余数问题带余除法5星题(含解析)全国通用版

数论-余数问题-带余除法-5星题课程目标知识提要带余除法•定义一般的,如果a是整数,b是整数(b≠0),若有a÷b=q⋯⋯r,也就是说a=b×q+r,0≦r<b,我们称上面的除法算式为一个带余除法算式。
(1)当r=0时,我们称a可以被b整除,q称为a除以b的商或完全商;(2)当r≠0时,我们称a不可以被b整除,q称为a除以b的商或不完全商。
精选例题带余除法1. 如有a#b新运算,a#b表示a、b中较大的数除以较小数后的余数.例如;2#7=1,8#3=2,9#16=7,21#2=1.如(21#(21#x))=5,则x可以是.(x小于50)【答案】13,29,37.【分析】这是一道把数论、定义新运算、倒推法、解方程等知识结合在一起的综合题.可采用枚举与筛选的方法.第一步先把(21#x)看成一个整体y.对于21#y=5,这个式子,一方面可把21作被除数,则y等于(21−5)=16的大于5的约数,有两个解8与16;另一方面可把21作除数,这样满足要求的数为26,47⋯,即形如21N+5这样的数有无数个.但必须得考虑,这些解都是由y所代表的式子(21#x)运算得来,而这个运算的结果是必须小于其中的每一个数的,也就是余数必须比被除数与除数都要小才行,因此大于21的那些y的值都得舍去.现在只剩下8,与16.第二步求:(21#x)=8与(21#x)=16.对于(21#x)=8可分别解得,把21作被除数时:x=13,把21作除数时为:x=29,50,⋯形如21N+8的整数(N是正整数).对于(21#x)=16,把21作被除数无解,21作除数时同理可得:x=37,58⋯所有形如21N+16这样的整数.(N是正整数).所以符合条件的答案是13,29,37.2. 字母a,b,c,d,e,f,g分别代表1至7中的一个数字,若a+b+c=c+d+e=c+f+g,则c可取的值有个.【答案】3【分析】a+b+c=c+d+e=c+f+g,a+b+c+c+d+e+c+f+g=(a+b+c+d+e+f+g)+2c=(1+2+3+4+5+6+7)+2c=28+2c28+2c是3的倍数,28÷3⋯1,所以2c÷3⋯2,c=1或4或7都可满足;构造:当c=1时,(28+2)÷3=10,所以a+b=d+e=f+g=9,a=2,b=7,d=3,e=6,f=4,g=5;当c=4,(28+2×4)÷3=12,所以a+b=d+e=f+g=8,a=1,b=7,d=2,e=6,f=3,g=5;当c=7,(28+2×7)÷3=14,所以a+b=d+e=f+g=7,a=1,b=6,d=2,e=5,f=3,g=4.综上,共有3种情况.3. 1×3×5×⋯×1991的末三位数是多少?【答案】625【分析】首先,仅考虑后三位数字,所求的数目相当于1×3×5×⋯×991的平方再乘以993×995×997×999的末三位.而993×995×997×999=993×999×995×997=(993000−993)×(995000−995×3)=(993000−993)×(995000−2985),其末三位为7×15=105;然后来看前者.它是一个奇数的平方,设其为(5k)2(k为奇数),由于(5k)2=25k2=25+25(k2−1),而奇数的平方除以8余1,所以k2−1是8的倍数,则25(k2−1)是200的倍数,设25(k2−1)=200m,则(5k)2=25+25(k2−1)=25+200m,所以它与105的乘积(5k)2×105=(25+200m)×105=21000m+2625,所以不论m的值是多少,所求的末三位都是625.4. 如果某整数同时具备如下三条性质:(1)这个数与1的差是质数;(2)这个数除以2所得的商也是质数;(3)这个数除以9所得的余数是5.那么我们称这个整数为幸运数,求出所有的两位幸运数.【答案】14【分析】条件(1)也就是这个数与1的差是2或奇数,这个数只能是3或者是偶数,再根据条件(3),除以9余5,在两位的偶数中只有14,32,50,68,86,这五个数满足条件;其中86与50不符合(1),32与68不符合(2).三个条件都符合的只有14,所以这个数是14.5. 求证:可以找到一个各位数字都是4的自然数,它是1996的倍数.【答案】见解析.【分析】1996÷4=499,下面证明可以找到1个各位数字都是1的自然数,它是499的倍数.取500个数:1,11,111,⋯⋯,111⋯⋯1(500个1).用499去除这500个数,得到500个余数a1,a2,a3,⋯,a500.由于余数只能取0,1,2,⋯,498这499个值,所以根据抽屉原则,必有 2 个余数是相同的,这 2 个数的差就是 499 的倍数,差的前若干位是 1,后若干位是 0:11⋯100⋯0.又 499 和 10 是互质的,所以它的前若干位由 1 组成的自然数是 499 的倍数,将它乘以 4,就得到一个各位数字都是 4 的自然数,这是 1996 的倍数.6. 用 1、2、3、4、5 各一个可以组成 120 个五位数,你能否从这 120 个数里面找出 11 个数来,使得它们除以 11 的余数各不相同?如果五个数字是 1、3、4、6、8 呢?【答案】 不能;不能.【分析】 (1)不能.五位数有 3 个奇位数字和 2 个偶位数字,将 1、2、3、4、5 分到奇偶位有 C 52=10 种方法,那么形成的五位数最多只能产生 10 种除以 11 的余数,无法出现 11 种除以 11 的余数.(2)不能.与(1)同理.当然,想不到这个的同学一一枚举即可,(1)中很明显余数为 0 的是构造不出来的,此外,余数为 2、4、6 也无法构造出来.(2)中余数为 6、7、10 的是构造不出来的.7. 任意给定一个正整数 n ,一定可以将它乘以适当的整数,使得乘积是完全由 0 和 7 组成的数.【答案】 见解析.【分析】 考虑如下 n +1 个数:7,77,777,⋯⋯,77⋯7⏟n 位,77⋯7⏟n+1位,这 n +1 个数除以 n 的余数只能为 0,1,2,⋯⋯,n −1 中之一,共 n 种情况,根据抽屉原理,其中必有两个数除以 n 的余数相同,不妨设为 77⋯7⏟p 位和 77⋯7⏟q 位(p >q ),那么 77⋯7⏟p 位−77⋯7⏟q 位=77⋯7⏟(p−q)位00⋯0⏟q 位 是 n 的倍数,所以 n 乘以适当的整数,可以得到形式为 77⋯7⏟(p−q)位00⋯0⏟q 位的数,即由 0 和 7 组成的数.8. 两个不等的自然数 a 和 b ,较大的数除以较小的数,余数记为 a ⊙b ,比如 5⊙2=1,7⊙25=4,6⊙8=2.(1)求 1991⊙2000,(5⊙19)⊙19,(19⊙5)⊙5;(2)已知 11⊙x =2,而 x 小于 20,求 x ;(3)已知 (19⊙x)⊙19=5,而 x 小于 50,求 x .【答案】 (1)9;3;1;(2)x =3,9,13;(3)x =12,26,33,45.【分析】 (1)1991⊙2000=9;由5⊙19=4,得(5⊙19)⊙19=4⊙19=3;由19⊙5=4,得(19⊙5)⊙5=4⊙5=1.(2)我们不知道11和x哪个大(注意,x≠11),即哪个作除数,哪个作被除数,这样就要分两种情况讨论.①x<11,这时x除11余2,x整除11−2=9.又x⩾3(因为x应大于余数2),所以x=3或9.②x>11,这时11除x余2,这说明x是11的倍数加2,但x<20,所以x=11+2=13.因此(2)的解为x=3,9,13.(3)这个方程比(2)又要复杂一些,但我们可以用同样的方法来解.用y表示19⊙x,不管19作除数还是被除数,19⊙x都比19小,所以y应小于19.方程y⊙19=5,说明y除19余5,所以y整除19−5=14,由于y⩾6,所以y=7,14.当y=7时,分两种情况解19⊙x=7.①x<19,此时x除19余7,x整除19−7=12.由于x⩾8,所以x=12.②x>19,此时19除x余7,x是19的倍数加7,由于x<50,所以x=19+7= 26,x=19×2+7=45.当y=14时,分两种情况解19⊙x=14.①x<19,这时x除19余14,x整除19−14=5,但x大于14,这是不可能的.②x>19,此时19除x余14,这就表明x是19的倍数加14,因为x<50,所以x=19+14=33.总之,方程(19⊙x)⊙19=5有四个解,x=12,26,33,45.9. 箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2017克,求两种珠子的数量和所有可能的值.【答案】107,109,111,113,115,117【分析】设19克的珠子有a个,17克的珠子有b个,根据题意列方程得19a+17b=2017利用余数分析法解不定方程.由于2017÷19余3所以有17b÷19余3,解得b=8从而得出a=99,即19×99+17×8=2017,即找到一组解为{a=99b=8此时a+b=99+8=107,由于19和17互质,那么只需要将a顺次减少17,b顺次增大19即可得出其他解{a=82b=27{a=65b=46{a=48b=65{a=31b=84{a=14b=103对于a+b的和而言,共可算得6个答案,分别为:107,109,111,113,115,117.10. 一个自然数除以8得到的商加上这个数除以9的余数,其和是13.求所有满足条件的自然数.【答案】108,100,92,84,76,68,60,52,44.【分析】本题考査学生掌握带余除法及枚举筛选的综合能力.设所求的自然数为n,且设n除以8商x余r,n除以9商a余y,于是有n=8x+r=9a+y(其中x+y=13).又已知0⩽y⩽8,0⩽r⩽7,下面分类讨论:若y=0,则x=13,得8×13+r=9a,解出r=4,故n=8×13+4=108;若y=1,则x=12,得8×12+r=9a+1,解出r=4,故n=8×12+4=100;类似地,若y=2、3、4、5、6、7、8,则分别有x=11、10、9、8、7、6、5,解得r=4,故n=8×11+4=92;n=8×10+4=84;n=8×9+4=76;n=8×8+4=68;n=8×7+4=60;n=8×6+4=52;n=8×5+4=44.答:满足条件的然数共有9个:108、100、92、84、76、68、60、52、44.说明:本题也可以先确定r=4.由y=13−x代人可得8x+r=9a+(13−x),即9x−9a=13−r,于是13−r的差应是9的倍数,又0⩽r⩽7,故r=4.。
小学六年级奥数题及答案-余数问题

小学六年级奥数题及答案:余数问题
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
以下是小编为大家整理的【小学六年级奥数题及答案:余数问题】,供大家参考!
把1至_这_个自然数依次写下来得到一个多位数_3456789....._,这个多位数除以9余数是多少?
答案与解析:
首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:首先,任意连续9个自然数之和能被9整除,也就是说,一直写到_能被9整除。
所以答案为1
小学六年级奥数题及答案:余数问题.到电脑,方便收藏和打印:。
小学奥数题库《数论》余数问题中国剩余定理2星题(含解析)全国通用版

数论-余数问题-中国剩余定理-2星题课程目标知识提要中国剩余定理•概述中国剩余定理即我们常说的“物不知数”,是利用同余式组来求解的一类问题。
A、一个数分别除以两个数余数相同的时候,将原数减去这个余数之后可以整除那两个数B、上述情况下的余数虽有不同,但与各自对应的除数的差相同,将原数加上这个差之后便可以整除C、其他情况下,凑出相同余数之后,运用第一种情况的方法.精选例题中国剩余定理1. 5年级3班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6排多5人,问上体育课的同学最少人.【答案】59.【分析】分析题意知,这个班的人数除以3余2,除以4余3,除以5余4,除以6余5,凑缺相同,这个班人数为[3、4、5、6]−1=59(人).2. 一个数,除以11余7,除以13余9,除以19余15,问满足条件的最小自然数是.【答案】2713.【分析】我们发现两个算式除数与余数的差都相等,所以把他们都处理成都缺4能被整除,这样得[11、13、19]−4=2713.3. 一个大于10的数,除以5余3,除以7余1,问满足条件的最小自然数为.【答案】43.【分析】根据总结,我们发现两个数的除数与余数的和都是5+3=7+1=8,这样我们可以把余数都处理成都余8,所以[5、7]=35,所以这个数就是35+8=43.4. 一个大于10的数,除以5余3,除以7余1,除以9余8,问满足条件的最小自然数为.【答案】323.【分析】根据总结,我们发现三个数中两个数的除数与余数的和都是5+3=7+1=8,这样我们可以把余数都处理成都余8,所以[5、7、9]=315,所以这个数就是315+8=323.5. 一个大于100的数,除以9余3,除以11余1,问满足条件的最小自然数为.【答案】111.【分析】据题意,我们发现两个数的除数与余数的和都是9+3=11+1=12,这样我们可以把余数都处理成都余12,所以[9、11]=99,所以这个数就是99+12=111.6. 一个大于2000数,除以11余5,除以13余3,除以17余16,问满足条件的最小自然数为.【答案】2447.【分析】根据题意,我们发现三个算式中两个数的除数与余数的和都是11+5=13+3= 16,这样我们可以把余数都处理成都余16,所以[11、13、17]=2431,所以这个数就是2431+16=2447.7. 有一堆水果糖,如果按8块一份来分,最后剩下2块;如果按9块一份来分,最后剩3块;如果按10块一份来分,最后剩下4块.这堆糖至少有块.【答案】354【分析】这堆水果糖的总数被8除余2,被9除余3,被10除余4,如果增加6块就刚好是8、9、10的公倍数,又8、、9、10的最小公倍数是360.所以这堆水果糖至少有360−6=354(块).8. 某个自然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最小是.【答案】41【分析】这个自然数除以2、4、5都余1,[2,4,5]=20,所以这个数应满足1+20n,同时除以3余2,所以最小是41.9. 有一筐苹果,甲班分,每人3个还剩11个;乙班分,每人4个还剩10个;丙班分,每人5个还剩12个.那么这筐苹果至少个.【答案】62【分析】设有x个苹果.因为11除以3余2,所以x除以3余2;因为10除以4余2,所以x除以4余2;因为12除以5余2,所以x除以5余2.又因为x大于12,x=[3,4,5]+2=60+2=62(个).10. 一个自然数能被11整除,除以13余12;除以15余13;这个数最小为.【答案】1078.【分析】n除以15余13:最小为13,通式为13+15k1;n除以13余12:k1最小为6,则有13+15×6=103,通式为103+[15,13]k2=103+ 195k2.n除以11余0:k2最小为5,则有103+195×5=1078.11. 一个大于3的数,除以7余4,除以9余6,除以11余8,问满足条件的最小自然数是.【答案】690.【分析】我们发现两个算式除数与余数的差都相等,所以把他们都处理成都缺3能被整除,这样得[7、9、11]−3=690.12. 一个大于2的数,除以3余1,除以5余3,除以7余5,问满足条件的最小自然数是.【答案】103.【分析】我们发现两个算式除数与余数的差都相等,所以把他们都处理成都缺2能被整除,这样得[3、5、7]−2=103.13. 小明心里想了一个正整数.并且求出了它分别被14和21除后所得的余数,已知这两个余数的和是33,则该整数被42除的余数是.【答案】41【分析】该整数除以14的余数不大于13,除以21余数不大于20,所以这两个余数的和不大于33,而由题有这两个余数的和恰好是33,所以该整数除以14余数是13,除以21余数是20.这个数加上1就是14和21的倍数,而[14,21]=42,所以这个数可以表示成42k−1的形式,被42除的余数是41.14. 智慧老人到小明的年级访问,小明说他们年级共一百多名同学,老人请同学们按三人一行排队,结果多出一人,按五人一行排队,结果多出二人,按七人一行排队,结果多出一人,老人说我知道你们年级人数应该是人.【答案】127【分析】根据条件,该数除以3余1,除以5余2,除以7余1,逐级满足法,令该数为a,则a÷3⋯⋯1 ①a÷5⋯⋯2 ②a÷7⋯⋯1 ③符合条件①的有1,4,7,10,13,16,⋯.同时满足①、②的最小值为7,以后a=7+15m均满足①、②;现在来看(7+15m)除以7余1,则15m除以7余1,则m最小取1,符合,最小的符合的数为a=22.以后每隔[3,5,7]=105即符合.由于该年级有100多名学生,为22+105= 127.15. 某个两位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,那么这个两位数是.【答案】62【分析】由题可知,此数是一个2的倍数,并且除以3、4、5都余2的数,这样的数最小是2,因为这个数是两位数,2+[3、4、5]=62.16. 某数除以11余8,除以13余10,除以17余12,那么这个数的最小可能值是.【答案】998【分析】观察到11−8=13−10=3,因此除以11余8,除以13余10的最小自然数为11×13−3=140,设某数为a,则a=143m−3m为非零自然数,只需143m−3除以17余12,而143÷17=8⋯7,只需(7m−3)÷17=n⋯12,即7m−15是17的倍数所以,m=7,所以a=143×7−3=998.17. —个自然数被3除余2,被5除余4,并且这个数大于100且小于125,那么这个数是.【答案】104或119【分析】被3除余2,被5除余4,求出3和5的最小公倍数15,估算15的哪一个倍数大于100小于125,经计算可知,105和120介于100到125之间,再用105和120分别减1即可,这个自然数是104或119.18. 我国南宋数学家杨辉在其《续古摘奇算法》上记载了这样一个问题:“二数余一,五数余二,七数余三,九数余四,问本数.”用现代语言表述就是:“有一个数用2除余1,用5除余2,用7除余3,用9除余4,问这个数是多少?”请将满足条件的最小的自然数写在这里.【答案】157【分析】(解法一)先考虑除以5余2,除以7余3,除以9余4;用剩余定理得5×7×5+5×9×1+7×9×4=472[5,7,9]=315,故472±315k都符合除以5余2,除以7余3,除以9余4最小是472−315=157,且也符合除以2余1.(解法二)除以2余1的数有:1,3,5,7,9,11,13,15,17,⋯;除以5余2的数有:2,7,12,17⋯;除以7余3的数有:3,10,17⋯;所以满足“用2除余1,用5除余2,用7除余3”的数的形式为[2,5,7]n+17=70n+17(n为自然数)此时只需要找一个最小的n,满足除以9余4即可.当n=2时,满足除以9余4,所以满足条件的最小的自然数为70⋯2+17=15719. 一个大于10的自然数,除以5余3,除以7余1,除以9余8,那么满足条件的自然数最小为.【答案】323【分析】根据总结,我们发现三个数中前两个数的除数与余数的和都是5+3=7+1=8这样我们可以把余数都处理成8,即一个数除以5余3相当于除以5余8,除以7余1相当于除以7余8,所以可以看成这个数除以5、7、9的余数都是8,那么它减去8之后是5、7、9的公倍数.而[5,7,9]=315所以这个数最小为315+8=323.20. 红星小学组织学生划船.若乘坐大船,除1条船坐6人外,其余每船均坐17人;若乘小船,则除1条船坐2人外,其余每船均坐10人.如果学生的人数超过100、不到200,那么学生共有人.【答案】142【分析】除1条船坐6人外,其余每船均坐17人,说明总人数可以表示成17m+6的形式;除1条船坐2人外,其余每船均坐10人,说明总人数可以表示成10n+2的形式;那么有17m+6=10n+2,化简得17m+4=10n,经分析m的个位只能是8.又学生的人数超过100、不到200,所以m=8,学生的人数是17×8+6=142.21. 一个大于10的自然数,除以5余3,除以7余1,除以9余4,那么满足条件的自然数最小为.【答案】148【分析】观察发现三个数中前两个数的除数与余数的和都是5+3=7+1=8,这样我们可以把余数都处理成8,即一个数除以5余3相当于除以5余8,除以7余1相当于除以7余8,所以满足前两个条件的自然数为a=35m+8,下一步只需要a除以9余4,35÷9=3⋯8,只需8+8m除以9余4,只需8m除以9余5,最小的m=4,因此满足所有条件的最小自然数为8+35×4=148.22. 有一个自然数用7除余3,用9除余4,请按照从小到大的顺序,将满足条件的前两个自然数写在这里.【答案】31,94【分析】除以7余3的数有:3,10,17,24,31⋯;除以9余4的数有:4,13,22,31⋯;所以满足“除以7余3,除以9余4”的数的形式为[7,9]n+31=63n+31(n为自然数)按照从小到大的顺序,将满足条件的前两个自然数为31,94.23. 在1到100这100个数中,被2,3,5除都有非零的余数,且余数彼此不等的数有个.【答案】6【分析】根据余数不能比除数大.一个数除以2,余数只能是1.而要求余数彼此不等,所以,这些数除以3,余数只能是2.满足以上两个条件的数为6的倍数少1.有:5、11、17、23、29、35、41、47、53、59、65、71、77、83、89、95.再满足被5除有余数,且余数不为1和2,(个位不能为5、1、7).符合条件的数只有:23、29、53、59、83、89,共6个数.24. 一个数除以2、3、5、7、11的余数分别是1、2、3、4、5,求符合条件的最小的奇数.【答案】1523.【分析】本题实际上就是求被3、5、7、11除的余数分别是2、3、4、5的最小奇数,符合条件的最小偶数是368,只要将368加上3×5×7×11就能求得符合条件的最小奇数,这个数是368+3×5×7×11=1523.25. 有一个自然数,除以2余1,除以3余2,除以4余3,除以5余4,除以6余5,除以7余6,则这个数最小是.【答案】419.【分析】分析题意知,这个数加1就能被2,3,4,5,6,7整除,所以这个数为[2、3、4、5、6、7]−1=420−1=419.26. 一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数.【答案】23.【分析】由中国剩余定理得这个数为23.27. (1)一个自然数除以4余3,除以5也余3,这个自然数最小是多少?(2)一个自然数除以5余1,除以7余3,这个自然数最小是多少?【答案】(1)3;(2)31【分析】(1)这个自然数减去3以后是4和5的公倍数,所以最小是3.(2)这个自然数加上4以后是5和7的公倍数,所以最小是31.28. 今有物不知其数,三三数之剩二,五五数之剩四,七七数之剩三,问物几何?【答案】59【分析】70×2+21×4+15×3=269;269−105−105=59;29. 小朋友们做游戏,若7人分成一组,则最后余下5人;若9人分成一组,则最后余下5人;若11人分成一组,则最后余下5人.那么一起做游戏的小朋友至少有人.【答案】698【分析】分析题意知,小朋友的人数是7,9,11的公倍数减5,所以做游戏的小朋友的人至少有[7、9、11]+5=698(人)30. 有一批图书总数在1000本以内,若按24本书包成一捆,则最后一捆差2本;若按28本书包成一捆,最后一捆还是差2本书;若按32本包一捆,则最后一捆是30本.那么这批图书共有本.【答案】670.【分析】由题意知,这批数的总数除以24余22,除以28余26,除以32余30,[24、28、32]=672,所以这批书的数量为672k−2,又因为这批图书总数在1000本以内,所以k=1,这本书为670.31. 已知自然数A除以11余5,除以9余7,除以13余3,这个数最小是多少?【答案】1303【分析】本题属于“物不知数”问题,可以运用中国剩余定理,但需要先要找出11与9的公倍数中除以13余1的数、11与13的公倍数中除以9余1的数以及9与13的公倍数中除以11余1的数.比较麻烦.实际上,观察可知11+5=9+7=13+3=16,也就是说这个数减去16后是11、9、13的公倍数,那么这个数最小就是11、9、13的最小公倍数加上16,为11×9×13+16=1303.32. 有一个自然数,用它分别去除61、90、130都有余数,3个余数的和是26,这3个余数中最大的一个是多少?【答案】11【分析】.简答:61、90和130的和减去26得到255,255的约数中验证得满足条件的只有17,所以这个自然数是17,所以余数中最大的是130除以17的余数1133. —个盒子中装有棒棒糖100多个,如果每次取5个最后剩4个,如果每次取4个最后剩3个,如果每次取3个最后剩2个.那么如果每次取12个,最后剩多少个?【答案】11【分析】简答:除以5余4,除以4余3,除以3余2的数最小是59,满足上述条件的100以上的数是59加上若干个60,如119、179等,这些数除以12余11.34. (1)一个数除以7余2,除以11余1.这个数最小是多少?(2)有一队解放军战士,人数在150人到200人之间,从第一个开始依次按1,2,3,⋯,9的顺序报数,最后一名战士报的数是3;如果按1,2,⋯,7的顺序报数,最后一名战士报的数是4.请问:一共有多少名战士?【答案】(1)23;(2)165【分析】(1)采用逐步满足条件法.满足条件第二个条件的数位1、12、23、⋯发现23同时满足第一个条件,因此这个数最小是23.(2)战士的人数除以9余3,除以7余4,满足这两个条件最小的数是39,不断加63,直到满足限制条件,最后得到165.35. 一个自然数在1000和1200之间,且被3除余1,被5除余2,被7除余3,求符合条件的数.(使用中国剩余定理求解)【答案】1102【分析】70+21×2+15×3=70+42+45=157,157+105n在1000到1200之间.可以先写成52+105n,105×10+1050,1050+52=1102.36. 已知两个连续的两位数除以5的余数之和是5,除以6的余数之和是5,除以7的余数之和是1.求这两个两位数.【答案】77和78【分析】两个连续的两位数除以5的余数之和是5,则可以判断出第一个数除以5余2.除以6的余数之和是5,则可以判断出第一个数除以6余2或余5.除以7的余数之和是1,则可以判断出第一个数除以7余0.满足第一、三两个条件的数有7、42、77,再考虑第二个条件,只有77满足.因此这两个数为77和78.37. 一个三位数除以4余3,除以6也余3.这个三位数最大是多少?【答案】999【分析】这是一道余同的问题.满足条件的数可以表示为[4,6]×n+3,其中n为自然数.要求满足条件的最大三位数,应令n为83,即[4,6]×83+3=999.38. 一个小于200的数,它除以11余8,除以13余10,这个数是几?【答案】140.【分析】分析题意,我们发现这两个算式除数与余数的差都等于11−8=13−10=3,观察发现这个数加上3后就能同时被11和13整除,所以[11、13]=143,所以这个数是143−3=140.39. 被2,3,5除余1且不等于1的最小整数是几?【答案】31【分析】除1以外,被2除余1的所有整数是:3,5,7,9,11,⋯,27,29,31,33,⋯被3除余1的所有整数是:4,7,10,13,16,19,22,25,28,31,⋯被5除余1的所有整数是:6,11,16,21,26,31,36,⋯上面三列数中,第一个同时出现的数是31,所以31是同时满足被2,3,5除均余1且不等于1的最小数.40. 有5000多根牙签,可按6种规格分成小包.如果10根一包,那么最后还剩9根.如果9根一包,那么最后还剩8根.第三、四、五、六种的规格是,分别以8,7,6,5根为一包,那么最后也分别剩7,6,5,4根.原来一共有牙签多少根?【答案】5039【分析】设这包牙签有n根,那么加上1根后为n+1根此时有n+1根牙签即可以分成10根一包,又可以分成9根一包,还可以分成8、7、6、5根一包.所以,n+1是10、9、8、7、6、5的倍数,即它们的公倍数.[10,9,8,7,6,51=23×32×5×7=2520,即n+1是2520的倍数,在满足题下只能是2520×2=5040,所以n=5039.即原来一共有牙签5039根.41. 炒饭老师非常喜欢吃炒饭.有一天,炒饭老师给自己炒了一桶的炒饭.他算了一下,如果他每天吃3碗,最后剩下2碗;如果每天吃4碗,最后剩下2碗;如果每天吃5碗,最后剩下2碗.问炒饭老师炒了至少多少碗炒饭?【答案】62【分析】炒饭老师炒的饭的碗数减去2是3,4,5的公倍数,所以老师炒的饭的最小值为[3,4,5]+2=60+2=62(碗).42. 被3,5除余2的最小两位数是几?【答案】2【分析】被5除余2的所有整数是:2,7,12,17,22,27,32,37⋯被3除余2的所有整数是:2,5,8,11,14,17⋯所以,被3,5除余2的最小两位数是2.43. 韩信点兵:有兵四五百,五五数之余三,七七数之余四,九九数之余五.那么这队兵有多少人?【答案】473【分析】先列出除以9余5的数,从中找除以7余4的数,再从剩下的数中找除以5余3的数.44. 刘叔叔养了400多只兔子,如果每3只兔子关在一个笼子里,那么最后一个笼子里有2只;如果每5只兔子关在一个笼子里,那么最后一个笼子里也有2只;如果每7只兔子关在一个笼子里,那么最后一个笼子里有5只.请问:刘叔叔一共养了多少只兔子?【答案】467【分析】兔子数除以3余2,除以5余2,除以7余5.所有满足前两个条件的数为2+ [3,5]×n,其中n为自然数,即2、17、32、47、⋯其中47同时满足第三个条件.所有满足条件的数为47+[3,5,7]×m,其中m为自然数.m取4时满足条件,为467.45. 一个两位数分别除以7、8、9,所得的余数的和为20.问:这个两位数是多少?【答案】62【分析】余数的和为20,则这个两位数除以7、8、9的余数分别为6、7、7或6、6、8或5、7、8.其中只有6、6、8的情况存在满足条件的两位数为62.46. 有一个自然数,用它去除25,38,43所得到的3个余数之和是18,那么这个自然数是多少?【答案】11【分析】设这个数为x,由题意可得:① $\left\{\begin{gathered}25 \div x = a \cdots {r_1} \hfill \\38 \div x = b \cdots {r_2} \hfill \\43 \div x = c \cdots {r_3} \hfill \\\end{gathered} \right. \Rightarrow 25 + 38 + 43 - 18 = 88$ 为x的倍数;②88=2×2×2×11③枚举验证⇒x=11.47. 一个数除以3余2,除以5余3,除以7余4,问满足条件的最小自然数.【答案】53.【分析】分析题目,我们发现前面两种都不符合,所以我们只能用最普遍的“中国剩余定理”:3、5的公倍数 3、7的公倍数 5、7的公倍数15 21 3530 42 7045 63 10560 84 140… … …找出除以7余4的 除以5余3 除以3余2.可以找出分别是:60 63 35可见60+63+35=158满足我们的条件,但不是最小的自然数,处理方法就是减去最小公倍数的若干倍,使结果在最小公倍数之内.所以答案为:158−105=53.48. (1)一个三位数除以6余2,除以8余2,那么这个三位数最小是多少?(2)—个数除以3余2,除以5余4,除以7余6,那么这个数最小是多少?(3)—个数除以6余2,除以11余1,那么这个数最小是多少?【答案】(1)122;(2)104;(3)5649. 有一个整数,用它去除63,90,130所得到的3个余数之和是25,那么这3个余数中最大的一个是多少?【答案】20【分析】设这个数为x,由题意可得:① $\left\{\begin{gathered}63 \div x = a \cdots {r_1} \hfill \\90 \div x = b \cdots {r_2} \hfill \\130 \div x = c \cdots {r_3} \hfill \\\end{gathered} \right. \Rightarrow 63 + 90 + 130 - 25 =258$ 为x的倍数;②258=2×3×43③枚举验证⇒x=43.所以 $\left\{ \begin{gathered}63 \div 43 \cdots 20 \hfill \\90 \div 43 \cdots 4 \hfill \\130 \div 43 \cdots 1 \hfill \\\end{gathered} \right.$,显然这3个余数中最大的一个是20.50. 一个自然数除以7余3,除以27余5,这个自然数最小是多少?【答案】59【分析】除以27余5的数有5、32、59、⋯,其中除以7余3的最小的数是59.51. 一个数除以3余2,除以5余3,除以7余4,问这个数是多少?【答案】53【分析】如果用剩余定理相信大家会做了,接下来看逐步满足法.第一个条件,除以3余2,最小是2;先记下2.第二个条件,除以5余3,原来已经有了2,要保持满足第一个条件不变,那么在2的基础上增加3的倍数,这样除以3余2不会变.2+3n的形式.这个数要满足第二个条件,除以5余3.在2+3n中,2已经余2了,3n需要余1,所以n=2即可.这样满足前两个条件的最小的数是8.第三个条件,除以7余4.8+3×5n的形式.3×5n=15n除以7要余4−1=3,15除以7余1,所以n最小是3,这个数是8+45=53满足题意.52. 有一个数,除以3余2,除以4余1,问这个数除以12余几?【答案】5【分析】方法一:除以3余2的数有:2,5,8,11,14,17,20,23,⋯;它们除以12的余数是:2,5,8,11,2,5,8,11,⋯;除以4余1的数有:1,5,9,13,17,21,25,29,⋯;它们除以12的余数是:1,5,9,1,5,9,⋯;一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5.方法二:一个数,除以3余2,除以4余1,可以理解为除以3余3+2,除以4余4+1,所以这个数减去5后,既能被3整除,又能被4整除,设这个数为a,则a=12m+5,(m为自然数)所以这个数除以12余5.53. (1)一个数除以21余17,除以20也余17.这个数最小是多少?第二小是多少?(2)—个数除以11余7,除以10余6.这个数最小是多少?第二小是多少?【答案】(1)17;437(2)106;216【分析】(1)这是一道余同的问题.这个数最小是17,第二小是[21,10]+17=437.(2)这是一道缺同的问题.这个自然数加上4即可被11和10整除,[11,10]=110,因此这个数最小为110−4=106.第二小的是110×2−4=216.54. 一个自然数在1000和1200之间,且被3除余1,被5除余2,被7除余3,求符合条件的数.(使用逐步满足法)【答案】1102【分析】方法1(比较法):我们先找出被3除余1的数:1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,⋯;被5除余2的数:2,7,12,17,22,27,32,37,42,47,52,57,⋯;被7除余3的数:3,10,17,24,31,38,45,52,⋯;三个条件都符合的最小的数是52,其后的是一次加上3、5、7的最小公倍数,直到加到1000和1200之间.结果是105×10+52=1102.方法2(逐步满足的比较法):先列出除以3余1的数:1,4,7,10,13,16,⋯;再列出除以5余2的数:2,7,12,17,22,27,⋯;这两列数中,首先出现的公共数是7.3与5的最小公倍数是15.两个条件合并成一个就是7+15×整数,列出这一串数是7,22,37,52,⋯;再列出除以7余3的数:3,10,17,24,31,38,45,52,⋯;就得出符合题目条件的最小数是52.事实上,我们已把题目中三个条件合并成一个:被105除余52.那么这个数在1000和1200之间,应该是105×10+52=1102.方法3(逐步满足法):设这个自然数为a,被3除余1,被5除余2,可以理解为被3除余3×2+1,被5除与5+2,所以满足前面两个条件的a=15m+7(m为自然数),只需15m+7除以7余3,即15m除以7余3,而15÷7=2⋯⋯1,只需m除以7余3,m最小为3,所以满足三个条件的最小自然数为3×15+7=52,那么这个数在1000和1200之间,应该是105×10+52=1102.55. 今有物不知其数,三三数之剩一,四四数之剩三,五五数之剩二,问物几何?【答案】7【分析】40×1+45×3+36×2=247,3×4×5=60,247÷60=4⋯⋯7,最少是7.56. 今有一堆石子,三个三个数余2个,五个五个数余2个,七个七个数余4个,这堆石子最少有多少个?【答案】32【分析】70×2+21×2+15×4=242;244−105−105=32;57. 有一个正整数除以7、8、9的余数分别为1、5、4,求这个数至少是多少?【答案】85【分析】除以7余1的数至少是1,为满足这一特点每次要加7,加了4个7后首次满足除以8余5;然后每次加56,加了一个后满足除以9余4,此时这个数是85.58. 一个大于10的数,除以3余1,除以5余2,除以11余7,问满足条件的最小自然数是多少?【答案】172【分析】法一:仔细分析可以发现3×2+1=5+2=7,所以这个数可以看成被3、5、11除余7,由于[3,5,11]=165,所以这个数最小是165+7=172.法二:事实上,如果没有“大于10”这个条件,7即可符合条件,所以只需要在7的基础上加上3、5、11的最小公倍数,得到172即为所求的数.59. 一个自然数除以8、9、11后分别余2、7、3,而所得的三个商的和是622,这个数是多少?【答案】1906.【分析】设这个数为x.x除以8余2:最小为2,通式为2+8k1;x除以9余7:k1最小为4,则有2+8×4=34,通式为34+[8,9]k2=34+72k2.x除以11余3:k2最小为4,则有34+72×4=322.则x=322+[8,9,11]n=322+792n.322+792n−28+322+792n−79+322+792n−311=622 40+99n+35+88n+29+72n=622259n=518n=2x=322+792×2=1906.60. 有一个整数,用它去除53,89,127所得到的3个余数之和是23,那么这个整数是多少?【答案】41【分析】设这个数为x,由题意可得:① $\left\{\begin{gathered}53 \div x = a \cdots {r_1} \hfill \\89 \div x = b \cdots {r_2} \hfill \\127 \div x = c \cdots {r_3} \hfill \\\end{gathered} \right. \Rightarrow 53 + 89 + 127 - 23 =246$ 为x的倍数;②246=2×3×41③枚举验证⇒x=41.61. 一个数除以5余3,除以6余4,除以7余1,求满足条件的最小的自然数?【答案】148.【分析】设这个数为n.n除以5余3:最小为3,通式为3+5k1;n除以6余4:k1最小为5,则有3+5×5=28,通式为28+[5,6]k2=28+30k2.n除以7余1:k2最小为4,则有n=28+30×4=148.62. 有三个连续自然数,其中最小的能被15整除,中间的能被17整除,最大的能被19整除,请写出一组这样的三个连续自然数.【答案】2430,2431,2432.【分析】设三个连续自然数中最小的一个为n,则其余两个自然数分别为n+1,n+2.依题意可知:15∣n,17∣(n+1),19∣(n+2),根据整除的性质对这三个算式进行变换:15∣n 17∣(n +1)19∣(n +2)→→→15∣2n 17∣(2n +2)19∣(2n +4)→→→15∣(2n −15)17∣(2n −15)19∣(2n −15)}⇒[15,17,19]∣(2n −15)从上面可以发现 2n −15 应为 15、17、19 的公倍数.由于 [15,17,19]=4845,所以 2n −15=4845(2k −1)(因为 2n −15 是奇数),可得 n =4845k −2415.当 k =1 时 n =2430,n +1=2431,n +2=2432,所以其中的一组自然数为 2430、2431、2432.63. 有一个数,除以 3 余数是 2,除以 4 余数是 1.问这个数除以 12 余数是几?【答案】 5【分析】 满足条件的最小值是 5,那么所有满足条件的数肯定具有 [3,4]k +5=12k +5 的形 式,除以 12 —定是余 5 的.64. (1)一个三位数除以 8 余 3,除以 12 也余 3.这个三位数最小是多少?(2)—个三位数除以 6 余 1,除以 10 余 5.这个三位数最小是多少?【答案】 (1)123;(2)115【分析】 (1)这是一道余同的问题.满足条件的数可表示为 [8,12]×n +3,其中 n 为自然数.要求满足条件的最小三位数,应令 n 为 5,即 [8,12]×5+3=123.(2)这是一道缺同的问题.满足条件的数可表示为 [6,10]×n −5,其中 n 为自然数.要求满足条件的最小三位数,应令 n 为 4,即 [6,10]×4−5=115.65. 一个布袋中装有 5000 多个小球,如果 10 个一包,最后还剩 9 个,如果 9 个一包,最后还剩 8 个 ⋯⋯ 如果 5 个一包,最后还剩 4 个,那么如果 13 个一包,最后还剩多少个?【答案】 8 个【分析】 简答:布袋中的小球数除以 10 余 9,除以 9 余 8,除以 8 余 7⋅⋯,除以 5 余 4,[5,6,7,8,9,10]=[5,7,8,9]=5×7×8×9=2520,所以,布袋中球数是 2520−1+2520=5039,5039÷13 余 8.66. (1)—个三位数除以 4 余 2,除以 6 余 2,那么这个三位数最小是多少?(2)—个三位数除以 3 余 1,除以 4 余 2,除以 6 余 4,那么这个三位数最小是多少?(3)—个数除以 9 余 2,除以 12 余 5,那么这个数最小是多少?【答案】 (1)110;(2)106;(3)29【分析】 简答:(1)[4,6]=12,14+12×8=110;(2)按“差同”计算;(3)按“差同”计算.67. 一个数被5除余3,被7除余4,被9除余5,这个数最小是几?【答案】158【分析】7和9的公倍数9和5的公倍数5和7的公倍数6345351269070135105180140225175210245280⋯⋯⋯在7和9的公倍数中,除以5余1的最小数是126;在5和9的公倍数中,除以7余1的最小数是225;在5和7的公倍数中,除以9余1的最小数是280;那么126×3+225×4+280×5=2678.[5,7,9]=315.所以,最小的数为2678−315×8=158.68. 一个自然数在1000和1200之间,且被3除余1,被5除余2,被7除余3,求符合条件的数.【答案】1102【分析】方法1:先列出除以3余1的数:1,4,7,10,13,16,⋯;再列出除以5余2的数:2,7,12,17,22,27,⋯;这两列数中,首先出现的公共数是7.3与5的最小公倍数是15.两个条件合并成一个就是7+15×整数,列出这一串数是7,22,37,52,⋯;再列出除以7余3的数:3,10,17,24,31,38,45,52,⋯;就得出符合题目条件的最小数是52.事实上,我们已把题目中三个条件合并成一个:被105除余52.那么这个数在1000和1200之间,应该是105×10+52=1102.方法2:我们先找出被3除余1的数:1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,⋯;被5除余2的数:2,7,12,17,22,27,32,37,42,47,52,57,⋯;被7除余3的数:3,10,17,24,31,38,45,52,⋯;三个条件都符合的最小的数是52,其后的是一次加上3、5、7的最小公倍数,直到加到1000和1200之间.结果是105×10+52=1102.方法3:设这个自然数为a,被3除余1,被5除余2,可以理解为被3除余3×2+1,被5除与5+2,所以满足前面两个条件的a=15m+7(m为自然数),只需15m+7除以7余3,即15m除以7余3,而15÷7=2⋯1,只需m除以7余3,m最小为3,所以满足三个条件的最小自然数为3×15+7=52,那么这个数在1000和1200之间,应该是105×10+52=1102.69. 一个数除以3、5、7、11的余数分别是2、3、4、5,求符合条件的最小的数:【答案】368.【分析】将3、5、7、11这4个数3个3个分别计算公倍数,如表:5、7、11公倍数3、7、11公倍数3、5、11公倍数3、5、7公倍数3852311651057704623302101155693495315……………………除3余2的最小数是770除5余3的最小值是693除7余4的最小值是165 3、5、7公倍数中被11除余5的数不太好找,但注意到210除以11余1,所以210×5=1050被11除余5,由此可知770+693+165+1050=2678是符合条件的一个值,又3、5、7、11的最小公倍数是1155,所以2678−1155×2=368是符合条件的最小值.70. 有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中最大的一个是多少?【答案】20【分析】设这个除数为M,设它除63,90,130所得的余数依次为a,b,c,商依次为A,B,C.63÷M=A⋯⋯aa+b+c=25,则(63+90+130)−(a+b+c)=(A+B+C)×M,即283−25=258=(A+B+C)×M.所以M是258的约数.258=2×3×43显然当除数M为2、3、6时,3个余数的和最大为3×(2−1)=3,3×(3−1)=6,3×(6−1)=15所以均不满足.而当除数M为43×2,43×3,43×2×3时,它除63的余数均是63,所以也不满足.那么除数M只能是43,它除63,90,130的余数依次为20,4,1,余数的和为25,满足.显然这3个余数中最大的为20.71. 有一个整数,用它分别去除157、234和324,得到的三个余数之和是100,这个整数是多少?。
六年级下册数学试题-小升初能力训练:数论综合——余数问题(解析版)全国通用

第05讲 数论综合——余数问题【一】了解“除法算式——a b qr b r ÷=> ()” 及应用1:一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是 .1010989108=910898÷=⇒∴÷=∴⨯+=最小的两位数是两位数一位数余数 求最大值一位数最大是,余数最大是 两位数 两位数2:用某自然数a 去除1707,得到商是37,余数是r ,求a 和r.17073717073717073746546461707463755375424545451707453742424645542a r a r a ra a r a a r a a r r =+⎧÷=⇒⎨>⎩÷==⎧∴=⇒÷=⇒⎨=⎩+=<=⎧∴=⇒÷=⇒⎨=⎩==⎧⎧⎨⎨==⎩⎩综上:或3:523除以一个数得到的商是10,并且除数与余数的差是5,求除数与余数.带 余 除 法52310523105555523(5)105231152310(5)x x x x x x ÷=÷=+∴÷+=∴÷=∴=++法一: 法二:除数余数 除数余数余数与除数的差是 余数与除数的差是 若设余数为,则除数为 若给余数加上 除数 =52311=48=43434348x ∴÷=∴ 除数,余数 余数是,除数是4:两数相除,商4余8,被除数、除数、商、余数四数之和等于415,则被除数是 .484848484841532448794848415794798324A B A B A B A B A B A B x A x B x x x A =+⎧÷=⇒=+÷=⇒⎨+++=⎩=⎧+∴⎨=⎩++++===⨯+=法一: 法二: 若设为,则为 则5:某个除法算式的被除数、除数、商与余数之和为115,如果被除数和除数都扩大为原来的2倍,得到的除法算式中被除数、除数、商与余数之和为223,那么原来的算式中商是 .11522222222311522237A B CD A B C D A B C D A B C D C ÷=⇒+++=÷=⇒+++=∴=⨯-=22222(22)22222a b q r a bq r a bq ra b bq r b q r a b q r a b q r÷=⇒=+⇒=+÷=+÷=∴÷=⇒÷=证明:6:某个整数除36,商和余数相等,那么这个整数可能是 .3636(1)136=8111735b c c bc c c b b b cb ÷=⇒=+=++>是的因数,但是枚举:、、、7:在大于2015的自然数中,被57除后,商与余数相等的数共有多少个?5758575756201558=3443355635122a c c c a c c c c c =+=⎧÷=⇒⎨<⎩÷⇒∴=-+= 的最大值是 的最小值是 个数(个)【二】余数性质(余数特征+余数可加可减可乘性+余数周期性)251425281253393999100001000100109999(91)99999a b c d e abcde a b c d ea b c d abcde a ⎧⎪⎨⎪⎩⎧⎨⎩=⨯+⨯+⨯+⨯+++++=⨯+⨯+⨯+⨯+=⨯被和整除:末位尾系被和整除:末位被和整除:末位被、整除:各位数字和是、的倍数和系被整除:两位一段,求和 证明: [弃9法 整特征]除0000100999999711131110001001()10000100010010()bc dea bc abcde ab cde ab cde ab abc a bc de a bd c de e +⨯+=⨯+⨯+⎧⎨⎩=⨯+=⨯+-=⨯+⨯+++⨯+⨯+ 被、和整除:三位一段,奇数段偶段和差系被整除:奇位和偶位和 证明: [()(999)910019911999910019911(]a a b b c c d e c a d e a b c d a c m e a mc e b c nf b nc f a b mc e nc f m n d b ++-+⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪=⨯++⨯-+⨯++⨯-+⎪=⨯+⨯+⨯+⨯+⎩÷==+⎧⎧⇒⎨⎨÷==+⎩⎩+=+++=+ 对于(1) 余数可加可减可乘2)()()()()()()()()()()()1192329c e f a b ce f a b mc e nc f m n c e f a b ce f a b mc e nc f mnc mcf nec ef a b ce f ++⇒+÷+⇒-=+-+=-+-⇒-÷-⇒⨯=+⨯+=+++⇒⨯÷⨯⇒÷÷ (2) (3) 余数可加 举性余数可减性余数可乘性例259753295⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪÷⎧⎧⎪⎨⎨⎪÷⎩⎩⎩或者(一)余数特征+余数可加可减可乘性的“基础练习”1:将假分数5051525354557⨯⨯⨯⨯⨯化成带分数后,真分数部分是多少?5051525354557505152535455123456(24)(35)681561166(mod 7)⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯≡⨯⨯⨯⨯⨯≡⨯⨯⨯⨯=⨯⨯≡⨯⨯≡只要计算除以的余数即可(二)余数特征+余数可加可减可乘性的“拓展练习”71310010100101010110101100101001010110101101010110ABCDABCDABCD BCD DAB B C D D A B A B C D ABC DAB CDA BCD CDA ABC C D A A B C A B C D A B ⎧=+=+++++⎪=+++⎪⎨=+=+++++⎪⎪=+++⎩-=++证明:判断能被和整除奇段和 偶段和 奇偶10110110101109191919191()91713713C D A B C D B A D C B A D C ABCDABCDABCD +----=-+-=-+-=⨯∴ 能被和整除1:(1)求20172017201720172017个除以9的余数. (2)求20146666个除以7的余数.201712017201720172017201711120171(mod 9)≡≡≡个个 20146666666666100120146335466666666666660302(mod 7)=⨯÷=∴≡≡-≡≡≡个2:求1020162017201620162016个除以7的余数.9201620163603603602016201620167020162016201670201720162016201620172016000(mod 7)1428577110000001000000711000712017201600020172016(mod 7)20÷∴÷⇒≡⨯+=∴÷∴÷⇒≡个10个个个个172016201710000201620177110000742016701404=⨯+÷÷÷∴=⨯+=余数可乘,余数3:求15!除以17的余数.15!4!(56)(71113)(89)(10121415)243010017225210015!7131541415916021069654636181(mod 7)15!(29)(36)(413)(57)(815)(1012)(1114)171=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⇒≡⨯⨯⨯⨯⨯≡⨯⨯≡⨯⨯≡⨯≡⨯≡≡=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯法一:法二:每个括号内两数之积都是除以 余 15!171∴÷ 的(2)!1(mod )p p p ⇔-≡延伸说明:上一题的(2)是威尔逊原理内容: 是质数(三)余数周期性的“基础练习”1:兔子数列:1、1、2、3、5、8、13、……,第2017项除以5的余数.5112303314044320224101123033020201720100172÷=兔子数列每一项除以的余数如下:周期是, ,即余2:分别求出23456789103333333333、 、 、 、 、 、 、 、 、 除以7的余数.发现规律,并求出1003除以7的余数. 并试求231001+3+3+3++3除以7的余数.234567891010043333333333326451326461006164334(mod 7)⇒÷=⇒≡≡、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 周期是若为01231002+2+2+2++2除以7呢?61016165(132645)1613262116162(mod 7)⇒÷=⇒≡+++++⨯++++≡⨯+≡周期是 原式3:今天是周四,100010天之后将是周几?234567891010004101010101010101010103264513264610006166410104(mod 7)⇒÷=⇒≡≡⇒、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 周期是周一(四)余数周期性的“拓展练习” 1:求3332除以31的余数.33133333231535334812228(mod 31)n ∴÷=⇒≡≡≡研究除以的余数容易发现周期是只要考虑除以的余数,容易发现周期是42:求332的末位数字.33133481333(mod10)÷=⇒≡≡寻找末位就是相当于除以10的余数周期现象:1、3、9、7、1、3、9、7、……,周期是4(1)(2)(3)x Nx N x N x x 以下是固定值,是变量对于,其个位数字是4个一循环 对于,其个位数字是10个一循环 对于,其个位数字是20个一循环3:求123420132014123420132014+++++除以10所得的余数是多少?12341920201234192014765636901636567490944,201420100141001004(14765636901636)=463463++++++++++++++++++++++++=÷=⨯++++++++++++++除以10的余数就是相当于寻找其个位数字,底数指数都是变化的,即周期为先计算的个位数字:为“”其个位数字是即个整周期还多出14个个位数字即为“”的个3位数字是 ,即答案就是34:求2007200720072007200712342006++++计算结果的个位数字是多少?200732007320073200720072007200720073333311(mod10)22(mod10)20072007(mod10)1234200612342006(mod10)≡≡≡+++++≡+++++首先,按规律,底数不变指数变化,其个位数字的周期是每4个一循环 即 、 、 得到: 然后,按规律,底数变化指数不变,其个位数字的周期是每10个一循环 33333333333333331234105(mod10)1234200652001234561(mod10)+++++≡+++++≡⨯++++++≡ 又因为, 所以,【一】化余数为整除(余数相同) (一)余数已知1:某个整数除41,余数是5,那么这个整数可能是几? 415(415)03603636181296b bbb b ÷⇒-÷⇒÷⇒=是的因数,、、、、2:某个整数除31,余数是7,那么这个整数可能是几? 317(317)024********b bbb b ÷⇒-÷⇒÷⇒=是的因数,、、同 余 问 题3:某个整数除67、151得到的余数都是11,那么这个整数可能是几?(6711)05606711(15111)01400561408415111(15167)0840(56,140,84)28112814b b b b b b b b b b b b -÷÷⎧⎧÷⎧⎪⎪⇒-÷⇒÷⇒⇒⎨⎨⎨÷⎩⎪⎪-÷÷⎩⎩=>∴=是、、的公因数是最大公因数的因数,且、4:某个额整数除229、337得到的余数都是13,这个整数最大是几?最小是几? (22913)021*******(33713)0324033713(337229)01080216324108(216,324,108)1081310818b b b b b b b b b b b b -÷÷⎧⎧÷⎧⎪⎪⇒-÷⇒÷⎨⎨⎨÷⎩⎪⎪-÷÷⎩⎩⇒⇒=>∴是、、的公因数是最大公因数的因数,且最大为,最小为(二)余数未知1:某个大于1的整数除41、11得到的余数相等,那么这个整数可能是几? 41(4111)030030302153105611b rb bb b br÷⎧⇒-÷⇒÷⇒=⎨÷⎩是的因数,、、、、、2:某个大于1的整数除89、71得到的余数相同,那么这个整数可能是几?89(8971)01801818293671b rb bb b br÷⎧⇒-÷⇒÷⇒=⎨÷⎩是的因数,、、、、3:某个大于1的整数除17、53、113得到的余数相同,那么这个整数可能是几? 17(5317)036053(11317)0960369660113(11353)0600(36,96,60)12122634b r b bb r b b b b b r b b b ÷-÷÷⎧⎧⎧⎪⎪⎪÷⇒-÷⇒÷⇒⇒⎨⎨⎨⎪⎪⎪÷-÷÷⎩⎩⎩=∴=是、、的公因数是最大公因数的因数、、、、【二】化余数为整除(余数不同) (一)余数已知1:某个整数除47余5,除65余2,那么这个整数可能是几? 475(475)04204263652(652)0630(42,63)215217b bbb b b bbb b ÷-÷÷⎧⎧⎧⇒⇒⇒⇒⎨⎨⎨÷-÷÷⎩⎩⎩=>∴=是、的公因数是最大公因数的因数,且、2:(拓展)用一个数除200余5,除300余1,除400余10,这个数是多少? 13(二)余数未知1:某个整数除29、56的余数分别是a 、3a +,这个数可能是几? 2929(5329)0240245635333324128462924529125298524,12,8()56248561285680294129654(),6()56405662b aba bbb ba baa b b b b b b b ÷÷⎧⎧⇒⇒-÷⇒÷⇒⎨⎨÷+÷⎩⎩+≥⇒>∴=÷÷÷⎧⎧⎧===⎨⎨⎨÷÷÷⎩⎩⎩÷÷⎧⎧==⎨⎨÷÷⎩⎩是的因数、、、、验证:舍去舍去舍去综上2412b =,、2:某个整数除47、121、232的余数分别是a 、2a +、5a +,这个数可能是几?4747(11947)07201212119(22747)018002325227(227119)0108072180108(72,180,108)36536181296473636b a b a b b b a b a b b b a b a b b b b b b b ÷÷-÷÷⎧⎧⎧⎧⎪⎪⎪⎪÷+⇒÷⇒-÷⇒÷⎨⎨⎨⎨⎪⎪⎪⎪÷+÷-÷÷⎩⎩⎩⎩⇒⇒=>∴=÷=是、、的公因数是最大公因数的因数,且、、、、验证:114718114712111213613,181211813,12121121(),2323616232181623212447924765912194(),612161()23297232643618b b b b b ÷÷⎧⎧⎧⎪⎪⎪÷=÷=÷⎨⎨⎨⎪⎪⎪÷÷÷⎩⎩⎩÷÷⎧⎧⎪⎪=÷=÷⎨⎨⎪⎪÷÷⎩⎩=舍去舍去舍去综上,、3:一个自然数除429、791、500所得的余数分别是5a +、2a 、a ,求这个自然数的和a 的值.429+54248482(848791)0570791279127912(1000791)0209050050010002(1000848)0152057209152(57,209,15b a ba b a b b b a ba b a b b b a b a b a b b b b ÷÷÷-÷÷⎧⎧⎧⎧⎧⎪⎪⎪⎪⎪÷⇒÷⇒÷⇒-÷⇒÷⎨⎨⎨⎨⎨⎪⎪⎪⎪⎪÷÷÷-÷÷⎩⎩⎩⎩⎩⇒⇒是、、的公因数是最大公因数的因数2)19519571911192091912152196196b b b b a =>∴=÷⎧⎪=÷⎨⎪÷⎩==,且验证:综上,,4:已知60、154、200被某数除所得的余数分别是1a -、2a 、31a -,求这个自然数的值. 22222333361(3721154)03567060161154154154(61154)2001201(9394201)09193020135679193(3567,9193)b a b b b a b a b a b a b a b ab a b a b b b a b b ⎧⎛÷⇒-÷⇒÷÷-÷⎪ ⎧⎧ ÷⎪⎪⎪⎝÷⇒÷⇒⎨⎨⎨⎛⨯÷⎪⎪⎪÷-÷⇒-÷⇒÷ ⎩⎩⎪ ÷⎝⎩⇒⇒=是、的公因数是最大公因数的因数29296029229154299200292629b b b ∴=÷⎧⎪=÷⎨⎪÷⎩=验证:综上,5:(拓展)糖果254粒,饼干210块,水果186个. 某幼儿园人数超过40人,平均分给学生,余下糖果、饼干、水果比是1:3:2,求共有多少人?没人每种各分多少个?5082(508186)032202541862210321031862(440210)02300(254186)3322230(322,230)4640223254202210201862b ab b b a b a b a b a b a b b b a b b b b b ⎧÷⎧⇒-÷⇒÷÷⎧⎨⎪÷⎪⎪⎩÷⇒⎨⎨÷⎧⎪⎪÷⇒-÷⇒÷⎨⎩⎪+÷⎩⎩⇒⇒=<∴=÷=÷÷是、的公因数是最大公因数的因数,且、验证:254231()23210233018623223b b ÷⎧⎧⎪⎪=÷⎨⎨⎪⎪÷⎩⎩=舍去,综上,6:有一个整数,用它除70、110、160所得到的3个余数之和是50,那么这个整数是多少?121233111221233370110(70110160)()340502900290160707070121101333531718316011b r b r b r r r bb b b rbr b b r b r b r b r b r r r b b b b r b r b ÷⎧⎪÷⇒++÷++⇒÷⇒÷⇒⎨⎪÷⎩÷≤÷≥+⎧⎧⎪⎪÷⇒≥+⇒≥+++⇒≥⇒≥⇒≥⎨⎨⎪⎪÷≥+⎩⎩∴=是的因数现在讨论的就是范围对来说,其中,290,2,145,5,58,10,29581105815229b b =÷==对于, ,不成立综上,【三】同余方程 1:(铺垫)(1)解同余方程:45(mod11)x ≡45(mod11)41151(45)110451144(mod11)5115245(mod11)4511(mod11)416(mod11)(4,7)14(mod 7)x x x x x x x x x x ≡÷⎧⇒-÷⇒-=⇒=⇒≡⎨÷⎩≡≡+≡=∴≡ 转化: 试除:(mod )(,)1(mod )(mod )()()0()()()()(,)1(mod )ac bc m c m a b m ac m x pac bc m ac bc m x y c a b m x y bc m y p c a b m x y c m m a b a b m a m b m a b a b m m m ≡=≡÷=⎧≡⇒-÷=-⇒-=-⎨÷=⎩-=-=-≡÷÷--=证明:若,当 时,有开始:对“”,有对“”,若,为的因数若想让“”,即让“的余数等于的余数”,即“化为分数相减为整数”同时,确实为整数,得证.(2)解同余方程:729(mod13)x x ≡+729(mod13)7131(729)130(29)135913()(59)130592677(mod13)2729(mod13)59(mod13)59132(mod13)5x x x r x x x rx x x x xx x x x x ≡+÷⎧⇒--÷⎨+÷⎩-=⨯⎧⇒-÷⇒⎨-=⇒=⇒≡⎩-≡≡≡+⨯ 转化: 试除: 35(mod13)(5,13)17(mod13)x ≡=∴≡2:用枚举法检验的方法,找出有那些整数x 满足:35(mod 7)x ≡,用一个同余式来表示结果.135(mod 7)411184(mod 7)235(mod 7)357(mod 7)312(mod 7)(4,7)14(mod 7)x x x x x x x ≡=≡≡≡+≡=∴≡ ,枚举得到、、、,表示为3:求解同余方程:3843(1)(mod13)x x +≡+. 8343(1)(mod13)83433(mod13)83334(mod13)5334313(mod13)58(mod13)58x x x x x x x x x +≡++≡+-≡-≡-+⨯≡≡+第一步:化简 第二步:(试除法) 134(mod13)XX 5383(mod13)560(mod13)1524(mod13)(5,13)112(mod13)211(mod13)(XX ) 5x x x x x x ⨯⨯≡⨯≡≡=∴≡≡⨯ (法) 法888(mod13)21113(mod13)4064(mod13)224(mod13)12(mod13)12(mod13)x x x x x ≡⨯≡+≡≡≡≡5:(拓展)老师选了一个两位数,然后讲这个数乘23,并且加上79,发现正好是111的倍数,你能猜出老师选的是什么数吗?23790(mod111)2311179(mod111)2332(mod111)235325(mod111)115160(mod111)x x x x x x +≡≡-≡⨯≡⨯≡设这个两位数为,得到 4160(mod111)40(mod111)40.x x ≡≡ 即这个两位数是一:余同加余,差同减差,和同加和 1:小强家有很多巧克力:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余数问题【求余数】(1990年江苏宜兴市第五届小学生数学竞赛试题)一组,就可得到331组,尚余4个6。
而6666÷7=952……2。
所以,原式的余数是2。
例2 9437569与8057127的乘积被9除,余数是__。
(《现代小学数学》邀请赛试题)讲析:一个数被9除的余数与这个数各位数字之和被9除的余数是一样的。
9437569各位数字之和除以9余7;8057127各位数字之和除以9余3。
7×3=21,21÷9=2……3。
所以,9437569与8057127的乘积被9除,余数是3。
例3 在1、2、3、4、……、1993、1994这1994个数中,选出一些数,使得这些数中的每两个数的和都能被26整除,那么这样的数最多能选出_______个。
(1994年全国小学数学奥林匹克初赛试题)讲析:可将1、2、3、……、1994这1994个数,分别除以26。
然后,按所得的余数分类。
要使两个数的和是26的倍数,则必须使这两个数分别除以26以后,所得的余数之和等于26。
但本题要求的是任意两个数的和都是26的倍数,故26的倍数符合要求。
这样的数有1994÷26=76(个)……余18(个)。
但被26除余13的数,每两个数的和也能被26整除,而余数为13的数共有77个。
所以,最多能选出77个。
【同余问题】例1 一个整数,除300、262、205,得到相同的余数(余数不为0)。
这个整数是_____。
(全国第一届“华杯赛”初赛试题)讲析:如果一个整数分别除以另两个整数之后,余数相同,那么这个整数一定能整除这两个数的差。
因此,问题可转化为求(300—262)和(262—205)的最大公约数。
不难求出它们的最大公约数为19,即这个整数是19。
例2 小张在计算有余数的除法时,把被除数113错写成131,结果商比原来多3,但余数恰巧相同。
那么该题的余数是多少?(1989年上海市小学数学竞赛试题)讲析:被除数增加了131-113=18,余数相同,但结果的商是3,所以,除数应该是18÷3=6。
又因为113÷6的余数是5,所以该题的余数也是5。
例3 五只猴子找到一堆桃子,怎么也平分不了,于是大家同意去睡觉,明天再说。
夜里,一只猴子偷偷起来,吃掉一只桃子,剩下的桃子正好平分五等份,它拿走自己的一份,然后去睡觉;第二只猴子起来,也吃掉一只桃子,剩下的桃子也正好分成五等份,它也拿走了自己的一份,然后去睡觉。
第三、四、五只猴子也都这样做。
问:最初至少有______个桃子。
(哈尔滨市小学数学竞赛试题)讲析:因为第一只猴子把桃5等分后,还余1个桃;以后每只猴子来时,都是把前一只猴子剩下的4等份再分成5等份,且每次余1个桃子。
于是,我们可设想,如果另加进4个桃子,则连续五次可以分成5等份了。
加进4个桃之后,这五只猴每次分桃时,不再吃掉一个,只需5等份后,拿走一份。
因为4与5互质,每次的4份能分成5等份,这说明每次等分出的每一份桃子数,也能分成5等份。
这样,这堆桃子就能连续五次被5整除了。
所以,这堆桃子至少有5×5×5×5×5-4=3121(个)。
例4 在1、2、3、……、30这30个自然数中,最多能取出______个数,使取出的这些数中,任意两个不同的数的和都不是7的倍数。
(上海市第五届小学数学竞赛试题)讲析:我们可将1到30这30个自然数分别除以7,然后按余数分类。
余数是0:7、14、21、28余数是1:1、8、15、22、29余数是2:2、9、16、23、30余数是3:3、10、17、24余数是4:4、11、18、25余数是5:5、12、19、26余数是6:6、13、20、27要使两数之和不是7的倍数,必须使这两个数分别除以7所得的余数之和不等于7。
所以,可以取余数是1、2、3的数,不取余数是4、5、6的数。
而余数为0的数只取一个。
故最多可以取15个数。
有关数的法则或方法【数的读写方法】(整数中多位数的读写方法,以及小数、分数、百分数的读、写方法,见小学数学课本,此处略。
)“成数”、“折数”即“十分数”,它们常用中国数字和文字“七成”、“二成五”、“八折”、“九五折”等表示,并根据其文字去读。
它们也常用分母为十的分数,或者用百分数去表示,这时便可按分数、百分数的方法去读。
“千分数”是表示一个数是另一个数的千分之几的分数,它常用“千分号”--“‰”来写千分数,如某地人口出生率为千分之七,写作“7‰”,读作“千分之七”。
【科学记数法】用带一位整数的小数,去乘以10的整数次幂来表示一个数的方法,叫做“科学记数法”。
利用小数点移动的规律,很容易把一个数用“科学记数法”表达为“a×10n (1≤a≤10,n是整数)”的形式。
例如:25700,把小数点向左移动四位,得1<2.57<10,但2.57比25700小了10000倍,所以25700=2.57×104。
0.00867,把小数点向右移动三位,得1<8.67<10,但8.67比0.00867大了1000倍,所以【近似数截取方法】截取近似数的方法,一般有四舍五入法、去尾法和进一法三种。
四舍五入法──省略一个数的一部分尾数,取它的近似数的时候,如果要舍去的尾数的最高位上的数是4,或者是比4小的数,就把尾数舍去;如果要舍去的尾数的最高位上的数是5,或者是比5大的数,把尾数舍去以后,要向它的前一位进一。
这种求近似数的方法叫做“四舍五入法”。
例如,把8,654,000四舍五入到万位,约等于865万;把7.6239四舍五入保留两位小数约等于7.62;把2,873,000,000四舍五入到亿位,约等于29亿;把32.99506四舍五入精确到百分位约等于33.00。
去尾法──要省略的尾数不论是多少,一律舍去不要,这种求近似数的方法叫做“去尾法”。
进一法──省略某一个数某一位后面的尾数时,不管这些尾数的大小,都向它的前一位进一。
这种求近似数的方法,叫做“进一法”。
显然,用“进一法”和“五入”方法截取的近似值,叫做“过剩近似值”,而用“去尾法”和“四舍”方法截取的近似值,叫做“不足近似值”。
值得注意的是:在近似数的取舍结果中,小数点后最右一位上的零必须写上。
例如,把1.5972四舍五入,保留两位小数得1.60,即1.5972≈1.60,最后的“0”不可去掉,否则,它只精确到十分位了。
【质数判定方法】判定一个较大的数是不是质数,一般有两种方法。
(1)查表法。
用查质数表的方法,可以较快地判断一个数是否为质数:质数表上有的是质数,同一范围内的质数表上没有这个数,那它便是个合数。
(2)试除法。
如果没有质数表,也来不及制作一个质数表,可以用试除来判断。
例如,要判定161和197是不是质数,可以把这两个数依次用2、3、5、7、11、13、17、19……等质数去试除。
这是因为一个合数总能表示成几个质因数的乘积,若161或197不能被这个合数的质因数整除,那么也一定不能被这个合数整除。
所以,我们只要用质数去试除就可以了。
由161÷7=23,可知161的约数除了1和它本身外,至少还有7和23。
所以,161是合数,而不是质数。
由197依次不能被2、3、5、7、11、13整除,而197÷17=11……10,这时的除数17已大于不完全商11,于是可以肯定:197是质数,而不是合数。
因为197除了它本身以外,不可能有比17大的约数。
假定有,商也一定比11小。
这就是说,197同时还要有比11小的约数。
但经过试除,比11小的质数都不能整除197,这说明比11小的约数是不存在的,所以197是质数,不是合数。
【最大公约数求法】最大公约数的求法,一般可用下面四种方法。
(1)分解质因数法。
先把各数分解质因数,再把各数公有的一切质因数连乘起来,就是所求的最大公约数。
例如,求2940、756和168的最大公约数:∵ 2940=22×3×5×72,756=22×33×7,168=23×3×7;∴(2940,756,168)=22×3×7=84。
注:“(2940,756,168)=84”的意思,就是“2940、756和168的最大公约数是84”。
(2)检验公约数法。
“检验公约数法”即“试除法”,也是小学数学课本介绍的那一种一般的求法,此处略。
(3)辗转相减法。
较大的两个数求最大公约数,可以用“辗转相减法”:用大数减小数,如果减得的差与较小的数不相等,便再以大减小求差,直到出现两数相等为止。
这时,相等的数就是这两个数的最大公约数。
例如,求792和594的最大公约数。
∵(792,594)=(792-594,594)=(198,594)=(594-198,198)=(198,396)=(198,396-198)=(198,198)=198,∴(792,594)=198。
用辗转相减法求两个数的最大公约数,可以推广到求n个数的最大公约数,具体做法是:可以不拘次序地挑选最方便的,从较大的数里减去较小的数。
这样逐次做下去,直到所得的差全部相等为止。
这个相等的差,就是这些数的最大公约数。
例如,求1260、1134、882和1008的最大公约数。
∵(1260,1134,882,1008)=(1260-1134,882,1008-882,1134-882)=(126,126,882,252)=(126,126,882-126×6,252-126)=(126,126,126,126)=126,∴(1260,1134,882,1008)=126。
(4)辗转相除法(欧几里得算法)。
用辗转相除法求两个数的最大公约数,步骤如下:光用较小数去除较大的数,得到第一个余数;再用第一个余数去除较小的数,得到第二个余数;又用第二个余数去除第一个余数,得到第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止。
这时,余数“0”前面的那个余数,便是这两个数的最大公约数。
求两个较大的数的最大公约数,用上面的第一、二种方法计算,是相当麻烦的,而采用“辗转相除法”去求,就简便、快速得多了。
例如,求437和551的最大公约数。
具体做法是:先将437和551并排写好,再用三条竖线把它们分开。
然后依下述步骤去做:(1)用较小数去除较大数把商数“1”写在较大数的线外,并求得余数为114。
(2)用余数114去除437,把商数“3”写在比114大的数(437)的线外,并求得余数为95。
(3)用余数95去除114,把商数“1”写在114右边的直线外,并求得余数为19。
(4)用余数19去除95,把商数“5”写在95左边的直线外面,并求得余数为0。