第五章 结构位移计算习题

合集下载

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(静定结构位移计算虚力法)【圣才出品】

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(静定结构位移计算虚力法)【圣才出品】

第5章静定结构位移计算的虚力法
5.1 复习笔记
本章重点介绍了虚力法的原理以及如何运用虚力法对不同结构在各种荷载作用下的指定位移进行求解。

遵循“化整为零、积零为整”的思想,对结构的局部位移公式进行了分项讨论,在虚力法的指导下叠加组成了结构的整体变形公式,随后将虚力法升华到了对广义单位荷载的设定以及对广义位移的求解;通过引入图乘法,结构的弯矩变形公式的求解变得更加快捷且精确;最后介绍了温度影响下结构的位移求解并归纳了线性变形体系的四个互等定理。

一、虚力法求刚体体系的位移(见表5-1-1)
表5-1-1 虚力法求刚体体系的位移
图5-1-1
二、虚力法求静定结构的位移(见表5-1-2)
表5-1-2 虚力法求静定结构的位移
表5-1-3 广义位移分类
三、两个对偶解法——虚力法求位移、虚位移法求内力(见表5-1-4)
表5-1-4 两个对偶解法——虚力法求位移、虚位移法求内力
四、荷载作用时静定结构的弹性位移计算(见表5-1-5)
表5-1-5 荷载作用时静定结构的弹性位移计算
五、图乘法(见表5-1-6)
表5-1-6 图乘法
图5-1-2 六、温度改变时静定结构位移计算(见表5-1-7)。

结构力学I-第五章 虚功原理与结构位移计算(荷载位移,图乘法)

结构力学I-第五章 虚功原理与结构位移计算(荷载位移,图乘法)

局部变形时静定结构的位移计算
⑴ 在要求的位移处,施加相应的单位荷载; ⑵ 利用力平衡条件,求出局部变形处对应的 内力M,FN,FQ; ⑶ 由虚力方程解出拟求位移: dΔ = ( Mκ + FNε + FQγ0 ) ds
Page 7
Δ A 1
B M
θ
14:32
LOGO
结构体位移计算的单位荷载法
真实荷载 弯曲 剪切
A
x
虚设荷载
B
b 截面参数 1 bh3 I=— 12 A =bh,k = 1.2
ql 4 1 2 qx dx 1.5 0 x Ebh3 2
l
变形类型
M P 0.5qx2
M x
FQP qx
F Q 1
MM P 1 ⑴ 弯曲变形引起的位移 M ds EI EI
Page 12
14:32
LOGO
荷载作用下的位移计算及举例
k F Q FQP F N FNP MM P ds ds ds EI EA GA
弯曲变形 拉伸变形 剪切变形
各类结构的位移公式
各类结构中三种变形的影响所占比重各不相同,故可简化; 例5-3 试求图示悬臂梁在A端的竖直 位移 Δ ,并比较弯曲变形和剪切变 形对位移的影响。设梁的截面为矩 形,泊松比1/3。 解:应用单位荷载法 A 1 q A x B
单位荷载法
单位荷载法求刚体体系位移
虚力原理
⑴ 虚力方程,实质为几何方程;
⑵ 虚力与实际位移状态无关,故可设 单位广义力 P = 1;单位荷载法 ⑶ 关键是找出找出虚力状态的静力平
衡关系。
Page 6
14:32

第四、五、六章练习题答案

第四、五、六章练习题答案
13.图3-18所示结构Qc影响线的CD段为斜直线。(×)
图3-18
14.利用影响线,求得结构在图3-20所示荷载作用下,C截面的剪力等于-20kN。(×)
15.结构的附属部分某截面某量值的影响线在基本部分的影响线竖标为零。(√)
第六章力法
1.超静定结构中有几个多余约束就有几个建立力法方程的变形条件。(√)
7.图3-14a所示梁的剪力图,竖标 是截面C左的剪力值,图3-14b是截面C的剪力影响线,竖标- 也是表示在移动荷载作用下截面C左的剪力值。(×)
图3-14
8.图3-15b可以代表图3-15a所示梁EF段任意截面的剪力影响线。(√)
图3-15
9.任何静定结构的支座反力、内力影响线,军事有一段或是数段直线组成。(√)
2.力法方程中的主系数的符号在任何情况下都取正值。(√)
3.把超静定结构的基本未知力求出来后,画最后内力图时,实际上是在画静定结构的内力图。(√)
4.图5-14所示超静定结构当支座A发生位移时,构建CD不会产生内力。(√)
图5-14
5.对图5-15(a)所示超静定刚架,若进行内力分析时采用5-15b所示的基本结构,并画出了最后的内力图,当计算C点的竖向位移时可选用图5-15 C所示的基本结构。(√)
2.剪力的结构包络图表示梁在已知荷载作用下各截面剪力可能变化的极限范围。(√)
3.静定桁架的影响线在结点之间必是一条直线。(√)
4.下图3-10所示两根梁的MC影响线不相同。(×)
图3-10图3-11
5.同4题图所示两根梁的QC影响线不相同。(√)
6.图3-11所示单位荷载在AB区间移动,绘制界面C的某内力影响线时,也应限制在AB区间内。(√)
10.静定梁某截面弯矩的临界荷载位置一般就是最不利荷载位置。(×)

第五章 结构位移计算

第五章  结构位移计算

8
1 虚功原理回顾
1. 功的定义: 功=力×力作用点沿其方向的位移
F A S B F
W F cos S 常力功
F

1 W F 2
变力功
9
其他形式的力或力系所作的功也用两个因子的 乘积表示为:功=广义力×广义位移
1)作功的力系为一个集中力
F
2)作功的力系为一个集中力偶
W F
虚拟状态
24
1
广义力与 广义位移对应
练习:
Fp=1
C Fp=1 B
求C点竖向位移
求B点水平位移
A
Fp=1 B
Fp=1
A
Fp=1
B Fp=1
求A、B两点 相对竖向位移
求A、B两点 相对水平位移
3 静定结构在荷载作用下的位移计算
1. 公式
当结构只受到荷载作用时,求K点沿指定方向的位 移△KP,此时没有支座位移,故一般公式为
注意:1.适用于任何类型的结构,弹性、非弹性、线性、非线性;
2. 外力与虚位移相互独立,两者毫不相干,虚位移 由其它原因引起,外力在此虚位移上做虚功。
实际应用时两种情形:
a) 给定力状态,另设一位移状态,用虚功方程求力状态 的未知力,称为虚位移原理;
b)给定位移状态,另设一力状态,用虚功方程求位移状态的 18 未知位移,称为虚力原理。
第五章 虚功原理与结构位移
1
“位移”是连接静定结构与超静定 结构之间的桥梁和纽带
前面所学五种静定结构(梁,刚架,拱,桁架 ,组合结构) 的内力计算可归结为强度问题, 而结构力学的重要任务之一是解决刚度问 题——结构位移计算. 本章要讨论各种杆件结构的位移计算, 依据虚功原理.先推导出杆件结构位移计算 的一般公式,再讨论具体结构的位移.

结构力学I-第五章 虚功原理与结构位移计算(温度位移、虚功、互等)

结构力学I-第五章 虚功原理与结构位移计算(温度位移、虚功、互等)

温度改变时的位移计算
结构位移计算的一般公式
普遍性
Δ = ∑ ∫ ( Mκ + FNε + FQγ0 ) ds- ∑FRK·cK
⑵ 变形因素:荷载、温度改变或支座移动引起的位移;
温度改变的位移计算公式
应用背景
Page 10
14:26
LOGO
温度改变时的位移计算
温度改变的位移计算公式
基本假设
FQ FN
dFN
pdx
0
dFQ qdx 0
dM FQdx 0
• 集M M 0 0
M
FQ FN
M
Page 22
q
FQ+ dFQ
p
FN+ dFN
O
x
M+ dM dx
y
dx
M0 O
Fx
Fy y
FQ+ ΔFQ FN+ ΔFN x
M+ ΔM
14:26
D 1
α=1×10-5,求D点的竖向位移ΔDV。
2m 2m
解:⑴ 在D点作用一向上的单位力F=1,
4m
作弯矩图 M 和轴力图 F N;
⑵ 由于各杆 α,t0,Δt,h 相同,
故可先计算
+1
1
M ds
1 2
4
4
4
4
24(m2
)
M
FN
F Nds 1 2 1 4 2(m)
Page 15
14:26
LOGO
结构力学I
第五章 虚功原理与 结构位移计算
2021年4月15日
LOGO
3-12(g)
指出弯矩图错误并改正;
作业点评

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(中册)-第五章【圣才出品】

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(中册)-第五章【圣才出品】

第5章静定结构位移计算的虚力法
5.1复习笔记
本章重点介绍了虚力法的原理以及如何运用虚力法对不同结构在各种荷载作用下的指定位移进行求解。

遵循“化整为零、积零为整”的思想,对结构的局部位移公式进行了分项讨论,在虚力法的指导下叠加组成了结构的整体变形公式,随后将虚力法升华到了对广义单位荷载的设定以及对广义位移的求解;通过引入图乘法,结构的弯矩变形公式的求解变得更加快捷且精确;最后介绍了温度影响下结构的位移求解并归纳了线性变形体系的四个互等定理。

一、虚力法求刚体体系的位移(见表5-1-1)
表5-1-1虚力法求刚体体系的位移
二、虚力法求静定结构的位移(见表5-1-2)
表5-1-2虚力法求静定结构的位移
表5-1-3广义位移分类
三、两个对偶解法——虚力法求位移、虚位移法求内力(见表5-1-4)
表5-1-4两个对偶解法——虚力法求位移、虚位移法求内力
四、荷载作用时静定结构的弹性位移计算(见表5-1-5)
表5-1-5荷载作用时静定结构的弹性位移计算。

郑州大学远程 结构力学 练习及答案 本科 闭卷

郑州大学远程  结构力学  练习及答案 本科 闭卷

第二章 平面体系的几何组成分析练习题:1、判断题多余约束是体系中不需要的约束。

(C ) 瞬变体系在很小的荷载作用下会产生很大的内力,所以不能作为结构使用。

( D ) 两根链杆的约束作用相当于一个单铰。

( C ) 每一个无铰封闭框都有三个多余约束。

( D ) 连接四个刚片的复铰相当于四个约束。

( C )图示体系是由三个刚片用三个共线的铰ABC 相连,故为瞬变体系。

( C ) 图示体系是由三个刚片用三个共线的铰ABC 相连,故为瞬变体系。

( C )@2、单项选择题/将三刚片组成无多余约束的几何不变体系,必要的约束数目是几个 ( D ) A 2B 3C4D 6 三刚片组成无多余约束的几何不变体系,其联结方式是( B )A 以任意的三个铰相联B 以不在一条线上三个铰相联C 以三对平行链杆相联D 以三个无穷远处的虚铰相联 瞬变体系在一般荷载作用下( C )A 产生很小的内力B 不产生内力C 产生很大的内力D 不存在静力解答@题图从一个无多余约束的几何不变体系上去除二元体后得到的新体系是 ( A )A 无多余约束的几何不变体系B 有多余约束的几何不变体系 ,C 几何可变体系D 几何瞬变体系图示体系属于( A )A 静定结构B 超静定结构C 常变体系D 瞬变体系图示体系属于(C )*A无多余约束的几何不变体系 B 有多余约束的几何不变体系C 有多余约束的几何可变体系D 瞬变体系 不能作为建筑结构使用的是( D )A 无多余约束的几何不变体系B 有多余约束的几何不变体系C 几何不变体系D 几何可变体系 一根链杆( D ) A 可减少两个自由度 B 有一个自由度C 有两个自由度D 可减少一个自由度图示体系是( D )A瞬变体系B有一个自由度和一个多余约束的可变体系%C 无多余约束的几何不变体系`图示体系是(B )A 瞬变体系B 有一个自由度和一个多余约束的可变体系C 无多余约束的几何不变体系D 有两个多余约束的几何不变体系下列那个体系中的1点不是二元体( C )\题图题图 题图题图…对图示体系进行几何组成分析。

龙驭球《结构力学》笔记和课后习题(含真题)详解(虚功原理与结构位移计算)

龙驭球《结构力学》笔记和课后习题(含真题)详解(虚功原理与结构位移计算)

为:
MM P ds NNP l
例如图 5-1a 中的静定梁,支座 A 向上秱动一个已知距离 c1 ,现在拟求 B 点的竖向位秱 。
(a)
1 / 52
圣才电子书

十万种考研考证电子书、题库视频学习平台
(b)
图 5-1
位秱状态已给定,力系则可根据我们的意图来假设。在拟求位秱 的方向设置单位荷载,
根据平衡条件,可得支座 A 的反力 F R1 = b ,虚设平衡力系在实际刚体位秱上作虚功,虚 a
详细介绍“图乘法”的使用。
2.各类结构的位秱公式
(1)梁和刚架:因为弨矩起兰键作用,计算时可忽略轴力和剪力的影响,即简化为:
MM P EI
ds
(5-6)
(2)桁架:桁架一般只受轴力作用,可以忽略剪力和弨矩的影响,即简化为:
NNP ds NNP ds NNPl
EA
EA
EA
(5-7)
(3)桁架混合结构:有轴力杆和梁式杆兯同作用,计算可以忽略剪力的影响,即简化
3 / 52
圣才电子书 十万种考研考证电子书、题库视频学习平台

③构件在制作过程中的误差,使结构在装配后出现形变;
④材料的性质随时间变化也会引起形变。
其中,前三种因素是工程中经常会遇到的引起结构变形的主要因素。
(2)对结构求位秱计算的目的有二
①确定结构的刚度;
②用于超静定结构的内力计算。
对于公式(5-4)中的 可以是求某点某方向线位秱、戒者某截面的角位秱,也可以求
某两个截面的相对线位秱和相对角位秱,这些引申理解为广义位秱。在求广义位秱时,则需
4 / 52
圣才电子书 十万种考研考证电子书、题库视频学习平台
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、判断题
1.1 结构发生了变形,必然会引起位移,反过来,结构有位移必然有变形发生。

1.2 无法用图示单位荷载,来求图示结构中K点的全位移。

1.3 图示斜梁与水平梁弯矩图相同,刚度相同,所以两者的位移也相同。

1.4 图示两个图形相乘的结果是
1.5 判断下列图乘结果正确与否。

①②③④⑤⑥
1.6 已知图(a)结构的弯矩图,得到图(b)所示同一结构由于支座A的转动引起的C点的挠度等于
1.7 某桁架支座B被迫下沉5mm,并测得下弦结点相应的挠度如题1.7(a)图所示,此时桁架上无其它荷载。

题1.7(b)图所示荷载作用下引起的支座B的反力为30kN。

1.8 图示虚拟力状态可求出AB两点的相对水平位移的cosβ倍。

1.9 鱼腹梁、等强度梁不能用图乘法求位移。

1.10拱和曲梁不能用图乘法求位移。

二、单项选择题
2.1 图示同一结构的两种状态,根据位移互等定理下列式子正确的是
A Δ1=Δ3
B θ2=θ4
C Δ3=θ2
D Δ1=θ4
2.2 图示同一结构的两种状态,根据位移互等定理下列式子正确的是
A α=γ+θ
B α=θ
C γ=α+β
D θ+γ=α+β
2.3 图示虚拟力状态可求出什么
A A,B两截面的相对位移
B A,B两截面的相对转角
C A,B两截面相对转动的m倍
D A,B两点连线的转动
2.4 建立虚功方程时,位移状态与力状态的关系是
A 彼此独立无关
B 位移状态是由力状态产生的
C 互为因果关系
D 力状态是由位移状态引起的
2.5 图示虚拟力状态可求出什么
A A点线位移
B A点B点相对位移角
C AB杆的转角
D B点线位移
2.6 图示虚拟力状态可求出什么
A A点的线位移
B AB杆的转角
C AB、AC的相对转动
D AC杆的转角
2.7 图示斜梁在均布荷载作用下左支座截面角位移等于
2.8 图示同一结构的两种受力状态,由位移互等定理知:Δ4=
2.9 图示同一结构的两种受力状态,在图(b)结构中B点的水平位移Δ=
2.10 图示结构由于支座移动引起的A点的竖向位移是
A 0.03×2a(↓)
B 0.03×2a(↑)
C 0.03×2a+0.01×2(↑)
D 0.03×2a-0.01×2(↓)
2.11 图示三铰拱的拉杆温度升高tºC,由此引起的C点竖向位移是
A 5aαt/8(↓)
B 4aαt/5(↓)
C 4aαt (↓)
D 3aαt (↑)
2.12 图示结构仅在ABC部分温度升高,下列论述错误的是
A 整个结构不产生内力
B C点水平位移为零
C AB两点的相对位移为零
D C铰左右两截面的相对转角为零
2.13 已知梁(a)B截面的转角为,则梁(b)B截面的转角为
2.14 图示各桁架,C点能发生竖向位移的是
A (b)
B (b) (c)
C (a) (b)
D (a) (c)。

相关文档
最新文档