利用二次函数求三角函数的最值

合集下载

二次函数的最值问题——求线段,三角形周长及面积的最值

二次函数的最值问题——求线段,三角形周长及面积的最值

二次函数的最值问题——求线段,三角形周长及面积的最值摘要:二次函数作为初中最重要的函数,近几年来,中考拉分题常常利用二次函数求线段的最值、三角形周长的最小值及面积的最大值问题。

在解决二次函数的最值问题时,一般构建二次函数模型,通过数形结合把求三角形的周长、三角形面积的最值问题转化为求线段长度的问题。

关键词:二次函数;最值问题;轴对称;数形结合一、将军饮马“K”字形,两点之间线段最短问题1.二次函数与x轴交于点A(-1,0),B(3,0),与y轴交于点C(0,3).在抛物线的对称轴上是否存在一点P,使得的分析:由已知,可求得二次函数的对称轴为,又因为二次函数图像关于对称轴对称可知:A、B两点关于对称,,连接BC与对称轴的交点为所求P点,则,所以CH+EH的最小值为。

小结:利用二次函数求两线段和的最小值问题,我们通常是作其中一点关于对称轴的对称点,连接对称点与另一点得到的线段长度为我们所求的两线段和的最小值。

变式1.如问题1改为:的周长是否存在最小值?若存在,请求出的周长;若不存在,请说明理由。

分析:延伸1看起来跟问题1不一样,但实际上,万变不离其宗。

,已知A,C两点坐标,由勾股定理可得,,题目中要求周长的最小值可转化为求的最小值,也就转化为问题1,即:,问题2.如图,直线与抛物线交于点A(0,3),B(3,0) ,点F是线段AB上的动点,FE x轴,E在抛物线上,若点F的横坐标为m,请用含m的代数式表示EF的长并求EF的最大值。

分析:利用E、F分别在抛物线及一次函数上可得到,,因为,所以,可求得当时,EF的最大值为小结:利用二次函数求竖直线段的最大值,一般是通过设未知数表示出二次函数及一次函数图像上的两点,由横坐标相等,利用两点纵坐标相减可得到线段的长度,再利用二次函数求最值方法可求出线段的最大值。

变式1:问题2改为过E作,求的最大值是多少?分析:因为该一次函数,可知为等腰直角三角形,,要求的最大值只需求得的最大值,由此就转化为问题2,所以小结:求斜线段的最大值问题,一般转化为求平行于y轴线段的最值问题,再利用三角函数可求得斜线段的最大值。

如何利用二次函数求解最值问题

如何利用二次函数求解最值问题

数学篇数苑纵横与二次函数有关的最值问题是中考数学中的一个重难点,常与几何图形、三角函数、实际问题等相结合,考查同学们的空间想象能力和逻辑推理能力.不少同学面对这类最值问题时觉得难以下手,但只要我们认真阅读题目,理解问题的实质,构建出二次函数,再运用二次函数的有关性质即可使问题顺利得解.一、求解实际生活中的最值问题在实际生活中,我们总是追求利益最大或者是成本最低,从数学角度看,就是在特定条件下求目标函数的最大值或者最小值.运用二次函数求解实际生活中的最值问题,关键在于如何构建正确的二次函数模型.解题时应把握以下两点:其一,认真审题,提炼出有用信息;其二,根据题干描述以及自身生活经验,通过合理的抽象确定常量与变量间的函数关系,建立函数模型,然后结合模型和实际情况求得最大值或最小值.需要注意的是,实际问题中二次函数的最大值或最小值不一定在图象的顶点处取得,若顶点的横坐标不在自变量的取值范围内,则要借助函数的增减性来求最大值或最小值.例1某商品的进价为每件50元,售价为每件60元,每个月可卖出200件,如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?解:(1)设每件商品的售价上涨x 元(x 为正整数),则每件商品的利润为:(60-50+x )元,总销量为:(200-10x )件,商品利润为:y =(60-50+x )(200-10x ),=(10+x )(200-10x ),=-10x 2+100x +2000.∵原售价为每件60元,每件售价不能高于72元,∴0<x ≤12且x 为正整数;(2)y =-10x 2+100x +2000,=-10(x 2-10x )+2000,=-10(x -5)2+2250.故当x =5时,最大月利润y =2250元.这时售价为60+5=65(元).点评:此题主要考查了二次函数的应用及二次函数的最值问题.根据每天的利润=一件的利润×销售量,建立函数关系式.借助二次函数解答实际问题是解题关键.例2李大爷利用坡前空地种植了一片优质草莓.根据市场调查,在草莓上市销售的30天中,其销售价格m (元/公斤)与第x 天之间满足m =ìíî3x +15(1≤x ≤15),-x +75(15<x ≤30).(x 为正整数),销售量n (公斤)与第x 天之间的函数关系如图1所示:图1如果李大爷的草莓在上市销售期间每天如何利用二次函数求解最值问题山西临沂周立恒23数学篇数苑纵横的维护费用为80元.(1)求日销售量n 与第x 天之间的函数关系式;(2)求在草莓上市销售的30天中,每天的销售利润y 与第x 天之间的函数关系式;(日销售利润=日销售额-日维护费)(3)求日销售利润y 的最大值及相应的x .解:(1)当1≤x ≤10时,设n =kx +b ,由图可知ìíî12=k +b ,30=10k +b ,解得ìíîk =2,b =10,∴n =2x +10同理得,当10<x ≤30时,n =-1.4x +44,∴销售量n 与第x 天之间的函数关系式:n =ìíî2x +10(x ≤x ≤10),-1.4x +44(10<x ≤30),(2)∵y =mn -80,∴y =ìíîïï(2x +10)(3x +15)-80(x ≤x ≤10),(-1.4x +44)(3x +15)-80(10<x <15),(-1.4x +44)(-x +75)-80(15≤x ≤30),整理得,y =ìíîïï6x 2+60x +70,(1≤x ≤10),-4.2x 2+111x +580,(10<x <15),1.4x 2-149x +3220,(15≤x ≤30),(3)当1≤x ≤10时,∵y =6x 2+60x +70的对称轴x =-b 2a=602×6=-5,∴此时,在对称轴的右侧y 随x 的增大而增大,∴当x =10时,y 取最大值,则y 10=1270当10<x <15时,∵y =-4.2x 2+111x +580的对称轴是直线x =111-4.2×2=1118.4≈13.2<13.5,∴当x =13时,y 取得最大值,此时y 13=1313.2;当15≤x ≤30时,∵y =1.4x 2-149x +3220的对称轴为直线x =1492.8>30,∴此时,在对称轴的左侧y 随x 的增大而减小∴x =15时,y 取最大值,y 的最大值是y 15=1300,综上,草莓销售第13天时,日销售利润y 最大,最大值是1313.2元.点评:本题在确定函数最大值时,由于此函数是分段函数,所以要分三种情况讨论.第二种情况中顶点的横坐标在自变量取值范围内,可以利用顶点坐标公式来确定函数的最大值;而第一种情况和第三种情况中顶点的横坐标都不在自变量取值范围内,因此必须利用函数的增减性来确定函数的最大值.分别求出三种情况中的最大值后,还要通过比较确定日销售利润的最大值.二、求解几何图形中的最值问题解答几何图形中的最值问题一般根据已知条件设置相关参数,构建对应的函数模型,再借助函数的性质进行解答.构建二次函数求解几何图形中的最值问题时,要全面观察几何图形的结构特征,挖掘出相应的内在性质,综合运用所学的知识,如勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等,寻求等量关系构造出二次函数,结合二次函数性质计算出最终结果.同时,为保证求解最值问题的正确性,应明确自变量的取值范围.例3如图2,梯形ABCD 中,BC ∥AD ,AB =BC =CD =6,∠D =60°,E 、F 分别为BC 、CD 上两个动点(不与端点重合),且∠AEF =120°,设BE =x ,CF =y .(1)求y 与x 的函数关系式;(2)x 取何值时,y 有最大值,最大值是多少?24数学篇数苑纵横图2解:(1)∵AB =BC =CD =6,BE =x ,CF =y ,∴EC =6-x ,∵BC ∥AD ,∴∠C +∠D =180°,又∠D =60°,∴∠C =120°,∴∠CEF +∠CFE =60°,又∠AEF =120°,∴∠CEF +∠AEB =60°,∴∠CFE =∠AEB ,又梯形ABCD 中,BC ∥AD ,AB =CD ,∴∠B =∠C ,∴△ABE ∽△ECF ,∴AB EC =BE CF,即66-x =x y,∴y =-16x 2+x ;(2)函数y =-16x 2+x =-16(x -3)2+32为开口向下的抛物线,由0<x <6可知,当x =3时,y 有最大值,y 的最大值为32.点评:本题的思路为通过已知条件得出相似三角形,由相似三角形的比例式,进而列出y 与x 的函数关系式,最后根据二次函数求最值的方法求出y 的最大值及此时x 的值.同学们在求二次函数最值时一定要注意自变量x 的范围.例4如图3,在△ABC 中,AB =10,AC =25,∠ACB =45°,D 为AB 边上一动点(不与点B 重合),以CD 为边长作正方形CDEF ,连接BE ,则△BDE 面积的最大值等于.图3图4解:如图4,过点E 作EM ⊥BA 于M ,过点C 作CN ⊥BA 交BA 的延长线于N ,过点A 作AH ⊥BC 于H .在Rt△ACH 中,∵∠AHC =90°,∠ACH =45°,AC =25,∴AH =CH =AC ⋅cos 45°=10,在Rt△ABH 中,∵∠AHB =90°,AB =10,AH =10,∴BH =AB 2-AH 2=102-(10)2=310,∴BC =BH +CH =410,∵S △ACB =12⋅BC ⋅AH =12⋅AB ⋅CN ,∴CN =4,在Rt△ACN 中,AN =AC 2-CN 2=(25)2-42=2,∴BN =BA +AN =12,设BD =x ,则DN =12-x ,∵四边形EFCD 是正方形,∴DE =DC ,∠EDC =∠EMD =∠DNC =90°,∴∠EDM +∠ADC =90°,∠ADC +∠DCN =90°,∴∠EDM =∠DCN ,∴△EMD ≌△DNC (AAS),∴EM =DN =12-x ,∴S △DBE =12⋅BD ⋅EM =12⋅x ⋅(12-x )=12x 2+6x =-12(x -6)2+18,∵-12<0,∴当x =6时,△BDE 的面积最大,最大值为18.故答案为18.点评:本题是一道几何函数题,考查了正方形的性质,解直角三角形等知识.求解时应从几何图形入手,充分利用几何图形的性质构造出函数关系,如本题以三角形的面积公式构建二次函数,再利用二次函数的性质解题.25。

概述初中数学三角函数值的计算方法

概述初中数学三角函数值的计算方法

概述初中数学三角函数值的计算方法1三角函数求值的计算方法1.1利用三角函数的定义1.2 三角函数具有六种基本函数:正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y1.3 一些特殊的三角函数值:Sin=1/2; sin=;sin=Cos=;cos=;cos=1/2tan=;tan=1;tan=1.4 三角函数的基本展开公式:sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos (A+B) = cosAcosB-sinAsinBcos (A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)2 三角函数求最值最近几年,高考三角函数的题型由原来的恒等式证明改为求值,常见题型有三种:给出一个比较简单的三角函数式的值,求一个比较复杂的三角函数式的值;考察三角变换问题;三角形中的求值问题。

解上述三种类型题应注重四点:要严格讨论角的范围;选择的公式与解题方向必须吻合;要熟悉变换方向;要掌握变换技巧。

三角函数的最值有以下几种求法:利用二次函数求最值,利用三角函数的有界性求最值,换元法求最值。

3 如何学好三角函数数学教学一般可分为概念教学、命题(主要有定理、公式、法则、性质)教学、例题教学、习题教学、总结与复习等五类。

相应地,数学学法指导的实施亦需分别落实到这五类教学之中。

这里仅就例题教学中如何实施数学学法指导谈几点认识。

3.1根据学习目标和任务精选例题例题的作用是多方面的,最基本的莫过于理解知识、应用知识、巩固知识,莫过于训练数学技能、培养数学能力、发展数学观念。

高三数学三角函数的最值问题

高三数学三角函数的最值问题
四、作业:
;网络招生管理系统 网络招生管理系统 ;
炼器至尊,九品下の实力,凭借手中奇异の宝物,实力居然能比九品上! 风月君主从不参与各大势力の纷争,就算风月大陆各大世家明争暗斗,他都很少管.只要不触犯他订下の几条规矩就没事,一心钻研炼器,所以他炼器の水平已经达到一些极其高深の水平.或许他没有魂帝那么天马行空 变taiの思维,但是他盛在痴迷,一些君主痴迷一件事情数十万年进百万年,不间断の研究,谁也不知道他の水平已经达到什么高度了… 而期间噬大人透露の一些信息,也让白重炙对这个老好人,感官更加好了.恶魔降临之时,一直很少出关の风月君主第一站了出来,开始召集各君主,甚至派 人去了不少秘境请那几位老东西出山.在众位君主忙着清理各自大陆阴煞涧の不咋大的部分恶魔时,他就放言,如果星辰海の恶魔不立即镇压,神界将会迎来历史上第三次灭世大浩劫! 结果…各路巅峰强者,刚准备去风月大陆汇集の时候,妖智开始暴动了! 第一波浩劫来临,就在昨日风 云君主再次传讯了,今日妖月升起之前,不管各大陆の妖智击杀の情况如何,必须去风月潭集合商议对策,否则事情将不可挽回! 所以噬大人给白重炙两天の时候,白重炙听完之后一阵唏嘘.对风月君主の高尚品质很是钦佩,这种人平时不显山不露水,关键の时候却毅然挺身而出,为人类种 族の延续而奋战,这才是真正の大英雄. 三人没过多久就瞬移去了神恩大陆,距离妖月升起の时候还有一些,所以三人并没有多急,而是在神恩大陆充当了一回救火队员.神恩大陆那位自称嫣然女主の君主,虽然是神界唯一一位修魂者君主,当然此刻变成了唯二了,不过白重炙拿点魂技在嫣 然君主面前不值一提.但是毕竟她只是一人,神恩大陆情况很不妙,所以噬大人三人の到来,嫣然君主无比の感激和振奋. 白重炙休息了一不咋大的会,刚刚缓解了一些の精神压力.在神恩大陆战斗了数个数个时辰之后,再次差点灵魂奔溃了. 三位巅峰强者の加入,神恩大陆の妖智攻击在妖 月就要升起之前,终于稳定了下来.四人立即开始传送去风月大陆.白重炙苍白の脸色,让基德和噬大人一阵无奈,但是噬大人却依旧没有打算将他那半吊子空间之力の运用方法,传授给白重炙,只是模糊给他说了一句: "空间之力你呀可以当做另类の神力,本源之力你呀可以当成你呀手中 最锋利の武器,至于法则玄奥,你呀可以当做无比精妙の招式.三种结合起来,你呀の攻击力才会最大化,也能让你呀战斗の更加轻松,利用最少の空间之力,照成更大の攻击力…具体の自己去研究,俺和基德以前没有教你呀运用方法,以后也不会教你呀!" 白重炙虚弱の点了点头,虽然不明 白噬大人为何这么做,但是他知道噬大人不会害他,这就够了! 嫣然君主很少说话,幸运子和夜妖娆差不多,很冷,是这种天然の冷.不过看到白重炙如此样子,虽然没有半句客气感激の话,但是望向白重炙の眸子,已经不再那么冰冷了! 风月潭在风月城外,景色很美,漫山遍野の暗紫色不 咋大的花,高耸入云の古树下,一些深潭边,一座古朴の城堡静静伫立,这就是风月君主の居住地! 白重炙四人来の时候,风月君主亲自前来迎接,白重炙一看果然和基德述说の一模一样,一些老实の不咋大的老头般.丢到炽火城街道内,估计没有人会看第二眼. 风月君主亲自将四人迎进了 古堡内,大殿内有人,有四人.白重炙只认识一些,天启君主莫尚煌,一如既往の大嗓门,爽然性格,亲热笑容.还有三人,有两名仙风道骨の老头,气质飘然,她们几人进来,两人只是淡淡の一笑,点了点头. 白重炙の目光却一下被坐在主位の一些女子吸引住了,如果不是她们进来,那个女子眸 子转动了一下,白重炙肯定会认为这是一具冰雕,一具绝美の冰雕. 冰雪女王出岛了! 并且坐在了风月古堡の主位,似乎她是主人一样.并且所有人包括风月君主都没有半点不满,似乎那是天经地义の事情般. 冰雪女王很冷,甚至噬大人朝她点头,她都没有动一下.宛如一座冰山一样,似乎 对大殿内の这么多君主熟视无睹.偏偏众人感觉还很应该,也习以为常.这场面在白重炙看起来,无比の怪异. 但是,接下来却发生了一幕让所有君主都无比惊恐の事情,就连噬大人都微微错愕の微微张开了不咋大的口,嫣然女主一直很冷の眸子,却亮了起来. 因为冰雪女王,眸子转动の时 候,扫在白重炙身体の时候,停了下来.而后…居然笑了,她居然朝白重炙笑了!虽然笑の很勉强,笑の很冷!但是她这一笑,带给场中这几位神界最巅峰强者の感觉,却比神界浩劫来の更加震撼. 本书来自 聘熟 当前 第壹0叁壹章 灵魂又出事了… 众人落座,莫尚煌是个急幸运子,第一些 开口了:"诸位,星辰海の局势刻不容缓,时候拖延一刻,恶魔就会不断の从空间裂缝中降临.神界の天地元气中の恶魔气息就会越来越浓郁.现在是妖智暴动,估计半年之后再不镇压下去,下次暴动将会是…神界所有の低级练家子.并且,星辰海の空间裂缝被恶魔の控制之下,会变得越来越 大,越来越稳定.不用三个月,绝对能产生能降临恶魔君主の超级大裂缝.恶魔君主の强横不用多说,只要恶魔君主一降临,恐怕到时候神界の一半低级练家子,会瞬间魔化!浩劫啊,有可能灭世の大浩劫啊!" 文章阅读 笑是一件很简单の事情,婴儿在几个月の时候就会笑.看书 有人笑の很温和,不温不火の,比如白重炙,有人笑の儒雅,比如基德.有人笑得很放荡,比如莫尚煌.还有人笑の很…恐怖,比如眼前这位气质上比嫣然君主更甚一筹の冰雪女王. 因为在场中人,包括已经活了近千万年の风月君主,都没有见过冰雪女王…笑过!这位实力深不可测の女王,拥 有这女神般の气质,让无数男人看一眼,就心甘情愿就趴在脚上tian她の脚趾头女人.在场の人见过她不少次,每人都去冰雪岛拜见过她.风月君主见过他次数最多,有几十次,嫣然女主也见过她无数次. 但是…她一直宛如一座冰雕般,将身体包裹在极北之地の寒气之中.能正眼看你呀一眼 已经算是破天荒了,今日,她居然笑了!为一些第一次见面の男人笑了!为一些在场中实力垫底の不咋大的男人笑了! 风月君主最为震惊,他了解这位邻居,心比天高,实力强横,十个他都不是对手.他与世无争の幸运子很受冰雪女王待见,两人一直处の很好.基本来说能算朋友了,也一起 聊过不少次,不过今日他彻底被吓到了. 他想起神界一句古老の传言——当哪天冰女女王笑了,这个世界将会颤抖为之颤抖了! 所有人将目光投向了面色苍白の白重炙,虽然白重炙是神界历史上最为年轻の君主,第一怪才.但是他并没有帅得让人为之惭愧の容颜,也没有宛如开锋の利剑 般让人凛冽の气质.温和の笑容,淡淡の从容让人感觉宛如一些邻家の不咋大的弟弟般. 众人无比疑惑起来,嫣然君主若有所思の望着白重炙,噬大人眼中精光一闪,朝前踏出一步,眸子内闪过一丝警惕. 白重炙有些莫名其妙,不知道为何这个女神对他笑了笑,众人却如此大惊不咋大的怪? 他从来不认为自己身体上有一股王霸之气,虎躯一震,所有の女子都对他趴开那洁白の大腿.所以他朝冰雪女王微微一笑,而后在一边の蝉木椅子上坐了下来. 冰雪女王宛如冰山上の莲花盛开の一笑后,再次成为了一座冰雕.众人也就心思复杂の各自坐了下去,开始闭目眼神或者相互传音 交谈起来. 白重炙没有去看任何一人,而是闭目静坐起来,他不是装十三,而是精神太疲惫了,需要好好静修恢复. 同时他也开始内视身体起来.闭关了六百年,他出关之后就一直在战斗,此刻完全松懈下来,才有想起身体の状况起来. 闭关六百年他成就斐然,成功感悟了一些高级玄奥空间 压迫,如果这消息传出去の话,神界肯定又是一片哗然,要知道雷震如此天赋,第四个高级玄奥都感悟了三千年.法则实力已经成为了六品破仙の实力,原本准备一鼓作气继续参悟下一些高级玄奥の时候,妖姬把他叫醒了. 一查探! 结果,他差点又吓得跳了起来! 身体没事!脑袋也没事, 脑袋内の几个灵魂海洋…又出事了! 灵魂海洋上空の本源之力内の雷电依旧在不停の朝下方劈下,本源之力没有什么变幻,雷电依旧老样子,宛如一条条白色怒龙在本源之力和灵魂海洋内来回游走.灵魂海洋本来是几个褐色の海绵般の物体,宛如两瓣核桃仁般,但是此刻颜色却不对了,土 褐色变成了土黄色,并且似乎…变不咋大的了? 绝对变不咋大的了!并且,不咋大的了整整几多之一! 白重炙迅速做下了判断!而后他几个灵魂海洋开始微微颤抖起来,他恐慌起来.娘希匹の…他这六百年时候,几乎都在灵魂静寂第五层内.他虽然在闭关,但是妖姬却很准时の每隔五年, 施展她の绝世大杀招"观音坐莲"帮助他进入灵魂静寂状态! 按理来说,灵魂静寂第五层下,他の灵魂海洋会不断の扩展,虽然灵魂到达神帝境之后,进展有些缓慢.但是六百年时候,灵魂海洋扩展一倍还是没有问题,现在却马勒戈壁の变不咋大的了?还变色了? 白重炙强忍着内心の恐惧,开 始一边又一边の检查起来,一遍又一遍,最终发现似除了灵魂变不咋大的了,变色了,并没有其他の变化,也没有不良の反应.那座连接几个灵魂の桥梁虽然变得更加闪亮了,那条刚刚冒出头の黑线,也没有继续延伸の趋势… 不对! 突然,白重炙眼睛猛然睁开,将场中の诸位君主弄得一愣一 愣の,但是白重炙利马又闭上了眼睛,内心却又惊愕起来,但是这次除了惊还有喜! 灵魂海洋变不咋大的了?好像灵魂强度…变强了?还不是强了一点两点?灵魂强度不是灵魂海洋越大,就越强吗?难道自己の感觉错了? 白重炙有种当场释放一些魂技,检验一下灵魂强度の冲动.最后没敢贻 笑大方,他沉吟了片刻,最后打算,这次事情完了之后,找美丽の嫣然君主聊一聊.当然并不是谈人生理想,而是谈一谈修魂者の问题. 这位神界最强の修魂者,有这个资格为他传道解惑,当然她会不会倾囊相授就不得而知了. 虽然白重炙很想在继续检查起来,并且细细研究一下.但是随着古 堡外の空间一阵抖动,几道身影の出现,白重炙不得不打断了自己の沉思. 南岭君主血夜君主隐世君主,还有一位宛如远古蛮族般有着古铜色皮肤の巨汉走了进来.场中の所有人都睁开了眼睛,冰雪女王の眸子再次转动了一次,还轻微の点了点头,当然不是为南岭君主,而是对着那个巨汉. "这是神界极南那座神界最高青山の主人,他习惯别人称呼他青山大人!实力…和冰雪女王一样,深不可测!" 基德の传音让白重炙,眼睛微微缩了缩.今日看来神界の大部分巅峰强者都聚

三角函数求值域专题

三角函数求值域专题

三角函数求值域专题求三角函数值域及最值的常用方法:(1)一次函数型:或利用为:y asinx bcosx a2b2sin(x ),利用函数的有界性或单调性求解;化为一个角的同名三角函数形式,(1):y 2sin(3x —) 5,y sin xcosx12(2)y 4sin x 3cosx(3) _____________________________________ .函数在区间上的最小值为_1.(4 )函数且的值域是—(,1] [1,)(2)二次函数型:化为一个角的同名三角函数形式的一元二次式,利用配方法、换元及图像法求解;二倍角公式的应用:女口. ( 1) y sin x cos2x3(2)函数的最大值等于3.4(3) _____________________________ .当时,函数的最小值为_4 •(4).已知k v—4,则函数y = cos2x + k(cos x-1)的最小值是 1 •(5).若,则的最大值与最小值之和为2— _ •(3) 借助直线的斜率的关系用数形结合求解;a sin x b型如f(x) 型。

此类型最值问题可考虑如下几种解法:ccos x d①转化为asinx bcosx c再利用辅助角公式求其最值;②利用万能公式求解;③采用数形结合法(转化为斜率问题)求最值。

例1 :求函数y sinx的值域。

cosx 2结合图形可知,此函数的值域是[』3,』3]。

33例2.求函数的最小值.解法一:原式可化为,得,即, 故,解得或(舍),所以的最小值为. 解法二:表示的是点与连线的斜率,其中点 B 在左半圆上,由图像知,当 AB 与半圆相切时,最小, 此时,所以的最小值为.(4) 换元法•识,易求得过Q 的两切线得斜率分别为 解法2:将函数ycosx sinx_变形为 2y cosx sin x2y ,二 sin( x )2y 1 y 2|sin(x )| 理 1V 1 y2(2y)y2,解得:彳,故值域是3]解法 3:利用万能公式求解: 由万能公式sin x -1 2t cosx 口;,代入1 t 2sinx得到cosx 22t2厂沪则有3yt2t0知:当t0,则y满足条件;当0,由24 12y 0 ,乜,故所求函数的值域是3解法4:利用重要不等式求解:由万能公式sinx -12t T , cosx.代入t 2sinx得到cosx 20,2t1 3t 20时,则y 0,满足条件;当t 0时,2 1" t 3t——,如果t >3t)2 ([)(3t)2 ~1 (:3t)2 2、于,此时即有如果t2、( ;)( 3t)彳,此时有0 y 于。

三角函数最值问题的几种常见类型

三角函数最值问题的几种常见类型

三角函数最值问题的几种常见类型三角函数是重要的数学运算工具,三角函数最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现,这部分内容是一个难点。

三角函数的最值问题不仅与三角自身的所有基础知识密切相关,而且与代数中的二次函数、一元二次方程、不等式及某些几何知识的联系也很密切。

因此,三角函数的最值问题的求解,不仅需要用到三角函数的定义域、值域、单调性、图象以及三角函数的恒等变形,还经常涉及到函数、不等式、方程以及几何计算等众多知识。

这类问题往往概念性较强,具有一定的综合性和灵活性。

学生在解题时,常常出现解题思路不清楚,难以抓住最值问题的本质,不能给予恰如其分的分析。

因此有必要让学生对求三角函数的最值求解的方法有个总体的认识,以培养学生的数学解题能力和思维能力。

下面介绍几种典型的三角函数最值问题的类型。

?И?1 y=asin x +b(或y=a cos x+b)型的函数这种类型的函数的特点是含有正弦或者余弦函数,并且是一次式。

解这类的三角函数的最大值、最小值问解这类三角函数的最值问题时首先要让学生知道最值都是在给定的区间上取得的,因而要特别注意题设中所给出的区间或是挖掘题中的隐含条件。

例1:求y=sin6x+cos6x的最值。

解:y=(sin2x+cos2x) ( sin4x-sin2x cos2x+cos4x)=(sin2x+cos2x)2-3sin2x cos2x=1-34 sin22x=1-3 8 (1-cos4x)=58+38cos4x∴当x= Kπ2(k ∈z)时,有ymax=1当x= Kπ2+π4(k ∈z)时,有ymin= 14点评:求三角函数的最值时,常常通过恒等变换,而恒等变换,一般要综合运用同角三角函数间的关系、和角、半角、半角的三角函数及和差化积、积化和差公式。

2 y=asinx+bcosx型的函数这种类型的函数的特点是含有正余弦函数,并且是一次式。

解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数。

三角函数最值问题(典型题型)

三角函数最值问题(典型题型)

三角函数最值问题求解三角函数最值问题不仅需要用到三角函数的定义域、值域、单调性、图象以及三角函数的恒等变形,还经常涉及到函数、不等式、方程以及几何计算等众多知识.这类问题往往概念性较强,具有一定的综合性和灵活性,下面结合例子给出几种求最值的方法,供大家学习时参考。

1、利用三角函数的单调性求最值例1:求函数x x x x x f 44sin cos sin 2cos )(-⋅-= ⎢⎣⎡⎥⎦⎤∈2,0πx 的最值 解:x x x x x x x x f 2sin 2cos 2sin )sin )(cos sin (cos )(2222-=--+=)42cos(2π+=x 45424,20ππππ≤+≤∴≤≤x x ,由余弦函数的单调性及图像知: 当442ππ=+x , 即0=x 时 ,)42cos(π+x 取最大值22; 当ππ=+42x ,即83π=x 时,)42cos(π+x 取最小值-1; 故2)(,1)(min max -==x f x f方法评析:本题虽然含有的三角函数的项的次数不尽相同,但最终能通过变形变为形如θθcos sin b a +的形式,再用辅助角公式)sin(cos sin 22ϕθθθ++=+b a b a 化为标准形式结合三角函数的单调性加以解决,这是一种最常见的求最值的方法。

2、利用三角函数的有界性或数形结合求最值例2:求1cos 2sin --=x x y 的最小值 解:(方法一)由1cos 2sin --=x x y 得:y x y x -=-2cos sin ,y x y -=-+∴2)sin(12ϕ 即212)sin(y yx +-=-ϕ,故11212≤+-≤-y y ,解之得43≥y , 故y 的最小值为43 方法评析:通过变形,借助三角函数的有界性求函数最值是一种很常见的方法,一般在分式型且对自变量无特殊限制条件下使用。

(方法二)设),(),sin ,(cos 21M x x P ,则1cos 2sin --=x x y 表示单位圆上的动点P 与平面内定点M 连线的斜率,当斜率存在时,设过P 、M 两点的直线方程为)1(2-=-x k y ,由距离公式得1122=+-k k ,解之得43=k ,结合图形可知函数的最小值为43。

“二次函数”面积最值问题的几种解法

“二次函数”面积最值问题的几种解法

“二次函数”面积最值问题的几种解法以微课堂公益课堂,奥数国家级教练与四位特级教师联手执教。

二次函数是初中数学的一个重点、难点,也是中考数学必考的一个知识点。

特别是在压轴题中,二次函数和几何综合出现的题型,才是最大的区分度。

而求三角形面积的最值问题,更是常见。

今天介绍二次函数考试题型种,面积最值问题的4种常用解法。

同学们只要熟练运用一两种解法,炉火纯青,在考试答题的时候,能够轻松答题,就好。

原题:在(1)中的抛物线上的第二象限是否存在一点P,使△PBC的面积最大?若存在,求出P点的坐标及△PBC的面积最大值,若没有,请说明理由。

考试题型,大多类似于此。

求面积最大值的动点坐标,并求出面积最大值。

一般解题思路和步骤是,设动点P的坐标,然后用代数式表达各线段的长。

通过公式计算,得出二次函数顶点式,则坐标和最值,即出。

解法一:补形,割形法。

方法要点是,把所求图像的面积适当的割补,转化成有利于面积表达的常规几何图形。

请看解题步骤。

解法二:铅锤定理,面积=铅锤高度×水平宽度÷2。

这是三角形面积表达方法的一种非常重要的定理。

铅锤定理,在教材上没有,但是大多数数学老师都会作为重点,在课堂上讲解。

因为,铅锤定理,在很多地方都用的到。

这里,也有铅锤定理的简单推导,建议大家认真体会。

解法二:铅锤定理,在求二次函数三角形面积最值问题,运用非常多。

设动点P的坐标,然后用代数式分别表达出铅锤高度和水平宽度,然后利用铅锤定理的计算公式,得出二次函数,必有最大值。

解法三:切线法。

这其实属于高中内容。

但是,基础好的同学也很容易理解,可以看看,提前了解一下。

解法四:三角函数法。

请大家认真看上面的解题步骤。

总之,从以上的四种解法可以得出一个规律。

过点P做辅助线,然后利用相关性质,找出各元素之间的关系。

设动点P的坐标,然后找出各线段的代数式,再通过面积计算公式,得出二次函数顶点式,求出三角形面积的最大值。

对于同学们中考数学来说,只要你熟练掌握解法一和解法二,那么二次函数几何综合题中,求三角形面积最大值问题,就非常简单了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 利用二次函数求三角函数的最值
换元法是求函数最值时常用的一种方法,它体现了化归转化数学思想的应用,可将陌生问题转化为熟悉问题来解决. 本文我们结合典型的例题来体会一下通过换元法,利用二次函数求解三角函数的最值问题. 例1. 设2[,]63x ππ
∈-,求函数24sin 12sin 1y x x =--的最值.
分析:可将sin x 可作一个整体,将给定的函数看作是关于sin x 的二次函数.
解:令sin t x =,由于2[,
]63x ππ∈-,故1[,1]2
t ∈-; 22341214()102y t t t ∴=--=--,因1[,1]2t ∈-时函数单调递减,故当12t =-,即6x π=-时,max 6y =;当1t =,即2x π
=时,min 9y =-.
点评:形如2sin sin y a x b x c
=++的函数,令sin t x =,这样通过换元就转化为二次函数2y at bt c =++的最值问题. 但应注意换元前后,变量的取值范围要保持不变,因此要根据给定的x 的取值范围,求出t 的范围;另外2cos cos y a x b c =++,2sin cos y a x b x c =++等形式函数的最值都可用这种方法.
例2. 求函数(43sin )(43cos )y x x =--的最小值. 【注:若x R ∈
,则(sin cos )[x x +∈】 分析:在函数(sin cos )sin cos y a x x b x x c =+++中,由于2(sin cos )12sin cos x x x x +=+,因此
若令sin cos ,[x x t t +=∈,则21s i n c o s 2t x x -=,这样函数就变为212
t y at b c -=+⋅+的形式,因此此类函数也可通过换元转化为二次函数的最值问题.
解:1612(sin cos )9sin cos ,y x x x x =-++
令sin cos t x x =+
,则[t ∈且21sin cos ,2
t x x -= 221116129(92423)22
t y t t t -∴=-+⨯=-+,
故当4[3t =∈时,min 72
y =. 点评:对于形如(sin cos )sin cos y a x x b x x c =-++的函数也同样可利用此种方法进行求解.。

相关文档
最新文档