工程热力学第二章习题课详解
工程热力学习题解答

1. 热量和热力学能有什么区别?有什么联系?答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。
热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。
简言之,热量是热能的传输量,热力学能是能量?的储存量。
二者的联系可由热力学第一定律表达式d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。
2. 如果将能量方程写为 d d q u p v δ=+或d d q h v p δ=-那么它们的适用范围如何?答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。
因为 uh p v=-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。
3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数?答:尽管能量方程 qdu pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者的数学本质不同,前者不是全微分的形式,而后者是全微分的形式。
是否状态参数的数学检验就是,看该参数的循环积分是否为零。
对焓的微分式来说,其循环积分:()dh du d pv =+⎰⎰⎰因为0du =⎰,()0d pv =⎰所以0dh =⎰,因此焓是状态参数。
而对于能量方程来说,其循环积分:q du pdv δ=+⎰⎰⎰虽然: 0du =⎰ 但是: 0pdv ≠⎰ 所以: 0q δ≠⎰ 因此热量q 不是状态参数。
4. 用隔板将绝热刚性容器分成A 、B 两部分(图2-13),A 部分装有1 kg 气体,B 部分为高度真空。
工程热力学第二章 习题解答

第二章 习题解答 2-1()36296.82731700.2630 m /kg 0.510RT pv RT v p ⨯+=⇒===⨯ 311 3.802 kg/m 0.2630v ρ=== 2-2 (1)08314296.93 J/kg K 28R R M ===⋅ (2)30296.932730.8 m /kg 101325RT v p ⨯=== 311 1.25 kg/m 0.8v ρ=== (3)()306831450027364.27 m /kmol 0.110M R T V p ⨯+===⨯ 2-3储气罐内原有CO 2质量:()()3111101.32530103 6.558 kg 188.927345g p V m RT +⨯⨯===⨯+ 充气后的CO 2质量:()()3222101.32530010318.582 kg 188.927370g p V m RT +⨯⨯===⨯+ 充入的CO 2质量:2118.582 6.55812.024 kg m m m ∆=-=-=2-4()621212100.07 1.626 kg 287300p p V m m m RT -⨯⨯∆=-===⨯ 2-5010101325300388 kg/h 287273p V m RT ⨯===⨯ 3299.310300346 kg/h 287273pV m RT ⨯⨯===⨯2-6充入的空气在室外状态下体积:()3220.80.18.559.5 m 0.1pV V p -⨯∆=== 59.519.83 min 3τ== 2-7()()350011011010014310115.210 1.0210273101325300273 5.57310 m /hp V pVT pV V T T p T +⨯⨯⨯⨯=⇒==⨯+=⨯ 2-8 表压力:230009.807234 kPa 0.44g p π⨯==⨯ 101234335 kPa g p B p =+=+=(1)压力不变()2211227318582 K V T T V ==⨯+==309℃ (2)32232875820.5 m /kg 33510RT v p ⨯===⨯ (3)终态:32211 2 kg/m 0.5v ρ=== 初态:3122 4 kg/m ρρ==2-9(1)613.7100.057.693 kg 296.8300pV m RT ⨯⨯===⨯ (2)1222112116.5300361 K 13.7p V p V p T T T T p =⇒==⨯= 2-10111m RT V p = 6212126212250.361030318.6 kg 0.510293p V m p T m RT p T ⨯⨯⨯====⨯⨯2-11333440.15243.140.00185 m 332V R π⎛⎫==⨯⨯= ⎪⎝⎭ 537.6100.001852083 J/kg K 2.2510300pV R mT -⨯⨯===⋅⨯⨯ 该气体为氦气2-12 其他条件相同时,压力低、温度高所需体积大。
(NEW)毕明树《工程热力学》(第2版)笔记和课后习题详解

热力学摄氏温标,以符号t表示,单位为摄氏度,符号为℃。热力
学摄氏温度定义为
,即规定热力学温度的273.15K为摄氏温度
的零点。这两种温标的温度间隔完全相同(
)。这样,冰的三相
点为0.01℃,标准大气压下水的冰点也非常接近0℃,沸点也非常接近
100℃。
c.华氏温标
在国外,常用华氏温标(符号也为t,单位为华氏度,代号为℉)
量,压力计的指示值为工质绝对压力与压力计所处环境绝对压力之差。 一般情况下,压力计处于大气环境中,受到大气压力pb的作用,此时压 力计的示值即为工质绝对压力与大气压力之差。当工质绝对压力大于大 气压力时,压力计的示值称为表压力,以符号pg表示,可见
p=pg+pb (1-1-1) 当工质绝对压力小于大气压力时,压力计的示值称为真空度,以pv 表示。可见
(2)几种基本状态参数如下: ① 压力
压力是指沿垂直方向上作用在单位面积上的力。对于容器内的气态 工质来说,压力是大量气体分子作不规则运动时对器壁单位面积撞击作 用力的宏观统计结果。压力的方向总是垂直于容器内壁的。压力的单位 称为帕斯卡,符号是帕(Pa)。
作为描述工质所处状态的状态参数,压力是指工质的真实压力,称 为绝对压力,以符号p表示。压力通常由压力计(压力表或压差计)测
热力学的宏观研究方法,由于不涉及物质的微观结构和微粒的运动 规律,所以建立起来的热力学理论不能解释现象的本质及其发生的内部 原因。另外,宏观热力学给出的结果都是必要条件,而非充分条件。
(2)热力学的微观研究方法,认为大量粒子群的运动服从统计法则 和或然率法则。这种方法的热力学称为统计热力学或分子热力学。它从 物质的微观结构出发,从根本上观察和分析问题,预测和解释热现象的 本质及其内在原因。
工程热力学第三版曾丹苓第二章习题及答案

⼯程热⼒学第三版曾丹苓第⼆章习题及答案热⼒学第⼆章习题及答案⼀、是⾮题1、任意过程只要知道其始末状态即可确定过程与外界的热交换(x)、功交换(x)及系统热⼒学能的变化(√)。
2、简单可压缩系统任意过程中对外所作膨胀功均可⽤计算(√)。
pdV计算(x),⽤?dWpsurr3、流动功Δ(pdV)只有在开⼝系统中研究⽓体流动时才需要考虑(√)。
4、q和w是状态参数(x)⼆、选择题1、表达式δQ=dU+δW c 。
(a)适⽤于任意热⼒过程;(b)仅适⽤于准静态过程;(c)仅适⽤于闭⼝系统中的热⼒过程。
2、表达式δQ=dU+pdV适⽤ a1中的 a2。
(a1)闭⼝系;(b1)开⼝系;(c1)闭⼝及开⼝系;(a2)准静过程;(b2)任意热⼒过程;(c2)⾮准静过程。
3、任意准静或⾮准静过程中⽓体的膨胀功均可⽤ b 计算。
(a)pdV;(b)p surr dV;(c)d(pv)。
4、在正循环中?Qδa零,同时?Wδa零。
在逆循环中?Qδ c 零,且?Wδ c 零(a)⼤于;(b)等于;(c)⼩于。
三、习题2-1 0.5kg 的⽓体,在汽缸活塞机构中由初态p 1=0.7MPa 、V 1=0.02m 3,准静膨胀到V 2=0.04m 3。
试确定在下列各过程中⽓体完成的功量及⽐功量;(1)定压过程;(2) pV 2=常数。
解:(1)由准平衡过程体积变化功的表达式,当为定压过程时:W=p △V=0.7×106×0.02=14000 J=14 kJ ⽐功量 w= p △v=W/m=14000/0.5=28000 J=28 kJ(2)pV 2=0.7×106×0.022=280 J 〃m 3由准平衡过程体积变化功的表达式W=dV V pdv v v ??=04.002.0228021=7000 J=7 kJ⽐功量 w= p △v=W/m=7000/0.5=14000 J=14 kJ 2-2为了确定⾼压下稠密⽓体的性质,取2kg ⽓体在25MPa 下从350K 定压加热到370K ,⽓体初终状态下的容器分别为0.03 m3及0.035 m 3,加⼊⽓体的热量为700kJ ,试确定初终状态下的热⼒学能之差。
工程热力学(第五版)课后习题答案(全章节)

工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J •(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压入的CO2的质量。
当地大气压B =101.325 kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22(2) 27311+=t T (3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。
工程热力学第2章课后习题答案

2016.09.27 工热第 02 章课后作业2-1一汽车在1h内消耗汽油34.1L,已知汽油的发热量为44000kJ/kg,汽油密度为750kg/m3。
测得该车通过车轮输出的功率为64kW,试求汽车通过排气、水箱散热等各种途径所放出的热量。
解:34.1 10 -3 750 44000 10 3 5P油==3.1258 10 W3600P散热=P油P车 3.1258 10 5 64 10 =3.1258 10 35W 点评:大家做题的时候,所有不标准的单位全部换算到国际制单位,不要出现 kJ/h 这种写法。
2-10 空气在压气机中被压缩,压缩前空气的参数是p1=0.1MPa、v1=0.845m3/kg;压缩后的参数是p2=0.8MPa、v2=0.175m3/kg。
设在压缩过程中 1kg 空气的热力学能增加 139.0kJ,同时向外放出热量 50kJ。
压气机每分钟产生压缩空气 10kg。
试求:(1)压缩过程中对1kg 空气作的功;(2)每产生 1kg 压缩空气所需的功(技术功);(3)带动此压气机要用多大功率的电动机?解:Q U w w Q U 50 103 139 10 3 1.89 10 5Jd pv p v v p d d w w t pv 1.89 10 5 0.8 10 6 0.1750.1 10 60.845 2.445 10 5JP C q w mt 2.445 10 5 4.075 10 4 W2-19 医用氧气袋中空时呈扁平状态,内部容积为零。
接在压力为 14Mpa、温度为 17℃的钢质氧气瓶上充气。
充气后氧气袋隆起,体积为 0.008m3,压力为 0.15MPa,由于充气过程很快,氧气袋与大气换热可以忽略不计,同时因充入氧气袋内的气体质量与钢瓶内的气体质量相比甚少,故可以认为钢瓶内氧气参数不变。
设氧气可以视为理想气体,其热力学能可表示为u=0.657{T}k kJ/kg,焓与温度的关系为h=0.917{T}k kJ/kg,求充入氧气袋内氧气的质量。
热工第二章习题课

习题
课 稳定流动能量方程式的应用
7. 现有两股温度不同的空气,稳定地流过如图所示
的设备进行绝热混合, 以形成第三股所需温度的空
气流。各股空气的已知参数如图中所示。
设空气可按理想气体计,其焓仅是温度的函数,
(3)燃气在喷管出口处的流速 c f 3' 是多少? (4)燃气轮机的功率为多大?
(5)燃气轮机装置的总功率为多少?
Tutorial
Expansion work, useful work
9. Consider the expansion of air inside a cylinder. Let the initial volume be 0.025 m3 and the initial pressure be 10MPa. Let the expansion process be quasi-static and let the path be given by pV1.4 =constant. If the final volume of the gas is 0.20 m3, determine (a) the total amount of work done by the gas; (b) the amount of work done by the gas against the spring.
工程热力学与传热学
工程热力学 第二章 热力学第一定律
习题
习题
课 闭口系统能量方程式的应用
1. 一活塞汽缸设备内装有5kg的水蒸气,由初态
的热力学能 u1=2709.0kJ/kg 膨胀到 u2=2659.6kJ/kg,过程中加给水蒸气的热量 为80kJ,通过搅拌器的轴输入系统18.5kJ的
工程热力学第四版(高教版)课后习题答案

4
工程热力学第 4 版习题解
(2)
+ + + 2
a
w = 1 pdV =
pdV + 1
2
pdV a
+ + =
a (0.4 0.5V ) × 610 dV + (0.4 0.5 × 0.6) × 106
1
dV
2 a
0.5 = [0.4(Va V1 ) 2 (Va 2
V21
) + 0.1× (V2
1-7 用斜管压力计测量锅炉烟道烟气的真空度(如图 1-24)管子
3
3
管中液柱长度 l = 200mm 。当地大气压力 pv = 745mmHg 。求烟气的
真空度(以 mmH2O 表示)及绝对压力(以 Pa 表示)。 解:倾斜式压力计上读数即烟气的真空度
pv = l sin g
3
3
因1Pa
=
(2)过程中气体先循{ }p MPa = 0.4 0.5{V }m3 膨胀到Va = 0.6m3 ,再维持压力不变,膨胀
到V2 = 0.8m3 。分别求出两过程中气体作出的膨胀功。
解:(1)
+ + 2
W=
pdV =
1
pV 2 V 1 dV
=
p1V1
ln
V2 V1
= 0.2 ×160 Pa × 0.4m3 ×0l.8nm3 = 5.54 ×140 J 0.4m3
工程热力学第 4 版习题解
工程热力学第 4 版习题解
本题解是沈维道、童钧耕编写高等教育出版社出版的“十一五”国家级规划教材 《工程热力学》第 4 版的配套资料。本题解提供的解法是从教学的角度出发的, 未必是唯一的或是最好的,题解中出现的错误恳请读者批评指正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于4-1过程: 因为该过程为定容过程,无体积变化,因此W4 = 0 所以全过程的净功为:
3、如图所示的气缸,其内充以空气。气缸截面积为100cm2,活塞及其 上重物的总重为200kg,活塞初始位置距底面8cm。大气压力为0.1MPa, 温度为25℃,气体与环境处于平衡状态。现在把重物取走100kg,活塞 将突然上升,最后重新达到平衡。若忽略活塞与气缸间的摩擦,气体与 外界可充分换热,试求活塞上升的距离和气体与外界的换热量。
0.8 106
(0.0328)1.4
1 0.4
1 0.020.4
1 0.03280.4
14354
J/kg
W3 mv3 8 (14354) 1.15105 J
1、某闭系中8kg理想气体经历了4个过程,1-2和3-4为绝热过 程,变化规律为pv1.4 = const,2-3和4-1为定容过程。已知p1 = 5 MPa,v1 = 0.02 m3/kg,p2 = 2.5 MPa,p3 = 0.8 MPa。试计 算各过程的体积功及全过程的净功。
V
2.962105 8104 ln 1.196103 ln 8104 95.29 J
又因为在该过程中,气缸内气体温度不变,因此气缸被气体的内能变化量为: U 0
忽略活塞与气缸的摩擦的损耗,系统对外所作的功仅有膨胀功,因此
Q U W 0 95.29 95.29 J
3、如图所示的气缸,其内充以空气。气缸截面积为100cm2,活塞及其 上重物的总重为200kg,活塞初始位置距底面8cm。大气压力为0.1MPa, 温度为25℃,气体与环境处于平衡状态。现在把重物取走100kg,活塞 将突然上升,最后重新达到平衡。若忽略活塞与气缸间的摩擦,气体与 外界可充分换热,试求活塞上升的距离和气体与外界的换热量。
解:(1)上升的距离 由题意设:外界大气压为pb,重物取走前,气缸内的气压为 p1。取走100kg重物后,当系统重新达到平衡后气缸内的气压 为p2,则有:
式中,pb = 0.1 MPa,m1 = 200 kg,m2 = 100 kg,A = 100 cm2。 代入上式有:
所以
p1 = 2.962×105 Pa,p2 = 1.981×105 Pa
又由题意可知:气体与外界可充分换热,而外界温度值为
25℃,因此气缸内气体的温度也不会变,
3、如图所示的气缸,其内充以空气。气缸截面积为100cm2,活塞及其 上重物的总重为200kg,活塞初始位置距底面8cm。大气压力为0.1MPa, 温度为25℃,气体与环境处于平衡状态。现在把重物取走100kg,活塞 将突然上升,最后重新达到平衡。若忽略活塞与气缸间的摩擦,气体与 外界可充分换热,试求活塞上升的距离和气体与外界的换热量。
假定活塞上升过程是一个系统温度不变的过程。由于
V1 = h1A = 8×10−2×100×10−2 = 8×10−4 m3
V2 = h2A = 11.96×10−2×100×10−2 = 1.196×10−3 m3
故气体在此过程中所做的功为:
W
2
pdv
PV 1.196103 dV 1 1
1
8104
解:
w1
2 1
pdv
2 1
p1v11.4 v1.4
dv
p1v11.4
0.0328 dv v 0.02 1.4
5 106
(0.02)1.4
1 0.4
1 0.03280.4
1 0.020.4
44883
J/kg
W1 mv1 8 44883 3.59105 J
1、某闭系中8kg理想气体经历了4个过程,1-2和3-4为绝热过 程,变化规律为pv1.4 = const,2-3和4-1为定容过程。已知p1 = 5 MPa,v1 = 0.02 m3/kg,p2 = 2.5 MPa,p3 = 0.8 MPa。试计 算各过程的体积功及全过程的净功。
解:
对于2-3过程:
因为该过程为定容过程,无体积变化,因此W2 = 0 对于3-4过程:
因为V3 = V2 = 0.0328 m3/kg,V4 = V1 = 0.02 m3/kgk 所以该过程的体积功为:
w3
4 3
pdv
4 3
p3v31.4 dv v1.4
p3v31.4
0.02 dv v 0.0328 1.4
故该过程的体积功为:
1、某闭系中8kg理想气体经历了4个过程,1-2和3-4为绝热过 程,变化规律为pv1.4 = const,2-3和4-1为定容过程。已知p1 = 5 MPa,v1 = 0.02 m3/kg,p2 = 2.5 MPa,p3 = 0.8 MPa。试计 算各过程的体积功及全过程的净功。
工程热力学第二章习题课
1、某闭系中8kg理想气体经历了4个过程,1-2和3-4为绝热过 程,变化规律为pv1.4 = const,2-3和4-1为定容过程。已知p1 = 5 MPa,v1 = 0.02 m3/kg,p2 = 2.5 MPa,p3 = 0.8 MPa。试计 算各过程的体积功及全过程的净功。
解:
所以
p1V1 p2V2 TT
即
p1h1A p2h2 A
故
p1h1 p2h2
将 p1 和 p2 代入前式,得:
2.962×105×8×10−2 = 1.981×105×h2
求得
h2 = 11.96 cm
所以活塞上升的距离为
h h2 h1 11.96 8 3.96 cm
3、如图所示的气缸,其内充以空气。气缸截面积为100cm2,活塞及其 上重物的总重为200kg,活塞初始位置距底面8cm。大气压力为0.1MPa, 温度为25℃,气体与环境处于平衡状态。现在把重物取走100kg,活塞 将突然上升,最后重新达到平衡。若忽略活塞与气缸间的摩擦,气体与 外界可充分换热,试求活塞上升的距离和气体与外界的换热量。 (2)换热量——解法一
解:
由题意知:对于1-2和3-4过程,系统只做体积功, 与外界无热传递,而对于2-3和4-1过程,由于无体 积的变化,系统只有热量传递,但不做功。
对于1-2过程:
因为
pv1.4 = const,即p1v11.4 = p2v21.4
所以
5×(0.02)1.4 = 2.5×v21.4,求得
v2 = 0.0328 m3/kg