求三角函数的值域(或最值)的方法
三角函数的值域

通 过 变 形 可 得 : f ( x) = 1 a2 + b2 sin (2x + j ) , 所 以 最 大 值 为 1 a2 + b2 = 1 , 即
2
2
2
a2
+ b2
= 1 ①,再利用
f
æp çè 3
ö ÷ø
=
3 可得: - 1 a -
4
4
3b= 4
3
②,通过①②可解得:
4
ìa íîb
= =
例
4:设函数
f
(x)
=
sin x
+
cos 2x
,若
x
Î
éêë-
p 6
,
p 2
ù úû
,则函数
f
( x) 的最小值是______
思路:同例 4 考虑将解析式中的项统一,cos 2x = 1 - 2sin2 x = 1 - 2 sin x 2 ,进而可将 sin x
作为一个整体,通过换元来求值域。
解: f ( x) = sin x + cos 2x = sin x + 1 - 2 sin x 2
三角函数。观察可得 cos x 次数较低,所以不利于转化,而 sin2 x,cos 2x 均可以用 cos x 进
( ) ( ) 行表示,确定核心项为 cos x ,解析式变形为 y = cos x -
1 - cos2 x
-
2cos2 x - 1
7 +,
4
化简后为
y
=
- cos2
x
+
cos x
+
7 4
=
cos
【三角函数值域的求法】 求三角函数值域图解

所以t∈[-3,3].
六、三角函数也是函数,所以其他一些函数值域的求法对于求三角
函数的值域照样适用
如分别常数法:
例6 若cos2x+2msinx-2m-2sin2x+1sinx-1,
sinx-1=t∈[-1,0)
所以2m>t+2t+2,因为(t+2t+2)max=-1.
所以m>-12.
巧用“对比法〞解题
江苏靖江季南初中(214523) 陈一平
对比法:把两个或两个以上的事物进行比较,找其共同点与不同点的进行解题的方法.对比法是最基本的思维,也是解题方法.它有时会使思维、解题一清二楚,直接明了.
例1 横河九年级物理兴趣小组的同学在讨论“沙子和水谁的吸热本事大〞时,选用了两只完全相同的酒精灯分别给质量都是200 g的沙子和水加热.他们绘制出沙子与水的温度随加热时间改变的图象如图1所示. 已知酒精的热值是3.0×107 J/kg,水的比热容4.2×103 J/(kg·℃),加热时酒精灯平均每分钟消耗0.8 g酒精.那么请问:
(1)图中a图和b图哪个是沙子吸热升温的图象?为什么?
(2)请依据图象说出水在受热过程中温度改变的特点.
(3)加热满2 min时,水汲取了多少热量?
(4)给水加热持续了10 min时间,共消耗了多少酒精?这些酒精假如完全燃烧将放出多少热量?
(5)试求出沙子的比热容.
图1解:(1) 图a表示的是沙子吸热升温的过程,因为沙子的比热比水小,汲取相同热量时沙子温度升得多.。
高一数学三角函数值域的求法_万金圣

基础练习
1 的值域是 ( 1. 函数 y = 2 sin x − 1
1 ( A ) − ,1 3
1 ( C )( −∞ , − ] 3
)
1 ( B)(−∞,− ] ∪[1,+∞) 3
( D )[ 1 , +∞ )
基础练习
3 sin x − 1 的最值是 2.函数 y = 函数 sin x + 2
发散思维
sinx 1.求函数 y = 求函数 的最值. 的最值 2+ cosx +
有界
判别
数1形
数2形
发散思维
2.求函数 y = 求函数
sin x sin x + 3
2
的值域. 的值域
下面解法的每个步骤是否正确?为什么? 下面解法的每个步骤是否正确?为什么? 解: 变形为 y =
1
3 sin x + sin x 3 3 ② ∵ sin x + ≥ 2 3或 sin x + ≤ −2 3 --------② sin x sin x
2.求函数 y = பைடு நூலகம்函数
sin x sin x + 3
2
的值域. 的值域
分析一: 将分子化为常数 使变量集中到分母中 分析一: 将分子化为常数,使变量集中到分母中 使变量集中到分母中,
从而只考虑分母的取值范围,化繁为简 从而只考虑分母的取值范围 化繁为简. 化繁为简 去分母,变为一 分析二: 分析二: 令 t = sin x , 则 t ∈ [− 1,1],去分母 变为一 元二次方程根的分布问题,化新为旧 元二次方程根的分布问题 化新为旧. 化新为旧
的最值. 的最值 作业
sin x cos x 的值域. 2.求函数 y = 3 + 2 sin x + 2 cos x 的值域 求函数
三角函数值域的求法及例题

标题:三角函数值域的求法及其应用
一、基本概念:
三角函数是描述周期性现象的关键工具,特别是一元函数微积分中的基本函数。
它们的值域,即能够表示的函数的取值范围,对于理解函数的性质和图形至关重要。
二、求值域的方法:
1. 观察法:根据三角函数的定义,我们知道正弦、余弦和正切函数的值域分别是-1 到1(包括-1,但不包括0),0 到正无穷(包括0),以及-π/2 到π/2(包括0,但不包括π/2 和-π/2)。
当已知函数的表达式时,可以通过观察函数的定义域和函数自身的性质来求值域。
2. 三角函数不等式法:可以利用三角函数的不等式来求值域,例如:对于正弦函数,有0 <= sin(x) <= 1。
3. 反函数法:对于反三角函数,如arcsin(x) 和arctan(x),可以通过求其反函数的定义域来得到值域。
4. 换元法:对于某些复杂的三角函数,可以通过换元法将问题简化。
5. 判别式法:对于二次或高次方程的解,可以通过判别式小于或等于零来求出函数的值域。
三、例题解析:
【例题】求函数f(x) = 3sin(2x + π/6) 的值域。
解:首先,我们可以看出函数的定义域为R(即所有实数),且函数的周期性表现为sin(x) 的形式。
由于正弦函数的值域为-1 到1(包括-1,但不包括0),因此我们可以得出f(x) 的值域为[-3, 3]。
四、总结:
求三角函数值域的方法多种多样,观察法、三角函数不等式法、反函数法、换元法以及判别式法都是常见的方法。
理解这些方法并灵活运用,可以帮助我们更好地解决实际问题。
以上就是关于三角函数值域求法的介绍以及例题解析,希望对你有所帮助。
三角函数最值求解常用“十策”

当 s x= 一 i n 1时 , = . Yi 6
评 注 : 果所 给 的 函数是 同名 不 同次或 可化 为 如
同名 不 同次及 其 它能够 进行 配方 的 形 式 , 可采 用 此
方法. 此种 方法在 求 三 角 函数 的值 域 或 最值 问题 中 较 为 常见 , 在 最后 讨论 值域 时 , 但 往往 容 易忽略 自变 量 ( l中以 s x为 自变量 ) 例 i n 的取 值 范 围 而 出现 错
・ . .
/
_ ; + 。 + cs 。i bo
COS + j X
, 一l OX . 且 ≤CS ≤1
= b+ ̄ a 口+ , b+( / 4 Ⅱ一b i 2 . ) s x n
・
.
当 CS OX=一l时 ,一 =1 Y , 当 CS OX=1 , : . 时 Y| 0 n
的最大 值.
>. 0解得÷≤ ≤ (≠ ) y 3y 1.
I
将 Y=1 人原方 程 解得 t 0= 代 a n 0∈R, 以 Y= 所
解由 = 1c 2 导 c 詈 :)s0 +s s ・s , ,i ( 。 i 。 n = n 2
再 拆项 变形 得
1 函数值. 是
所以 ) 3 =,i . 寺≤, , ≤ 故Y 3 = Y 1
+ ,
题, 分子、 分母的三角函数 同角、 同名 , 类三角 函数一 这
般 先化为部分分式 , 用三 角函数 的有 }去解 . 再利 生
4 换 元法
例 4 试 求 函数 Y=s x+CS i n OX+2i cs s xox+2 n 的最大 值 和最小值 .
评 注 : 用 三 角 函 数 的 有 界 性 如 IixI 1 利 n ≤ , s
三角函数定义域值域的求法(共10张PPT)

反表示法
两边平方
四)二合一
五) 其他形式:
y
1
2
0
2x
六:应用题求最值
D
C
A
B
值域
最值 周期
[1,1]
T2
一. 求三角函定义域:
例1.求下列函数的定义域;
点拨:1.列出三角不等式 2.根据图象写出不等式的解集
二.求 三角函值域的几种典型形式
一)一次型
直接代入法
练习:口答下列函数的值域
(1)y=-2sinx+1
[-1,3]
(2) y=3cosx+2
[-1,5]
总结:形如y=asinx+b的函数的最大值是
最小值是
二)二次型
二次函数法
点拨:1.换元(注明新元取值)
2.运用二次函数图象性质(一看对称轴,二看区间端点)
2.
y
写出y=sinx和y=cosx的定义域,值域,最值,周期
y= sinx和 y= cosx, x [0, 2 ]的简图:
最小值是
2.
根据图象写出不等式的解集
y=cosx,x [0, 2 ]
y=cosx,x [0, 2 ]
总结:形如y=asinx+b的函数的最大值是
求 三角函值域的几种典型形式
在同一坐标系内,用五点法分别画出函数 三角函数定义域值域的求法
-1
0
1 2
1
t
练习:口答下列函数的值域
总结:形如y=asinx+b的函数的最大值是
求 三角函值域的几种典型形式
点拨:统一函数名
三) 分式型 点拨: 1.反表示
三角函数定义域值域的求法
三角函数的最值

三角函数的最值知识要点梳理1.正弦函数、余弦函数的值域:都是[]1,1-。
2.正弦函数、余弦函数的最值:对sin y x =,当()22x k k Z ππ=+∈时,y 取最大值1;当()322x k k Z ππ=+∈时,y 取最小值-1;对,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取最小值-1。
注意:正切函数y=tanx 在R 上的值域为R ,因此正切函数y=tanx 在R 上既没有最大值,也没有最小值。
3.求三角函数最值的常用方法有:(1)配方法;(2)化为一个角的三角函数形式,如sin()y A x k ωϕ=++等,利用三角函数的有界性求解;(3)数形结合法;(4)换元法;(5)基本不等式法等.疑难点、易错点剖析三角函数的最值都是在给定区间上取得的,因而特别要注意题设中所给出的角的范围,还要注意正、余弦函数的有界性.特别提醒:在解含有正余弦函数的问题时,要深入挖掘正、余弦函数的有界性。
一、可转化为关于x 的正弦或余弦的二次函数的三角函数的最值例1求函数2cos 3cos 2++=x x y 的最值,并求取得最值时的x 值。
思路分析:函数式中既含有角x 的余弦的平方,又含有x 的余弦的一次项,适宜用同角公式中的平方关系将函数化为关于角x 的余弦的二次函数在闭区间[-1,1]上的最值问题。
解:45)23(cos 2cos 3cos 22++=++=x x x y[]1c o s 1,1,12x -≤≤∈- 且-, ∴当23cos -=x 时,即23x k ππ=±+时,m in 54=y13x π==+max 当cos ,即 x=2k 时,y变式:求函数2sin 2y x x =++的最值,并求取得最值时的x 值。
思路分析:函数式中既含有角x 的正弦的平方,又含有x 的余弦的项,适宜用同角公式中的平方关系将函数化为关于角x 的余弦的二次函数在闭区间[-1,1]上的最值问题。
高一数学三角函数值域的求法

小结
1.本节课涉及到求函数值域(最值)的方法有: ①分离系数法
②反表示法
③判别式法 ④单调性法 ⑤数形结合法
小结
2.树立转化的数学思想锻炼发散思维能力.
排除法
1 y 2 sin x 1
3 sin x 1 y sin x 2
sin x y 2 cos x
y sin x sin x 3
课外练习1、2、3、4、 《数学之友》 P 70
IU酒店 派酒店 喆啡 7天酒店 7天优品 窝趣公寓
知道,爷哪里是查啥啊功课,这分明是要去安抚李姐姐。不过两各大麻烦都离开咯霞光苑,她也算是能清静清静,于是不咸不淡地赶快开口 道:“有姐姐陪着,妾身就不送爷咯。”第壹卷 第323章 后账壹回到烟雨园,淑清壹头倒在他の怀中:“爷,这就是您给妾身主持の公道 吗?就听吟雪那奴才の壹面之辞,妾身连开口の机会都没有,这让妾身の冤屈往哪儿伸啊!妾身就是再不讨爷の喜欢,但好歹也是各主子吧, 反倒被各奴才弄得没脸没面,妾身以后还有啥啊脸面继续在府里呆下去!”“你还没脸没面?爷连福晋都没理会,亲自把你送咯回来,是福 晋の脸面重要,还是壹各奴才の脸面重要?你真是越活越抽抽咯,瞧你比の那人,你不跟福晋比脸面,非跟各奴才比脸面。”淑清本来愤恨 不已地要跟他讨说法,谁知道才壹开口,竟被他壹句话就堵咯壹各哑口无言,半天找不出壹句话。可是她心中の那口气根本咽不下,怎么就 这么不明不白地让那各奴才逃咯处罚?“爷,您怎么会向着怡然居の人说话咯?您这是嫌弃妾身人老珠黄,比不得人家粉嫩水灵?”他被淑 清这番话气得恨不能骂她两句!先是跟奴才争脸面,现在又跟那主子争风吃醋,简直就是蠢到家咯!他要是对水清真有那心思,还用等得到 现在?他这么假门假事地搞咯这各四堂会审,还不都是为咯安抚她李淑清才走の这各过场。现在淑清不但不领情,反而责怪他喜新厌旧,淑 清委屈,他更委屈!而且他最痛恨の就是后院诸人之间の争宠,于是留下“好自为之”四各字后,他直接就回咯书院。没有排字琦の老练圆 滑,没有水清の聪明智慧,直到他走咯以后,她都没有明白爷为啥啊走咯。从来没有为争宠费过心思の淑清,首各回合就是不战自败。壹回 到怡然居,吟雪急急地对水清说道:“仆役!您怎么不告诉爷,您の手,是因为扶锦茵格格才受の伤啊!”“吟雪,你白跟咯我两年多の时 间!今天这阵势,明摆着爷就是为咯给李侧福晋壹各说法,我若是说这手是因为扶大格格受の伤,谁能证明?李侧福晋还不更得以为我这是 存心跟她过意不去,故意伤咯手去诬告她。”“仆役,那,那您就白白地受咯伤,还落咯冤屈?”“冤屈不冤屈,其实,爷根本就没有这各 必要弄啥啊四堂会审,到时候问问锦茵格格不就全知道咯嘛。所以我才说,刚刚这各会审不过是走走过场而已。”听水清说完,吟雪却是扑 通壹下子跪在咯她の面前,让水清惊诧不已:“吟雪,你这是怎么咯?有啥啊话赶快起来再说也不迟。”“仆役,这全是奴婢の错!假如奴 婢不是去扶锦茵格格,也不会被李侧福晋寻咯仆役您の短处,还让您の手也伤咯,奴婢真是该死……”“好咯,好咯,瞧瞧你说の这都是啥 啊话!你不去扶,我不去扶,锦茵格格真の摔倒咯怎么办?那罪过不是更大咯?我の手伤咯,那也是我不小心弄の,跟你有啥啊关系,真是 の,你赶快好好地当差去,别净跟我这儿说这些没用の!”水清の话音刚落,只听月影进屋来禀报:“仆役,张太医来咯。”第壹卷 第 324章 锦茵今天是锦茵格格回门の日子。府里早早就准备妥当,按照规矩,郡主与额附双双向王爷和排字琦敬上谢恩茶。淑清作为格格の亲 额娘,也壹并受礼。礼毕之后,王爷吩咐秦顺领额附到他の书院等候,又让惜月和韵音几各人先行退下,单独将格格留咯下来。。待众人退 下后,屋子里只剩王爷、排字琦、淑清、水清四各主子。然后王爷又将除吟雪以外の所有奴才全都摒退到门外,连红莲都没能留下,更不要 说菊香咯。面对这各安排,锦茵莫名其妙,望向她阿玛の目光中充满咯疑惑不解の神情。对此,他也没有转弯抹角,而是开门见山:“茵茵, 今天是你回门の日子,见到你在婆家壹切都好,阿玛和你额娘都放心咯。”“阿玛,让您担心,女儿深感惭愧。女儿不能侍奉父母,还要父 母大人如此牵挂,实为不孝。女儿真恨不能够永远留在这府里,日日孝敬您们……”“你说の这叫啥啊傻话!男大当婚、女大当嫁,天经地 义の事情,难不成你壹辈子不嫁,留在府里侍奉我们?那不是害咯你壹辈子吗?趁现在额附不在,阿玛也要嘱咐你几句,你在府里是郡主, 嫁到婆家就是媳妇,好好孝敬公婆、姑嫂和睦才是正道儿。咱们这府里就你这么壹各格格,没人跟你争,也没人跟你抢,额娘和姨娘们全都 宠着你。阿玛确实是担心你啊,到咯婆家可就真の不壹样咯。那么多の太爷太婆、姑舅姨侄,全都要好生处着。不要总以为自己是郡主,想 怎么着就怎么着,丢咯规矩,就是丢咯脸面,就是丢咯咱们府里の脸面。”“女儿谨记阿玛の教诲。”“记得就好,当格格和当媳妇还是有 很大不壹样の,你是壹各好格格,阿玛希望你也能做壹各好媳妇,不要等以后哭哭啼啼の时候才想起今天阿玛说の这番话。好咯,这件事情 就先不说咯,阿玛问你壹件事情。成婚那天,听说差点儿摔咯各跟头,连鞋子都坏咯,那是怎么回事儿?”“回阿玛,是女儿走路不小心, 也不知怎么就踩上咯啥啊东西,可能是小石子吧。”“茵茵!你怎么能肯定不是别人推の你?”淑清壹听锦茵说是自己走路不小心,气得心 中直骂这各丫头是各大傻瓜。好好の平地路,怎么就能摔咯跟头?小石子?哪各奴才们当差这么不仔细,连石子都没有清理干净?王爷听咯 锦茵の回答,心里总算是踏实咯,可淑清仍是不依不饶の样子,竟然明目张胆地暗示格格有人推她,他不想在这件事情上纠缠得没完没
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求三角函数的值域(或最值)的方法
三角函数y=sinx及y=cosx是有界函数,即当自变量x在R内取一定的值时,因变量y有最大值y max=1和最小值y min=-1,这是三角函数y=sinx及y=cosx的基本性质之一,利用三角函数的这一基本性质,我们可以使一些比较复杂的三角函数求最值的问题得以简化.虽然这部分内容在教材中出现不多,但是,在我们的日常练习和历年高考试题中却频频出现,学生也往往对这样的问题颇感棘手.笔者根据日常的教学积累,对三角函数求值域或最值的方法,加以归纳总结如下.
1 配方分析法
如果所给的函数是同名不同次或可化为同名不同次及其他能够进行配方的形式,可采用此方法.
例1求函数y=2cos2x+5sinx-4的值域.
解原函数可化为
当sinx=1时,y max=1;
当sinx=-1时,y min=-9,
∴原函数的值域是y∈[-9,1].
注:此种方法在求三角函数的值域或最值问题中较为常见.但在最后讨论值域时,往往容易忽略自变量(例1中以sinx为自变量)的取值范围而出现错误应该引起注意.
“cosx”,再求已知函数的最值
例2求下列函数的最值,并求出相应的x值.
y=asinx+bcosx或可转化为此种形式的函数,其最大值和最小值分别为y max=
3 求反函数法
如果函数的表达式中仅含有某一个三角函数名,我们可考虑此种方法,用因变量y表示出该函数,再利用该函数的值域求对应的原函数的值域.
∴原函数的值域是
4 应用函数的有界性
上面的求反函数法实际上就是在应用函数的有界性求最值,在此只不过是为了更加突出一下.
解由原式可得
(3y-1)sinx+(2y-2)cosx=3-y,
则上式即为
利用函数的有界性有
∴原函数的值域是
5 部分分式分析法
例5求下列函数的值域:
当sinx=-1时,y有极小值,y极小=2;
∴原函数的值域是
(2)原函数化为部分分式为:
∴原函数的值域是
6 应用平均值定理求最值
例6求函数y=(1+cosx)sinx,x∈[0,π]的最大值.
7 换元法
例7求函数y=(1+sinx)(1+cosx)的值域.解原函数即为
y=1+sinx+cosx+sinxcosx,
∴原函数即为
8 应用二次函数的判别式求最值
9 几何法求函数的最值
两点的直线的斜率,在平面直角坐标系中作出点(2,2)和单位圆,则很容易确定y的取值范围.
得(k2+1)x2-(4k2-4k)x+4k2-8k+3=0,Δ=(4k2-4k)2-4(k2+1)(4k2-8k+3)
=-12k2+32k-12.
10 应用函数的单调性。