最新十堰市郧阳区2019年12月九年级上月考数学试卷(有答案)
九年级上学期月考数学试卷(带答案)

2019届九年级上学期月考数学试卷(带答案)光影似箭,岁月如梭。
月考离我们越来越近了。
同学们一定想在月考中获得好成绩吧!查字典数学网初中频道为大家准备了2019届九年级上学期月考数学试卷,希望大家多练习。
2019届九年级上学期月考数学试卷(带答案)一、选择题(本题共10小题,每题3分,共30分)1.抛物线y=2(x+1)2﹣3的顶点坐标是( )A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)2.已知函数,当函数值y随x的增大而减小时,x的取值范围是( )A.x1B.x1C.x﹣2D.﹣23.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2﹣24.若二次函数y=﹣x2+6x+c的图象过点A(﹣1,y1),B(1,y2),C(4,y3)三点,则y1,y2,y3的大小关系是( )A.y1y3B.y2y3C.y3y1D.y3y25.抛物线y=﹣x2+2kx+2与x轴交点的个数为( )A.0个B.1个C.2个D.以上都不对6.已知函数y=ax2+bx+c的图象如图所示,则函数y=ax+b的图象是( )A.B.C.D.7.已知函数y=x2﹣2x﹣2的图象如图所示,根据其中提供的信息,可求得使y1成立的x的取值范围是( )A.﹣13C.x﹣3D.x﹣1或x38.已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根9.如图,有一座抛物线形拱桥,当水位线在AB位置时,拱顶(即抛物线的顶点)离水面2m,水面宽为4m,水面下降1m 后,水面宽为( )A.5mB.6mC.mD.2m10.二次函数y=ax2+bx+c(a0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c③8a+7b+2c④当x﹣1时,y的值随x值的增大而增大.其中正确的结论有( )A.1个C.3个D.4个二、填空题(本题共10小题,每题4分,共4 0分)11.二次函数y=ax2+bx+c的部分对应值如下表:二次函数y=ax2+bx+c图象的对称轴为x=__________,x=﹣1对应的函数值y=__________.12.将二次函数y=x2﹣2x﹣3化为y=(x﹣h)2+k的形式,则__________.13.抛物线y=a(x+1)(x﹣3)(a0)的对称轴是直线__________.14.若二次函数y=(m+1)x2+m2﹣9的图象经过原点且有最大值,则m=__________.15.抛物线y=x2+6x+m与x轴只有一个公共点,则m的值为__________.16.若抛物线y=bx2﹣x+3的对称轴为直线x=﹣1,则b的值为__________.17.若二次函数y=ax2﹣4x+a的最小值是﹣3,则a=__________.18.二次函数y=x2﹣2x﹣1的图象在x轴上截得的线段长为__________.19.如图,一拱桥呈抛物线状,桥的最大高度是32m,跨度是80m,在线段AB上距离中心M20m的D处,桥的高度是__________m.20.二次函数y=x2+b x的图象如图,对称轴为x=﹣2.若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣5三、解答题(本题共7小题,共80分)21.已知二次函数y=﹣x2+4x+5.(1)用配方法把该函数化为y=a(x﹣h)2+k(其中a、h、k都是常数且a0)的形式,并指出函数图象的对称轴和顶点坐标;(2)求这个函数图象与x轴、y轴的交点坐标.22.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的解析式;(2)求不等式x2+bx+cx+m的解集.(直接写出答案)23.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x 轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.24.某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高 m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1)建立如图的平面直角坐标系,问此球能否准确投中;(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?。
2019届湖北省九年级上学期12月月考数学试卷【含答案及解析】

2019届湖北省九年级上学期12月月考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 方程3x2﹣2x﹣1=0的二次项系数和常数项分别为()A.3和﹣2 B.3和﹣1 C.3和2 D.3和12. 点P(5,﹣1)关于原点的对称点P′的坐标为()A.(5,1) B.(﹣5,﹣1) C.(﹣5,1) D.(﹣1,5)3. 把抛物线y=2x2向上平移一个单位长度后,得到的抛物线是()A.y=2x2+1 B.y=2x2﹣1 C.y=(x+1)2 D.y=(x﹣1)24. 方程x2﹣2x﹣1=0的两实根为x1、x2,则x1•x2的值为()A.﹣1 B.1 C.﹣2 D.25. 如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,已知∠DOB=72°,则∠E等于()A.36° B.30° C.18° D.24°6. 一个三角形的两边长为4和6,第三边的边长是方程(x﹣2)(x﹣7)=0的两根,则这个三角形的周长是()A.12 B.12或17 C.17 D.197. 如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,若以点C为圆心,2.3为半径作⊙C,则直线AB与⊙C的位置关系是()A.相离 B.相切 C.相交 D.无法确定8. 如图,Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,点E、F分别在边AB和边AC上,且∠EDF=90°,则下列结论不一定成立的是()A.△ADF≌△BDEB.S四边形AEDF=S△ABCC.BE+CF=ADD.EF=AD9. 已知二次函数y=﹣(x+h)2,当x<﹣3时,y随x增大而增大,当x>0时,y随x增大而减小,且h满足h2﹣2h﹣3=0,则当x=0时,y的值为()A.﹣1 B.1 C.﹣9 D.910. 如图,已知A、B两点坐标分别为(8,0)、(0,6),P是△AOB外接圆上的一点,且∠AOP=45°,则点P的坐标为()A.(8,6) B.(7,7) C.(7,7) D.(5,5)二、填空题11. 方程x2﹣2x﹣=0的判别式的值等于.12. 抛物线y=x2﹣6x+8的顶点坐标为.13. 某校2013年组织师生植树共1000棵,2014年和2015年继续开展了该项活动,且2015年植树共1440棵,设近两年植树棵数的年平均增长率为x,根据题意所列方程为.14. 已知二次函数y=ax2+bx+c(a≠0),其中a,b,c满足a+b+c=0和9a﹣3b+c=0,则该二次函数图象的对称轴是直线.15. 如图,Rt△ABC中,∠ACB=90°,∠B=50°,BC=3,且BD=2CD,将线段DB绕点D逆时针方向旋转至DB′,当点B′刚好旋转到△ABC的边上,且△DBB′为等腰三角形时旋转角的度数为.16. 如图,以O为圆心的两个同心圆,大圆半径为5,小圆半径为,点P为大圆上的一点,PC、PB切小圆于点A、点B,交大圆于C、D两点,点E为弦CD上任一点,则AE+OE 的最小值为.三、解答题17. 解方程:2x2﹣3x﹣2=0.18. 已知抛物线y=﹣x2+bx+c过点A(1,4),B(﹣2,﹣5)(1)求此抛物线的解析式;(2)当y>0时,x的取值范围是(直接写出结果).19. 如图,在⊙O中,半径OA⊥弦BC于点H,点D在优弧BC上(1)若∠AOB=50°,求∠ADC的度数;(2)若BC=8,AH=2,求⊙O的半径.20. 在如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给的平面直角坐标系中按要求作图并完成填空:(1)作出△ABC关于原点O成中心对称的△A1B1C1,写出点B1的坐标;(2)作出△A1B1C1绕点O逆时针旋转90°的△A2B2C2,写出点C2的坐标.21. 如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上的一点,且AC平分∠PAE,过C作CD⊥PA于点D.(1)求证:CD为⊙O的切线.(2)若DC+DA=6,AE=26,求AB的长.22. 将一根长20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,设其中一段铁丝长为4x cm,两个正方形的面积和为y cm2(1)求y与x的函数关系式;(2)要使这两个正方形面积之和为17cm2,那么这根铁丝剪成两段后的长度分别是多少?(3)要使这两个正方形面积之和最小,则这根铁丝剪成两段后的长度各是多少?这两个正方形面积之和最小为多少?23. 如图,Rt△ABC中,∠ACB=90°,AC=BC,点D、E在边AB上,且∠DCE=45°(1)以点C为旋转中心,将△ADC顺时针旋转90°,画出旋转后的图形;(2)若AD=2,BE=3,求DE的长;(3)若AD=1,AB=5,直接写出DE的长.24. 如图,已知抛物线y=mx2+2mx+c(m≠0),与y轴交于点C(0,﹣4),与x轴交于点A(﹣4,0)和点B.(1)求该抛物线的解析式;(2)若P是线段OC上的动点,过点P作PE∥OA,交AC于点E,连接AP,当△AEP的面积最大时,求此时点P的坐标;(3)点D为该抛物线的顶点,⊙Q为△ABD的外接圆,求证⊙Q与直线y=2相切.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第22题【答案】第23题【答案】第24题【答案】。
2019-2020学年九年级数学上学期12月月考试题 新人教版.doc

2019-2020学年九年级数学上学期12月月考试题 新人教版第I 卷(选择题)一、选择题(8小题,每小题3分,共24分)1.下面是李刚同学在一次测验中解答的填空题,其中答对的是( )A .若x 2=4,则x =2B .若022=++k x x 有一根为2,则8=-k C .方程x (2x -1)=2x -1的解为x =1 D .若分式1232-+-x x x 的值为零,则x =1,2 2.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则k 的取值范围是( ) A .k >﹣1 B .k >﹣1且k≠0 C.k <1 D .k <1且k≠0 3.下列函数中,图象通过原点的是( )A .y=2x+1B .y=x 2﹣1 C .y=3x 2D .y=211x -4.如图,二次函数y = ax 2+bx+c (a ≠0)的大致图象,关于该二次函数下列说法正确的是( ) A . a >0, b <0, c >0 B .b 2- 4ac >0C .当﹣1<x <2时,y >0D .当x <12时,y 随x 的增大而减小5.如图,△ABC 绕点C 按顺时针旋转15°到△DEC ,若点A 恰好在DE 上,AC ⊥DE ,则∠BAE 的度数为( ) A 、150B 、550C 、650D 、7506.如图①是4×4正方形方格,已有两个正方形方格被涂黑,请你再将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定经过旋转后全等的图案都视为同一种,图②中的两幅图就视为同一种,则得到的不同图案共有( ) A .6种 B .7种 C .8种 D .9种7.如图,⊙O 的半径为2,点O 到直线l 的距离为 3,点P 是直线l 上的一个动点,PQ 切⊙O 于点Q ,则PQ 的最小值为A .13B .5C .3D .58.放假了,小明与小颖两家准备从红河湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是( ) A .13 B .16 C .19 D .14第II 卷(非选择题)二、填空题(8小题,每小题3分,共24分)9.若实数a 、b 、c 满足9a -3b +c =0,则方程ax 2+bx +c =0必有一个根是 . 10.写一个你喜欢的实数m 的值 ,使关于x 的一元二次方程x 2-3x +m =0有两个不相等...的实数.11. 如图3,已知二次函数y 1= ax 2+ bx + c (a ≠0) 与一次函数y 2= kx + m (k ≠0)的图象相交于点A (-2,4),B (8,2)(如图所示),则能使12y y 成立的x 的取值范围是 .12.如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B =120°,OA =2,将菱形OABC 绕原点顺时针旋转105°至OA' B' C' 的位置,则点B' 的坐标为 .13.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点,若青蛙从4这点开始跳,则经2015次跳后它停在数 对应的点上.14.已知扇形的面积为2π,半径为3,则该扇形的弧长为________(结果保留π).15.随机掷一枚均匀的硬币两次,至少有一次反面朝上的概率是 . 16.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是 .三、解答题(共72分)17.(本题满分7分)已知关于x 的一元二次方程x 2+2(k -l )x +k 2-1=0有两个不相等的实数根.CBE AD(1)求实数k的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.18.(14分)已知函数y=22()(1)1 m m x m x m(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?19.(10分)某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.20.(11分)如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,设⊙O是△BDE的外接圆.(1)求证:AC是⊙O的切线;(2)若DE=2,BD=4,求AE的长.21.(12分)小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色.(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)若出现紫色,则小明胜,否则小芳胜.此游戏的规则对小明、小芳公平吗?试说明理由.22.(8分)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D(如图)(1)求证:AC=BD(2)若大圆的半径R=10,小圆半径r=8,且圆心O到直线AB的距离为6,求AC的长.23.(10分)如图所示,在△中,90OAB∠=︒,6OA AB==,将OAB∆绕点O沿逆时针方向旋转90︒得到11OA B∆.(1)线段1OA的长是,1AOB∠的度数是;(2)连接1AA,求证:四边形11OAA B是平行四边形.参考答案1.B 2.B 3.C 4.D 5.A 6.C 7.D 8.A.9.-310.2(答案不唯一)11.x<-2或x>812.(,-)13.2.14.43π 15.3416.23. 17.(1)k <1;(2)另一个根是4. 18.m=0;m ≠0且m ≠1.19.(1)证明见解析;(2)平行四边形ABPF 是菱形.理由见解析. 20.(225321.(1)答案见试题解析;(2)不公平. 22.(1)见解析;(2)728- 23.(1)6,135°;(2)见解析。
2019-2020年九年级数学上学期月考检测题 新人教版

DC B A 2019-2020年九年级数学上学期月考检测题 新人教版 (考试时间:100分钟,满分:120分)班有: 姓名: 座号: 评分:一、选择题。
(本大题共42分,每小题3分)在下列各题的4个答案中,有且只有一个是正确的。
1、-3的相反数是( )A .-3B .3C .-D .2、不等式x-1<0的解集为( )A . x >-1 B. x <-1 C . x >1 D. x <13、下列运算中,正确的是( )A.a 2+a 4=a 6B.a 6÷a 3=a 2C.(-a 4)2=a 6D.a 2·a 4=a 64、一个正方形的面积为15,估计它的边长大小在( )A.2与3之间B. 3与4之间C. 4与5之间D. 5与6之间5、从-1,-2,3,4这四个数中,随机抽取两个数相乘,积为负数的概率为() A. B. C. D6、5. 如图所示几何体的主(正)视图是( )7、已知一组数据5,2,3,x ,4的众数为4,则这组数据的中位数为( )A.2B.3C.4D.4.5 8、“比a 的2倍大1的数”用代数式表示是( )A.2(a+1)B.2(a-1)C.2a+1D.2a-19、下列方程中,是一元二次方程的是( )A.2x+1=0B.y+x=1C.x 2-1=0D.x 2-=010、下列各组的四组线段中,成比例线段的是( )A.2cm ,3cm ,4cm ,1cmB.3cm ,4cm ,5cm ,6cmC.1.1cm ,2.2cm ,3.3cm ,4.4cmD.1cm ,2cm ,2cm ,4cm11、如图1,在12、“抛一枚均匀硬币,落地后正面朝上”这一事件是( )A.必然事件B.随机事件C.确定事件D.不可能事件14.在正方形网格中,的位置如图3所示,则 的值是( )A .B .C .D .2二、填空题。
(本大题共16分,每小题4分)15、分解因式:x 2-4= 。
16、17、若=,则= 。
九年级数学上学期第一次月考试卷(带答案和解释)

九年级数学上学期第一次月考试卷(带答案和解释)2019九年级数学上学期第一次月考试卷(带答案和解释)没有那门学科能比数学更为清晰的阐明自然界的和谐性。
查字典数学网小编为大家准备了这篇2019九年级数学上学期第一次月考试卷,希望对同学们有所帮助。
2019九年级数学上学期第一次月考试卷(带答案和解释)一、选择题(本大题共12小题,每小题3分,共36分.每小题给出代号为A、B、C、D的四个结论,其中只有一个正确,请考生用2B铅笔在答题卷上将选定的答案标号涂黑).1.一元二次方程5x2﹣1=4x的二次项系数是()A.﹣1B.1C.4D.52.抛物线y=3x2+2x的开口方向是()A.向上B.向下C.向左D.向右3.方程x2+x=0的根为()A.x=﹣1B.x=0C.x1=0,x2=﹣1D.x1=0,x2=14.如图,可以看作是由一个等腰直角三角形旋转若干次生成的,则每次旋转的度数是()A.45°B.50°C.60°D.72°5.下列图形中即是轴对称图形,又是旋转对称图形的是()A.①②B.①②③C.②③④D.①②③④6.用配方法解方程x2+8x+7=0,则配方正确的是()A.(x﹣4)2=9B.(x+4)2=9C.(x﹣8)2=16D.(x+8)2=5714.点P(2,3)关于x轴的对称点的坐标为.15.已知函数y=2(x+1)2+1,当x>时,y随x的增大而增大.16.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为.17.若方程kx2﹣6x﹣1=0有两个实数根,则k的取值范围是.18.对于每个非零自然数n,抛物线y=x2﹣ x+ 与x轴交于An,Bn两点,以An,Bn表示这两点间的距离,则A1B1+A2B2+…+A2019B2019+A2019B2019的值是.三、解答题(本大题共8小题,共66分)请将答案写在答题卡上19.解方程:9x2﹣1=0.20.解方程:x2﹣2x+1=25.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)以原点O为对称中心,画出△ABC与关于原点O对称的△A1B1C1,并写出C1的坐标.(2)以原点O为旋转中心,画出把△ABC顺时针旋转90°的图形△A2B2C2.并写出C2的坐标.22.已知抛物线y=a(x﹣1)2经过点(2,2).(1)求此抛物线对应的解析式.(2)当x取什么值时,函数有最大值或最小值?23.如图所示,点P是正方形ABCD内的一点,连接AP,BP,CP,将△PAB绕着点B顺时针旋转90°到△P′CB的位置.若AP=2,BP=4,∠APB=135°,求PP′及PC的长.24.种植雪梨已成为我县乡镇农民增加收入的优势产业,今年小王家种植的雪梨又获得大丰收,小王家两年雪梨卖出情况是:第一年的销售总额是10000元,第三年的销售总额是12100元.(1)如果第二年、第三年销售总额的增长率相同,求销售总额增长率;(2)按照(1)中卖雪梨销售总额的增长速度,第四年该农户的销售总额是多少元?25.某商场老板对一种新上市商品的销售情况进行记录,已知这种商品进价为每件40元,经过记录分析发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示.(1)求y与x的函数关系式.(2)设商场老板每月获得的利润为P(元),求P与x之间的函数关系式;(3)如果想要每月获得2400元的利润,那么销售单价应定为多少元?26.如图所示,已知抛物线y=﹣x2+bx+c与x轴的一个交点为A(4,0),与y轴交于点B(0,3).(1)求此抛物线所对应的函数关系式;(2)在x轴的正半轴上是否存在点M.使得AM=BM?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.每小题给出代号为A、B、C、D的四个结论,其中只有一个正确,请考生用2B铅笔在答题卷上将选定的答案标号涂黑).1.一元二次方程5x2﹣1=4x的二次项系数是()A.﹣1B.1C.4D.5【考点】一元二次方程的一般形式.【分析】要确定二次项系数和常数项,首先要把方程化成一般形式.【解答】解:5x2﹣1﹣4x=0,5x2﹣4x﹣1=0,二次项系数为5.故选:D.【点评】此题主要考查了一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.抛物线y=3x2+2x的开口方向是()A.向上B.向下C.向左D.向右【考点】二次函数的性质.【分析】直接利用二次项系数判定抛物线的开口方向即可. 【解答】解:∵抛物线y=3x2+2x,a=3>0,∴抛物线开口向上.故选:A.【点评】此题考查二次函数的性质,确定抛物线的开口方向与二次项系数有关.3.方程x2+x=0的根为()A.x=﹣1B.x=0C.x1=0,x2=﹣1D.x1=0,x2=1【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】把方程左边进行因式分解x(x+1)=0,方程就可化为两个一元一次方程x=0或x+1=0,解两个一元一次方程即可. 【解答】解:x2+x=0,∴x(x+1)=0,∴x=0或x+1=0,∴x1=0,x2=﹣1.故选C.【点评】本题考查了运用因式分解法解一元二次方程ax2+bx+c=0(a≠0)的方法:先把方程化为一般式,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.4.如图,可以看作是由一个等腰直角三角形旋转若干次生成的,则每次旋转的度数是()A.45°B.50°C.60°D.72°【考点】旋转对称图形.【分析】根据旋转的性质并结合一个周角是360°求解. 【解答】解:∵一个周角是360度,等腰直角三角形的一个锐角是45度,∴如图,是由一个等腰直角三角形每次旋转45度,且旋转8次形成的.∴每次旋转的度数是45°.故选:A.【点评】本题考查了旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.5.下列图形中即是轴对称图形,又是旋转对称图形的是()A.①②B.①②③C.②③④D.①②③④【考点】旋转对称图形;轴对称图形.【分析】直接利用轴对称图形的定义结合旋转对称图形定义得出答案.【解答】解:①不是轴对称图形,是旋转对称图形,故此选项错误;②是轴对称图形,是旋转对称图形,故此选项正确;③是轴对称图形,是旋转对称图形,故此选项正确;④是轴对称图形,是旋转对称图形,故此选项正确.故选:C.【点评】此题主要考查了旋转对称图形以及轴对称图形,正确把握定义是解题关键.6.用配方法解方程x2+8x+7=0,则配方正确的是()A.(x﹣4)2=9B.(x+4)2=9C.(x﹣8)2=16D.(x+8)2=57【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程常数项移到右边,两边加上16,配方得到结果,即可做出判断.【解答】解:方程x2+8x+7=0,变形得:x2+8x=﹣7,配方得:x2+8x+16=9,即(x+4)2=9,故选B【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.已知方程x2+mx+3=0的两根是x1,x2,且x1+x2=4,则m 的值是()A.4B.﹣4C.3D.﹣3【考点】根与系数的关系.【分析】由方程x2+mx+3=0的两根是x1,x2,且x1+x2=4,根据根与系数的关系可得﹣m=4,继而求得答案.【解答】解:∵方程x2+mx+3=0的两根是x1,x2,∴x1+x2=﹣m,∵x1+x2=4,∴﹣m=4,解得:m=﹣4.故选B.【点评】此题考查了根与系数的关系.注意若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.8.抛物线y=2x2﹣8x﹣6的顶点坐标是()A.(﹣2,﹣14)B.(﹣2,14)C.(2,14)D.(2,﹣14) 【考点】二次函数的性质.【分析】已知抛物线解析式的一般式,利用配方法化为顶点式求得顶点坐标.【解答】解:∵y=2x2﹣8x﹣6=2(x﹣2)2﹣14,∴顶点的坐标是(2,﹣14).故选:D.【点评】此题考查二次函数的性质,利用配方法求抛物线的顶点坐标、对称轴是常用的一种方法.9.如图所示,已知平行四边形ABCD的两条对角线AC与BD 交于平面直角坐标系的原点,点D的坐标为(3,2),则点B 的坐标为()A.(﹣2,﹣3)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2) 【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出B与D关于原点O对称,即可得出点B的坐标.【解答】解:∵四边形ABCD是平行四边形,O为角线AC与BD的交点,∴B与D关于原点O对称,∵点D的坐标为(3,2),∴点B的坐标为(﹣3,﹣2);故选:D.【点评】本题考查了平行四边形的性质、坐标与图形性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,由关于原点对称的点的坐标特征得出点B的坐标是解决问题的关键.10.在平面直角坐标系中,抛物线y=x2+2x﹣3与x轴的交点个数是()A.0B.1C.2D.3【考点】抛物线与x轴的交点.【分析】令y=0,得到关于x的一元二次方程x2+2x﹣3=0,然后根据△判断出方程的解得个数即可.【解答】解:令y=0得:x2+2x﹣3=0,∵△=b2﹣4ac=22﹣4×1×(﹣3)=4+12=16>0,∴抛物线与x轴有两个交点.故选:C.【点评】本题主要考查的是抛物线与x轴的交点,将函数问题转化为方程问题是解题的关键.11.按一定的规律排列的一列数依次为:…,按此规律排列下去,这列数中的第7个数是()A. B. C. D.【考点】规律型:数字的变化类.【专题】规律型.【分析】通过观察和分析数据可知:分子是定值1,分母的变化规律是:奇数项的分母为:n2+1,偶数项的分母为:n2﹣1.据此规律判断即可.【解答】解:分子的规律:分子是常数1;分母的规律:第1个数的分母为:12+1=2,第2个数的分母为:22﹣1=3,第3个数的分母为:32+1=10,第4个数的分母为:42﹣1=15,第5个数的分母为:52+1=26,第6个数的分母为:62﹣1=35,第7个数的分母为:72+1=50,第奇数项的分母为:n2+1,第偶数项的分母为:n2﹣1,所以第7个数是 .故选D.【点评】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是通过分析分母找到分母的变化规律,奇数项的分母为:n2+1,偶数项的分母为:n2﹣1.12.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1其中正确的个数为()A.1B.2C.3D.4【考点】二次函数图象与系数的关系.【分析】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c 【解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac∴x2+bx+c∴x2+(b﹣1)x+c﹣1 时,y随x的增大而增大.【考点】二次函数的性质.【分析】先求对称轴,再利用函数值在对称轴左右的增减性可得x的范围.【解答】解:函数y=2(x+1)2+1的对称轴是x=﹣1,∵a=2>0,∴函数图象开口向上,∴当x>﹣1时,函数值y随x的增大而增大.故答案为:﹣1.【点评】此题考查二次函数的性质,掌握函数的增减性和求抛物线的对称轴和顶点坐标的方法是解决问题的关键. 16.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为 (80﹣x)=7644 .【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【解答】解:设道路的宽应为x米,由题意有(80﹣x)=7644,故答案为:(80﹣x)=7644.【点评】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.17.若方程kx2﹣6x﹣1=0有两个实数根,则k的取值范围是k≥﹣9且k≠0 .【考点】根的判别式;一元二次方程的定义.【分析】由方程kx2﹣6x﹣1=0有两个实数根,可得△≥0且k≠0,继而求得答案.【解答】解:∵方程kx2﹣6x﹣1=0有两个实数根,∴△=b2﹣4ac=(﹣6)2﹣4×k×(﹣1)=36+4k≥0,解得:k≥﹣9,∵方程是一元二次方程,∴k≠0,∴k的取值范围是:k≥﹣9且k≠0.故答案为:k≥﹣9且k≠0.【点评】此题考查了一元二次方程的根的判别式.注意一元二次方程的二次项系数不为0.18.对于每个非零自然数n,抛物线y=x2﹣ x+ 与x轴交于An,Bn两点,以An,Bn表示这两点间的距离,则A1B1+A2B2+…+A2019B2019+A2019B2019的值是 .【考点】抛物线与x轴的交点.【专题】规律型.【分析】先转换抛物线解析式为两点式:y=x2﹣ x+ =(x﹣ )(x﹣ ),则易求该抛物线与x轴的两个交点坐标;然后根据两点间的坐标差求出距离,找出规律解答即可.【解答】解:y=x2﹣ x+ =(x﹣ )(x﹣ ),则故抛物线与x轴交点坐标为( ,0)、( ,0).由题意知,AnBn= ﹣,那么,A1B1+A2B2…+A2019B2019+A2019B2019,=(1﹣ )+( ﹣)+…+( ﹣ )+( ﹣ ),=1﹣,故答案为 .【点评】题考查的是抛物线与x轴的交点,在解答过程中,注意二次函数与一元二次方程之间的联系,并从中择取有用信息解题;求两点间的距离时,要利用两点间的坐标差来解答.三、解答题(本大题共8小题,共66分)请将答案写在答题卡上19.解方程:9x2﹣1=0.【考点】解一元二次方程-直接开平方法.【专题】计算题.【分析】先把方程变形为x2= ,然后利用直接开平方法解方程.【解答】解:x2= ,x=± ,所以x1= ,x2=﹣ .【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.20.解方程:x2﹣2x+1=25.【考点】解一元二次方程-配方法.【分析】把方程左边直接利用完全平方公式因式分解,直接开方得出答案即可.【解答】解:x2﹣2x+1=25(x﹣1)2=25x﹣1=±5x﹣1=5,x﹣1=﹣5,解得:x1=6,x2=﹣4.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)以原点O为对称中心,画出△ABC与关于原点O对称的△A1B1C1,并写出C1的坐标.(2)以原点O为旋转中心,画出把△ABC顺时针旋转90°的图形△A2B2C2.并写出C2的坐标.【考点】作图-旋转变换.【分析】(1)利用关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分,分别找出A、B、C的对应点,顺次连接,即得到相应的图形;(2)利用对应点到旋转中心的距离相等,以及对应点与旋转中心所连线段的夹角等于旋转角,即可作出图形.【解答】解:(1)如图所示:C1的坐标为:(﹣4,1). (2)如图所示:C2的坐标为:(﹣1,﹣4).【点评】本题考查的是旋转变换作图.无论是何种变换都需先找出各关键点的对应点,然后顺次连接即可.22.已知抛物线y=a(x﹣1)2经过点(2,2).(1)求此抛物线对应的解析式.(2)当x取什么值时,函数有最大值或最小值?【考点】待定系数法求二次函数解析式;二次函数的最值. 【专题】计算题.【分析】(1)把已知点坐标代入抛物线解析式求出a的值,确定出解析式即可;(2)利用二次函数性质求出x的值,以及此时函数的最值即可.【解答】解:(1)把点(2,2)代入y=a(x﹣1)2得:a=2,∴此函数解析式为y=2(x﹣1)2=2x2﹣4x+2;(2)∵y=2(x﹣1)2,a=2>0,∴当x=1时,函数有最小值.【点评】此题考查了待定系数法求二次函数解析式,以及二次函数的最值,熟练掌握待定系数法是解本题的关键. 23.如图所示,点P是正方形ABCD内的一点,连接AP,BP,CP,将△PAB绕着点B顺时针旋转90°到△P′CB的位置.若AP=2,BP=4,∠APB=135°,求PP′及PC的长.【考点】旋转的性质;勾股定理;正方形的性质.【专题】计算题.【分析】先根据旋转的性质得到BP′=BP=4,P′C=AP=2,∠PBP′=90°,∠BP′C=∠BPA=135°,则可判断△PB P′是等腰直角三角形,根据等腰直角三角形的性质得PP′= BP=4 ,∠BP′P=45°,于是可计算出∠PP′C=90°,然后在Rt△PP′C中利用勾股定理计算PC的长.【解答】解:∵△PAB绕着点B顺时针旋转90°到△P′CB 的位置,∴BP′=BP=4,P′C=AP=2,∠PBP′=90°,∠BP′C=∠BPA=135°,∴△PB P′是等腰直角三角形,∴PP′= BP=4 ,∠BP′P=45°,∴∠PP′C=∠BP′C﹣∠BP′P=135°﹣45°=90°,在Rt△PP′C中,PC= = =6.答:PP′和PC的长分别为4 ,6.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.本题的关键是证明△PB P′是等腰直角三角形.24.种植雪梨已成为我县乡镇农民增加收入的优势产业,今年小王家种植的雪梨又获得大丰收,小王家两年雪梨卖出情况是:第一年的销售总额是10000元,第三年的销售总额是12100元.(1)如果第二年、第三年销售总额的增长率相同,求销售总额增长率;(2)按照(1)中卖雪梨销售总额的增长速度,第四年该农户的销售总额是多少元?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设销售总额的增长率为x,则第三年的销售总额为10000(1+x)2元,根据第三年的销售总额为12100元建立方程求出其解即可;(2)用第三年的销售总额加上增长的部分求得第四年该农户的销售总额.【解答】解:(1)设第二年、第三年销售总额的增长率为x,依题意得10000(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不符题意舍去);∴第二年、第三年销售总额的增长率为10%.(2)12100+12100×10%=13310(元).故第四年该农户的销售总额是13310元.【点评】本题考查一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时由增长率问题的数量关系建立方程是关键.25.某商场老板对一种新上市商品的销售情况进行记录,已知这种商品进价为每件40元,经过记录分析发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示.(1)求y与x的函数关系式.(2)设商场老板每月获得的利润为P(元),求P与x之间的函数关系式;(3)如果想要每月获得2400元的利润,那么销售单价应定为多少元?【考点】二次函数的应用.【分析】(1)利用图象上的点的坐标,由待定系数法求一次函数解析式即可得出答案;(2)由每一件的利润×销售量=销售利润得出p与x的函数关系式为:p=(x﹣40)(﹣4x+360);(3)利用当P=2400时,列出方程求出x的值即可.【解答】解:(1)设y与x的函数关系式为:y=kx+b(k≠0),由题意得,解得 .故y=﹣4x+360(40≤x≤90);(2)由题意得,p与x的函数关系式为:p=(x﹣40)(﹣4x+360)=﹣4x2+520x﹣14400,(3)当P=2400时,﹣4x2+520x﹣14400=2400,解得:x1=60,x2=70,故销售单价应定为60元或70元.【点评】此题主要考查了一次函数与二次函数的实际应用,根据已知图象上点的坐标得出直线解析式是解题关键.26.如图所示,已知抛物线y=﹣x2+bx+c与x轴的一个交点为A(4,0),与y轴交于点B(0,3).(1)求此抛物线所对应的函数关系式;(2)在x轴的正半轴上是否存在点M.使得AM=BM?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)用待定系数直接求之即可;(2)作AB的垂直平分线交x轴于点M,利用勾股定理算出OM 即可.【解答】解:(1)把点A(4,0),B(0,3)代入二次函数y=﹣x2+bx+c得解得:,c=3,所以二次函数的关系式为: ;(2)如图,作AB的垂直平分线交x轴于点M,连接BM,则BM=AM,设BM=AM=x,则OM=4﹣x,在直角△OBM中,BM2=OB2+OM2,即:x2=32+(4﹣x)2,解得:x= ,∴OM=4﹣ = ,所以点M的坐标为:( ,0);【点评】本题考查了待定系数求二次函数解析式、垂直平分线的性质、勾股定理等知识点,难度不大,属于基础题.第(2)问虽然简单,却是对称问题与勾股定理相结合的经典应用,要引起重视.小编为大家提供的2019九年级数学上学期第一次月考试卷,大家仔细阅读了吗?最后祝同学们学习进步。
十堰市郧阳区2019年12月九年级上月考数学试卷(有答案)(已审阅)

2019-2020学年湖北省十堰市郧阳区九年级(上)月考数学试卷(12月份)一、选择题(每题3分,共30分)1.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中2个黑球、4个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球2.如图,四边形ABCD是⊙O的内接四边形,若∠A=80°,则∠BCD的度数是()A.60°B.80°C.90°D.100°3.半径为3,圆心角为120°的扇形的面积是()A.3πB.6πC.9πD.12π4.用反证法证明命题:在一个三角形中,至少有一个内角不大于60°.证明的第一步是()A.假设三个内角都不大于60°B.假设三个内角都大于60°C.假设三个内角至多有一个大于60°D.假设三个内角至多有两个大于60°5.如图为4×4的网格图,A,B,C,D,O均在格点上,则点O是()A.△ACD的重心B.△ABC的外心C.△ACD的内心D.△ABC的垂心6.己知正六边形的边长为4,则它的内切圆的半径为()A.1 B.C.2 D.27.一天晚上,婷婷帮助妈妈清洗3个只有颜色不同的有盖茶杯,突然停电了,婷婷只好把杯盖和杯身随机地搭配在一起,则颜色搭配正确的概率是()A.B.C.D.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为3,∠B=135°,则的长()A. B.πC.2πD.9.如图,从一块直径是6m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是()m.A.B.4 C. D.210.如图,⊙O是△ABC的外接圆,BC为直径,AD平分∠BAC交⊙O于D,点P为△ABC的内心,PD=5,AB=8.下列结论:=6.①∠BAD=45°;②PD=PB;③PD=BC;④S△APC其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题(每题3分,共18分)11.如图,AB是⊙O的直径,∠ABC=70°,则∠D的度数为.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞40条鱼做上标记,然后放归鱼塘.经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.13.如图,AB是⊙O 的直径,C是⊙O 上一点,且AC=,∠CAB=30°.图中阴影部分的面积是.14.如图,半径为4的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于.15.如图,在半⊙O中,∠BOD=60°,DA⊥OB,EB是切线,OE交弧BD于点M,点C在BE上,∠BOE=∠MCE=45°,连接CM.若BC=1,则AB=.16.已知a、b是方程x2﹣3x+m﹣1=0(m≠1)的两根,在直角坐标系下有A(a,0)、B(0,b),以AB为直径作⊙M,则⊙M的半径的最小值为.三、解答题17.某校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,从这5名学生中选取2名同时跳绳,求恰好选中一男一女的概率.18.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示.(1)用尺规作图确定这个圆孔的圆心位置;(不写作法,保留作图痕迹)(2)求这个小圆孔的宽口AB的长度.19.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:(精确到0.01)的频率很大时,频率将会接近.0.1)(3)假如你去转动该转盘一次,你获得铅笔的概率约是.(精确到0.1)(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少(精确到1°)20.正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF ∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.21.在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).22.如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为2cm,求图中阴影部分的面积.23.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),点P在直线y=x上,⊙P的半径为3,设P(x,y).(1)求⊙P与直线x=2相切时点P的坐标;(2)动点C在直线y=x上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是.24.已知△ABC内接于⊙O,过点A作直线EF,(1)如图1,若AB为直径,要使得EF是⊙O的切线,还需要添加的条件是(只须写出两种不同情况)①或②.(2)如图2,若AB为非直径的弦,∠CAE=∠B,试说明EF是⊙O的切线.25.如图,在平面直角坐标系中,O是原点,以点M(2,2)为圆心,4为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点N在⊙M上.(1)点A坐标,点B坐标;(2)求抛物线的解析式;(3)点P(m,n)在直线y=﹣x+上方的抛物线上,且∠APB>60°,求m的取值范围;(4)在该抛物线上是否存在一点D,使线段ON与MD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.2019-2020学年湖北省十堰市郧阳区九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(每题3分,共30分)1.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中2个黑球、4个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:摸出的是3个白球是随机事件;摸出的是3个黑球是不可能事件;摸出的是2个白球、1个黑球是随机事件;摸出的是2个黑球、1个白球是随机事件,故选:B.2.如图,四边形ABCD是⊙O的内接四边形,若∠A=80°,则∠BCD的度数是()A.60°B.80°C.90°D.100°【考点】圆内接四边形的性质.【分析】根据圆内接四边形的性质得出∠A+∠DCB=180°,代入求出即可.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,∵∠A=80°,∴∠DCB=100°,故选D.3.半径为3,圆心角为120°的扇形的面积是()A.3πB.6πC.9πD.12π【考点】扇形面积的计算.【分析】把已知数据代入S=,计算即可.【解答】解:半径为3,圆心角为120°的扇形的面积是:=3π,故选:A.4.用反证法证明命题:在一个三角形中,至少有一个内角不大于60°.证明的第一步是()A.假设三个内角都不大于60°B.假设三个内角都大于60°C.假设三个内角至多有一个大于60°D.假设三个内角至多有两个大于60°【考点】反证法.【分析】熟记反证法的步骤,从命题的反面出发假设出结论,直接得出答案即可.【解答】解:∵用反证法证明在一个三角形中,至少有一个内角不大于60°,∴第一步应假设结论不成立,即假设三个内角都大于60°.故选:B.5.如图为4×4的网格图,A,B,C,D,O均在格点上,则点O是()A.△ACD的重心B.△ABC的外心C.△ACD的内心D.△ABC的垂心【考点】三角形的五心.【分析】设每一个小方格的边长为1,连接OA、OB、OC、OD,利用勾股定理可求得OA=OB=OC=,OD=2,可知O点在AB、AC、BC的垂直平分线上,可知O为△ABC的外心,可求得答案.【解答】解:如图,连接OA、OB、OC、OD,设每一个小方格的边长为1,由勾股定理可求得OA=OB=OC=,OD=2,∴O点在AB、AC、BC的垂直平分线上,∴点O为△ABC的外心,∵OA=OC≠OD,∴点O即不是△ACD的重心,也不是△ACD的内心,故选B.6.己知正六边形的边长为4,则它的内切圆的半径为()A.1 B.C.2 D.2【考点】正多边形和圆;三角形的内切圆与内心.【分析】根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长为4的正六边形,∴△OAB是等边三角形,∴OA=AB=4,∴OG=OA•sin60°=4×=2,∴边长为4的正六边形的内切圆的半径为:2.故选:D.7.一天晚上,婷婷帮助妈妈清洗3个只有颜色不同的有盖茶杯,突然停电了,婷婷只好把杯盖和杯身随机地搭配在一起,则颜色搭配正确的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图为(用A、B、C表示茶盖,a、b、c表示茶杯)展示所有9种等可能的结果数,再找出颜色搭配正确的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C表示茶盖,a、b、c表示茶杯)共有9种等可能的结果数,其中颜色搭配正确的结果数为3,所以颜色搭配正确的概率==.故选C.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为3,∠B=135°,则的长()A. B.πC.2πD.【考点】弧长的计算.【分析】连接OA、OC,根据圆内接四边形的性质求出∠D,根据圆周角定理求出∠AOC的度数,根据弧长公式:l=计算即可.【解答】解:连接OA、OC,∵∠B=135°,∴∠D=180°﹣∠B=45°,∴∠AOC=90°,则的长为:=π,故选:A.9.如图,从一块直径是6m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是()m.A.B.4 C. D.2【考点】圆锥的计算.【分析】根据弧长公式求出的长,求出圆锥的底面半径,根据勾股定理计算即可.【解答】解:∵∠BAC=90°,BC=6,∴AB=AC=3,∴的长为:=π,圆锥的底面半径为:,由勾股定理得,圆锥的高==,故选:A.10.如图,⊙O是△ABC的外接圆,BC为直径,AD平分∠BAC交⊙O于D,点P为△ABC的内心,PD=5,AB=8.下列结论:=6.①∠BAD=45°;②PD=PB;③PD=BC;④S△APC其中正确结论的个数是()A.4 B.3 C.2 D.1【考点】三角形的内切圆与内心;圆周角定理.【分析】连结PC、DC、BD,作PF⊥BC于F,PE⊥AC于E,PH⊥AB于H,根据内心的性质得∠ACP=∠BCP,根据圆周角定理由BC为直径得到∠BAC=90°,而AD平分∠BAC,则∠BAD=∠CAD=∠BAC=45°,推出①成立,再次根据圆周角定理得到∠DBC=∠BCD=45°,于是可判断△BDC为等腰直角三角形,则BC=DC,然后利用三角形外角性质证明∠DPC=∠DCP得到DC=DP,推出②不成立,所以有BC=DP,推出③成立,由DP=5得到BC=10,根据勾股定理计算出AC=6,根据切线长定理可计算出△ABC的内切圆半径为r=2,由此即可求出△APC的面积,即可判断④成立.【解答】证明:连结PC、DC、BD,作MF⊥BC于F,PE⊥AC于E,PH⊥AB于H,如图,∵点P为△ABC的内心,∴PC平分∠ACB,∴∠ACP=∠BCP,∵BC为直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC=45°,故①正确,∴∠DBC=∠BCD=45°,∴△BDC为等腰直角三角形,∴BC=DC,又∵∠DPC=∠PAC+∠ACP=45°+∠ACP,而∠DCP=∠BCD+∠BCP,∴∠DPC=∠DCP,∴DC=DP=BD,假设②正确,则△PDB是等边三角形,∴∠ADB=60°=∠ACB,显然不可能,故②错误.∴BC=DP,即PD=BC,故③正确,∵DP=5,∴BC=DP=10,而AB=8,∴AC==6,设△ABC的内切圆半径为r,∵点P为△ABC的内心,∴PH=PE=PF=r,∴四边形AHME为正方形,∴AH=AE=r,则CE=CF=6﹣r,BH=BF=8﹣r,而BF+FC=BC,∴8﹣r+6﹣r=10,解得r=2,=•AC•PE=×6×2=6,故④正确,∴S△APC故正确的有①③④,故选B.二、填空题(每题3分,共18分)11.如图,AB是⊙O的直径,∠ABC=70°,则∠D的度数为20°.【考点】圆周角定理.【分析】由AB是⊙O的直径,可得∠ACB=90°,然后由圆周角定理,可求得∠D的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=70°,∴∠A=90°﹣∠ABC=20°,∴∠D=∠A=20°.故答案为:20°.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞40条鱼做上标记,然后放归鱼塘.经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有1600条鱼.【考点】用样本估计总体.【分析】先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有40条鱼做上标记,即可得出答案.【解答】解:∵打捞200条鱼,发现其中带标记的鱼有5条, ∴有标记的鱼占×100%=2.5%,∵共有40条鱼做上标记,∴鱼塘中估计有40÷2.5%=1600(条). 故答案为:1600.13.如图,AB 是⊙O 的直径,C 是⊙O 上一点,且AC=,∠CAB=30°.图中阴影部分的面积是+.【考点】扇形面积的计算.【分析】首先作OD ⊥AC 于D ,连接OC ,根据垂径定理和三角函数求得OD 即半径OA 的长,然后明确阴影部分的面积=S △OAC +S 扇形OBC ,然后依面积公式计算即可. 【解答】解:如图,作OD ⊥AC 于D ,连接OC ,∴AD=AC=,∠BOC=2∠CAB=60°,∴AO==1,OD=ADtan ∠CAB=则阴影部分面积=S △OAC +S 扇形BOC =××+=+,故答案为: +.14.如图,半径为4的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于 4π .【考点】轨迹.【分析】根据题意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可.【解答】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:×2π×4+×2π×4=4π,故答案为:4π.15.如图,在半⊙O中,∠BOD=60°,DA⊥OB,EB是切线,OE交弧BD于点M,点C在BE上,∠BOE=∠MCE=45°,连接CM.若BC=1,则AB=(+1).【考点】切线的性质;勾股定理;垂径定理.【分析】连接BM,如图,根据切线的性质得∠OBE=90°,再判断△CME为等腰直角三角形,则CE=CM=,所以BE=+1,于是得到OD=OB=BE=+1,然后在Rt△OAD中利用含30度的直角三角形三边的关系得到OA=OD=(+1),最后计算OB﹣OA即可.【解答】解:连接BM,如图,∵EB为切线,∴OB⊥BE,∴∠OBE=90°,∵∠BOE=45°,∴∠E=45°,∴△CME为等腰直角三角形,∴CE=CM=,∴BE=+1,∴OB=BE=+1,∴OD=+1,在Rt△OAD中,∵∠AOD=60°,∴OA=OD=(+1)∴AB=OB﹣OA=+1﹣(+1)=(+1).故答案为(+1).16.已知a、b是方程x2﹣3x+m﹣1=0(m≠1)的两根,在直角坐标系下有A(a,0)、B(0,b),以AB为直径作⊙M,则⊙M的半径的最小值为.【考点】根与系数的关系;坐标与图形性质;勾股定理.【分析】根据根与系数的关系可得a+b=3,由勾股定理可得出AB=,根据完全平方公式可得出AB=≥(a+b),代入a+b的值即可得出AB的最小值,再结合半径与直径的关系即可得出结论.【解答】解:∵a、b是方程x2﹣3x+m﹣1=0(m≠1)的两根,∴a+b=3.∵A(a,0)、B(0,b),∴AB=.∵(a+b)2=a2+b2﹣2ab≥0,∴≥(a+b),当a=b时,取等号.∴⊙M的半径的最小值为AB=.故答案为:.三、解答题17.某校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,从这5名学生中选取2名同时跳绳,求恰好选中一男一女的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到一男一女的情况,再利用概率公式即可求得答案.【解答】解:画树状图如下:由树状图可知共有20种等可能性结果,其中抽到一男一女的情况有12种,所以抽到一男一女的概率为P(一男一女)==,18.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示.(1)用尺规作图确定这个圆孔的圆心位置;(不写作法,保留作图痕迹)(2)求这个小圆孔的宽口AB的长度.【考点】作图—应用与设计作图;垂径定理.【分析】(1)如图,在⊙O上取一点C,连接AC,作线段AC、AB的垂直平分线,它们的交点即为圆心O(2)在Rt△OAG中,利用勾股定理即可解决问题.【解答】解:(1)如图,在⊙O上取一点C,连接AC,作线段AC、AB的垂直平分线,它们的交点即为圆心O.(2)作OG⊥AB于G,则AG=GB,∵OA=5,OG=8=5=3,在Rt△AOG中,AG===4,∴AB=2AG=8.19.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:(精确到0.01)的频率很大时,频率将会接近.0.1)(3)假如你去转动该转盘一次,你获得铅笔的概率约是0.8.(精确到0.1)(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少(精确到1°)【考点】利用频率估计概率;扇形统计图.【分析】(1)根据频率的算法,频率=,可得各个频率;填空即可;(2)根据频率的定义,可得当n很大时,频率将会接近其概率;(3)根据概率的求法计算即可;(4)根据扇形图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比计算即可.【解答】解:(1))÷=0.8,故答案为:0.8;(3)获得铅笔的概率约是0.8,故答案为:0.8;(4)扇形的圆心角约是0.8×360°=288度.20.正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF ∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.【考点】正方形的性质;矩形的判定;圆周角定理.【分析】(1)直接利用正方形的性质、圆周角定理结合平行线的性质得出∠BED=∠BAD=90°,∠BFD=∠BCD=90°,∠EDF=90°,进而得出答案;(2)直接利用正方形的性质的度数是90°,进而得出BE=DF,则BE=DG.【解答】证明:(1)∵正方形ABCD内接于⊙O,∴∠BED=∠BAD=90°,∠BFD=∠BCD=90°,又∵DF∥BE,∴∠EDF+∠BED=180°,∴∠EDF=90°,∴四边形EBFD是矩形;(2))∵正方形ABCD内接于⊙O,∴的度数是90°,∴∠AFD=45°,又∵∠GDF=90°,∴∠DGF=∠DFG=45°,∴DG=DF,又∵在矩形EBFD中,BE=DF,∴BE=DG.21.在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).【考点】列表法与树状图法;等腰三角形的判定;平行四边形的判定.【分析】(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,即可得出答案;(2)利用树状图得出从A、D、E、F四个点中先后任意取两个不同的点,一共有12种可能,进而得出以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,即可求出概率.【解答】解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,故P(所画三角形是等腰三角形)=;(2)用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,∴所画的四边形是平行四边形的概率P==.故答案为:(1),(2).22.如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为2cm,求图中阴影部分的面积.【考点】切线的性质;扇形面积的计算.【分析】(1)先证明∠P=180°﹣∠AOB,根据∠AOB=2∠ACB求出∠AOB即可解决问题.(2)连接OP,如图,根据切线的性质和切线长定理得到∠PAO=∠PBO=90°,∠APO=30°,则根据四边形内角和得到∠AOB=180°﹣∠APB=120°,再在Rt△PAO中利用含30度的直角三角形=2,然后根据扇形面积公式,利用阴影部分的面积三边的关系得到AP=OA=2,则S△PAO=S四边形AOBP﹣S扇形AOB进行计算.【解答】解:(1)连接OA、OB,∵PA、PB是⊙O切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,∵∠P+∠PAO+∠AOB+∠PBO=360°,∴∠P=180°﹣∠AOB,∵∠ACB=60°,∴∠AOB=2∠ACB=120°,∴∠P=180°﹣120°=60°,(2)如图,连接OP,∵PA ,PB 是⊙O 的两条切线,∴OA ⊥AP ,OB ⊥PB ,OP 平分∠APB ,∴∠PAO=∠PBO=90°,∠APO=×60°=30°,∴∠AOB=180°﹣∠APB=180°﹣60°=120°,在Rt △PAO 中,∵OA=2,∠APO=30°,∴AP=OA=2,∴S △PAO =×2×2=2,∴阴影部分的面积=S 四边形AOBP ﹣S 扇形AOB =2×2﹣=4﹣π.23.如图,在平面直角坐标系xOy 中,A (0,2),B (0,6),点P 在直线y=x 上,⊙P 的半径为3,设P (x ,y ).(1)求⊙P 与直线x=2相切时点P 的坐标;(2)动点C 在直线y=x 上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数是 3 .【考点】切线的性质;一次函数图象上点的坐标特征;等腰三角形的判定;直线与圆的位置关系.【分析】(1)先根据直线和圆的位置关系和已知求出P 的横坐标,即可得出答案;(2)分为三种情况,根据勾股定理得出方程,求出方程的解即可.【解答】解:(1)∵⊙P 的半径为3,⊙P 与直线x=2相切,∴点P 到直线x=2的距离是3,即P的横坐标为2+3=5或2﹣3=﹣1,∵P在直线y=x上,∴P点的坐标为(5,5)或(﹣1,﹣1);(2)分为三种情况:①BP=AP,此时P在AB的垂直平分线上,∵A(0,2),B(0,6),∴AB=4,P点的纵坐标为4,∵P在直线y=x上,∴此时P的坐标为(4,4);②AB=AP=4,∵A(0,2),P(x,y),x=y,∴(x﹣0)2+(x﹣2)2=42,∴x=1±,此时P的坐标为(1+,1+)或(1﹣,1﹣);③AB=BP,∵B(0,6),P(x,y),x=y,∴∴(x﹣0)2+(x﹣6)2=42,此方程无解,即不存在AB=BP;所以符合的有3个,故答案为:3.24.已知△ABC内接于⊙O,过点A作直线EF,(1)如图1,若AB为直径,要使得EF是⊙O的切线,还需要添加的条件是(只须写出两种不同情况)①EF⊥AB或②∠EAC=∠B.(2)如图2,若AB为非直径的弦,∠CAE=∠B,试说明EF是⊙O的切线.【考点】切线的判定.【分析】(1)添加条件EF⊥AB,根据切线的判定推出即可;添加条件∠EAC=∠B,根据直径推出∠CAB+∠B=90°,推出∠EAC+∠CAB=90°,根据切线判定推出即可;(2)作直径AM,连接CM,推出∠M=∠B=∠EAC,求出∠EAC+∠CAM=90°,根据切线的判定推出即可.【解答】(1)解:添加的条件是①EF⊥AB,理由是∵EF⊥AB,OA是半径,∴EF是⊙O的切线;②∠EAC=∠B,理由是:∵AB是⊙O的直径,∴∠C=90°,∴∠B+∠CAB=90°,∵∠EAC=∠B,∴∠EAC+∠CAB=90°,∴EF⊥AB,∵OA是半径,∴EF是⊙O的切线;(2)解:作直径AM,连接CM,即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠EAC=∠B,∴∠EAC=∠M,∵AM是⊙O的直径,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠EAC+∠CAM=90°,∴EF⊥AM,∵OA是半径,∴EF是⊙O的切线.25.如图,在平面直角坐标系中,O是原点,以点M(2,2)为圆心,4为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点N在⊙M上.(1)点A坐标(2﹣2,0),点B坐标(2+2,0);(2)求抛物线的解析式;(3)点P(m,n)在直线y=﹣x+上方的抛物线上,且∠APB>60°,求m的取值范围;(4)在该抛物线上是否存在一点D,使线段ON与MD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)过点C作DC⊥AB,垂足为D.由垂径定理可知:AD=DB,然后由勾股定理可求得AD的长,从而得到点A和点B的坐标;(2)由图形的对称性可知P在CD上,从而可求得点P的坐标,设抛物线的解析式为y=a(x ﹣2)2+6,将点B的坐标代入可得到a的值,从而可得到抛物线的解析式;(3)如图2中,设直线y=﹣x+与抛物线的交点为E、F,由∠AMB=120°,可知点P在直线y=﹣x+上方(包括E、F两点,除点N),都是满足条件∠APB>60°(∠ANB=AMB=60°),利用方程组求出点E、F两点坐标即可解决问题.(4)取OP的中点E,连接CE,并延长CE到D使ED=CE.首先由线段的中点坐标公式求得点D的坐标,然后判断点D是否在抛物线上即可.【解答】解:如图1所示:过点M作MD⊥AB,垂足为D.∵MD⊥AB,∴AD=DB.∵在Rt△ADC中,AC=4,CD=2,∴AD==2.∴DB=2.∴A(2﹣2,0)、B(2+2,0).故答案为(2﹣2,0),(2+2,0).(2)如图1所示:∵点A与点B关于MD对称,∴MD为抛物线的对称.∴顶点N在MD上.∵MD=2,MN=4,∴ND=6.∴N(2,6).设抛物线的解析式为y=a(x﹣2)2+6.∵将点B的坐标代入得:12a+6=0,解得:a=﹣,∴抛物线的解析式y=﹣(x﹣2)2+6,即y=﹣x2+2x+4.(3)如图2中,设直线y=﹣x+与抛物线的交点为E、F.在Rt△AMD中,∵AM=2DM,∴∠MAD=30°,∴∠AMD=∠BMD=60°,∴∠AMB=120°,∴点P在直线y=﹣x+上方(包括E、F两点,除点N),都是满足条件∠APB>60°(∠ANB= AMB=60°),由解得或,∴F(1,),E(5,),∴m的取值范围:1≤m≤5且m≠2.(4)存在.理由:如图3所示:取ON的中点E,连接ME,并延长ME到D使ED=ME.设点D的坐标为(x,y).∵ON与MD相互平分,∴=,=,∴x=0,y=4,∵将x=0代入抛物线的解析式得y=4,∴点D在抛物线上.∴当点D的坐标为(0,2)时,OP与CD相互平分.。
湖北省十堰市九年级上学期数学12月月考试卷

湖北省十堰市九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八下·海港期末) 点P(-2,3)关于y轴的对称点的坐标是()A . (2,3)B . (-2,3)C . (2,-3)D . (-2,-3)2. (2分) (2019九上·大同期中) 抛物线的顶点坐标为()A . (-2, 2)B . (2, -2)C . (2, 2)D . (-2, -2)3. (2分) (2020八下·射阳期中) 平面内,若⊙O的半径为3,OP=2,则点P在()A . ⊙O内B . ⊙O上C . ⊙O外D . 以上都有可能4. (2分)如图,已知CD是⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A . 25°B . 30°C . 40°D . 50°5. (2分) (2018九上·前郭期末) 如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A . ∠AED=∠BB . ∠ADE=∠CC .D .6. (2分)(2020·抚州模拟) 如图,点A表示的实数是()A . ﹣B . ﹣C . 1﹣D . 1﹣7. (2分)钝角三角形的内心在这个三角形的()A . 内部B . 外部C . 一条边上D . 以上都有可能8. (2分)如图,已知⊙O是△ABC的外接圆,AB=AC,D是直线BC上一点,直线AD交⊙O于点E,AE=9,DE=3,则AB的长等于()A . 7B .C .D .9. (2分) (2016九上·南昌期中) 如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为()A .B .C .D .10. (2分)如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从点A出发绕侧面一周,再回到点A的最短的路线长是()A .B .C .D . 3二、填空题 (共6题;共6分)11. (1分) (2019九上·道外期末) 正八边形的中心角为________度.12. (1分) (2016九上·惠山期末) 如图,扇形OMN与正方形ABCD,半径OM与边AB重合,弧MN的长等于AB的长,已知AB=2,扇形OMN沿着正方形ABCD逆时针滚动到点O首次与正方形的某顶点重合时停止,则点O经过的路径长________.13. (1分)(2011·扬州) 如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=________14. (1分)(2019·成都模拟) 如图,在菱形ABCD中,∠B=60°,AB=2,把菱形ABCD绕BC的中点E顺时针旋转60°得到菱形A'B'C'D',其中点D的运动路径为,则图中阴影部分的面积为________.15. (1分)如图,已知动点A在函数的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴于点P,Q.当QE:DP=4:9时,图中阴影部分的面积等于________ .16. (1分)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE 的长为________ .三、解答题 (共8题;共71分)17. (5分) (2019九上·灵石期中) 解方程.(1)(3x+2)2=25(2) 3x2﹣1=4x(3)(2x+1)2=3(2x+1)(4) 4x2+8x+3=018. (5分)如图,是⊙D的圆周,点C在上运动,求∠BCD的取值范围.19. (10分)(2012·大连) 如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D 作AC的垂线交AC的延长线于点E,连接BC交AD于点F.(1)猜想ED与⊙O的位置关系,并证明你的猜想;(2)若AB=6,AD=5,求AF的长.20. (10分)(2020·泰州) 如图,在中,点为的中点,弦、互相垂直,垂足为,分别与、相交于点、,连接、 .(1)求证:为的中点.(2)若的半径为8,的度数为,求线段的长.21. (10分) (2016九上·南昌期中) 如图:直线AB经过点A(0,3)点B(,0),点M在y轴上,⊙M 经过点A、B,交x轴于另一点C.(1)求直线AB的解析式;(2)求点M的坐标;(3)点P是劣弧AC上一个动点,当P点运动时,问:线段PA,PB,PC有什么数量关系?并给出证明.22. (10分) (2019九上·海珠期末) 如图,抛物线y=a(x﹣m﹣1)2+2m(其中m>0)与其对称轴l相交于点P.与y轴相交于点A(0,m)连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC将△PBC绕点P逆时针旋转,使点C落在抛物线上,设点C、B的对应点分别是点B′和C′.(1)当m=1时,该抛物线的解析式为:________.(2)求证:∠BCA=∠CAO;(3)试问:BB′+BC﹣BC′是否存在最小值?若存在,求此时实数m的值,若不存在,请说明理由.23. (6分)(2020·惠山模拟) 如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA ,试求出点P的坐标.24. (15分)(2019·定州模拟) 如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t .(1)求抛物线的表达式;(2)设抛物线的对称轴为l , l与x轴的交点为D .在直线l上是否存在点M ,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC , PB , PC ,设△PBC的面积为S .①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共71分)17-1、17-2、17-3、17-4、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。
2019-2020学年九年级上数学12月月考试题及答案.doc

2019-2020 学年九年级上数学12 月月考试题及答案12 月检测试卷请同学们注意:1、考试卷分试题卷和答题卷两部分,满分120 分,考试时间为 90 分钟.2、所有答案都必须写在答题卷标定的位置上,务必注意试题序号和答题序号相对应.3、考试结束后,只需上交答题卷。
祝同学们取得成功!一、仔细选一选(本题有10 小题,每题 3 分,共 30 分)1、如图,⊙ O是△ ABC的外接圆,∠ OBC=40°,则∠ A 等于(▲)A.30 °B.40 °C.50 °D.60 °2、若当x 3 时,正比例函数y k1 x k1 0 与反比例函数y k2 k2 0 的值相等,则 k1与 k2的比是(▲)。
xA.9:1B.3:1C.1:3D.1:93、将函数y 3x2 1 的图象向右平移2个单位得到的新图象的函数解析式为(▲)。
y 3 x 2y 3 x21A. 2 1B. 2C. y 3x2 2D. y 3x2 24、如图,四边形ABCD的对角线 AC, BD相交于点 O,且将这个四边形分成①、②、③、④四个三角形。
若OA:OC=OB:OD,则下列结论中一定正确的是(▲ )A .①与②相似B.①与③相似C.①与④相似D.②与④相似5、平面有 4 个点,它们不在一条直线上,但有 3 个点在同一条直线上。
过其中 3 个点作圆,可以作的圆的个数是(▲ )A.1 个B.2 个C.3 个D.4 个6、已知点P 是线段 AB 的一个黄金分割点(AP>PB),则 PB:AB 的值为(▲)A. 5 1B.3 5C.1 5 3 52 2 2D.47、在四边形 ABCD中, AC平分∠ BAD,且∠ ACD=∠ B。
则下列结论中正确的是A.AD CD AD B.AC 2 AB ADAB BCACC.BCABD.ACD 的面积 CDADABC 的面积BCCD8、若反比例函数yk与二次函数yax 2 的图象的公共点在第三象限,则一次函数xy ax k 的图象不经过( ▲ )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9、如图, AB 是⊙ O 的直径,弦 AC , BC 的长分别为 4 和 6,∠ ACB 的平分 线交⊙ O 于 D ,则 CD 的长为( ▲ )A. 7 2B.5 2 C.7D.910 、 如 图 , 直 线 y3 k x 0交 于 点 A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年湖北省十堰市郧阳区九年级(上)月考数学试卷(12月份)一、选择题(每题3分,共30分)1.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中2个黑球、4个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球2.如图,四边形ABCD是⊙O的内接四边形,若∠A=80°,则∠BCD的度数是()A.60°B.80°C.90°D.100°3.半径为3,圆心角为120°的扇形的面积是()A.3π B.6π C.9π D.12π4.用反证法证明命题:在一个三角形中,至少有一个内角不大于60°.证明的第一步是()A.假设三个内角都不大于60°B.假设三个内角都大于60°C.假设三个内角至多有一个大于60°D.假设三个内角至多有两个大于60°5.如图为4×4的网格图,A,B,C,D,O均在格点上,则点O是()A.△ACD的重心B.△ABC的外心C.△ACD的内心D.△ABC的垂心6.己知正六边形的边长为4,则它的内切圆的半径为()A.1 B.C.2 D.27.一天晚上,婷婷帮助妈妈清洗3个只有颜色不同的有盖茶杯,突然停电了,婷婷只好把杯盖和杯身随机地搭配在一起,则颜色搭配正确的概率是()A.B.C.D.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为3,∠B=135°,则的长()A.B.πC.2π D.9.如图,从一块直径是6m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是()m.A.B.4C.D.210.如图,⊙O是△ABC的外接圆,BC为直径,AD平分∠BAC交⊙O于D,点P为△ABC的内心,PD=5,AB=8.下列结论:=6.①∠BAD=45°;②PD=PB;③PD=BC;④S△APC其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题(每题3分,共18分)11.如图,AB是⊙O的直径,∠ABC=70°,则∠D的度数为.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞40条鱼做上标记,然后放归鱼塘.经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.13.如图,AB是⊙O 的直径,C是⊙O 上一点,且AC=,∠CAB=30°.图中阴影部分的面积是.14.如图,半径为4的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于.15.如图,在半⊙O中,∠BOD=60°,DA⊥OB,EB是切线,OE交弧BD于点M,点C在BE上,∠BOE=∠MCE=45°,连接CM.若BC=1,则AB= .16.已知a、b是方程x2﹣3x+m﹣1=0(m≠1)的两根,在直角坐标系下有A(a,0)、B(0,b),以AB为直径作⊙M,则⊙M的半径的最小值为.三、解答题17.某校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,从这5名学生中选取2名同时跳绳,求恰好选中一男一女的概率.18.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示.(1)用尺规作图确定这个圆孔的圆心位置;(不写作法,保留作图痕迹)(2)求这个小圆孔的宽口AB的长度.19.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:(精确到0.01)落在“铅笔”的频率.)(3)假如你去转动该转盘一次,你获得铅笔的概率约是.(精确到0.1)(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少(精确到1°)20.正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.21.在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).22.如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为2cm,求图中阴影部分的面积.23.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),点P在直线y=x上,⊙P的半径为3,设P(x,y).(1)求⊙P与直线x=2相切时点P的坐标;(2)动点C在直线y=x上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是.24.已知△ABC内接于⊙O,过点A作直线EF,(1)如图1,若AB为直径,要使得EF是⊙O的切线,还需要添加的条件是(只须写出两种不同情况)①或②.(2)如图2,若AB为非直径的弦,∠CAE=∠B,试说明EF是⊙O的切线.25.如图,在平面直角坐标系中,O是原点,以点M(2,2)为圆心,4为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点N在⊙M上.(1)点A坐标,点B坐标;(2)求抛物线的解析式;(3)点P(m,n)在直线y=﹣x+上方的抛物线上,且∠APB>60°,求m的取值范围;(4)在该抛物线上是否存在一点D,使线段ON与MD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.2019-2020学年湖北省十堰市郧阳区九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(每题3分,共30分)1.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中2个黑球、4个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:摸出的是3个白球是随机事件;摸出的是3个黑球是不可能事件;摸出的是2个白球、1个黑球是随机事件;摸出的是2个黑球、1个白球是随机事件,故选:B.2.如图,四边形ABCD是⊙O的内接四边形,若∠A=80°,则∠BCD的度数是()A.60°B.80°C.90°D.100°【考点】圆内接四边形的性质.【分析】根据圆内接四边形的性质得出∠A+∠DCB=180°,代入求出即可.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,∵∠A=80°,∴∠DCB=100°,故选D.3.半径为3,圆心角为120°的扇形的面积是()A.3π B.6π C.9π D.12π【考点】扇形面积的计算.【分析】把已知数据代入S=,计算即可.【解答】解:半径为3,圆心角为120°的扇形的面积是: =3π,故选:A.4.用反证法证明命题:在一个三角形中,至少有一个内角不大于60°.证明的第一步是()A.假设三个内角都不大于60°B.假设三个内角都大于60°C.假设三个内角至多有一个大于60°D.假设三个内角至多有两个大于60°【考点】反证法.【分析】熟记反证法的步骤,从命题的反面出发假设出结论,直接得出答案即可.【解答】解:∵用反证法证明在一个三角形中,至少有一个内角不大于60°,∴第一步应假设结论不成立,即假设三个内角都大于60°.故选:B.5.如图为4×4的网格图,A,B,C,D,O均在格点上,则点O是()A.△ACD的重心B.△ABC的外心C.△ACD的内心D.△ABC的垂心【考点】三角形的五心.【分析】设每一个小方格的边长为1,连接OA、OB、OC、OD,利用勾股定理可求得OA=OB=OC=,OD=2,可知O点在AB、AC、BC的垂直平分线上,可知O为△ABC的外心,可求得答案.【解答】解:如图,连接OA、OB、OC、OD,设每一个小方格的边长为1,由勾股定理可求得OA=OB=OC=,OD=2,∴O点在AB、AC、BC的垂直平分线上,∴点O为△ABC的外心,∵OA=OC≠OD,∴点O即不是△ACD的重心,也不是△ACD的内心,故选B.6.己知正六边形的边长为4,则它的内切圆的半径为()A.1 B.C.2 D.2【考点】正多边形和圆;三角形的内切圆与内心.【分析】根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长为4的正六边形,∴△OAB是等边三角形,∴OA=AB=4,∴OG=OA•sin60°=4×=2,∴边长为4的正六边形的内切圆的半径为:2.故选:D.7.一天晚上,婷婷帮助妈妈清洗3个只有颜色不同的有盖茶杯,突然停电了,婷婷只好把杯盖和杯身随机地搭配在一起,则颜色搭配正确的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图为(用A、B、C表示茶盖,a、b、c表示茶杯)展示所有9种等可能的结果数,再找出颜色搭配正确的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C表示茶盖,a、b、c表示茶杯)共有9种等可能的结果数,其中颜色搭配正确的结果数为3,所以颜色搭配正确的概率==.故选C.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为3,∠B=135°,则的长()A.B.πC.2π D.【考点】弧长的计算.【分析】连接OA、OC,根据圆内接四边形的性质求出∠D,根据圆周角定理求出∠AOC的度数,根据弧长公式:l=计算即可.【解答】解:连接OA、OC,∵∠B=135°,∴∠D=180°﹣∠B=45°,∴∠AOC=90°,则的长为: =π,故选:A.9.如图,从一块直径是6m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是()m.A.B.4C.D.2【考点】圆锥的计算.【分析】根据弧长公式求出的长,求出圆锥的底面半径,根据勾股定理计算即可.【解答】解:∵∠BAC=90°,BC=6,∴AB=AC=3,∴的长为: =π,圆锥的底面半径为:,由勾股定理得,圆锥的高==,故选:A.10.如图,⊙O是△ABC的外接圆,BC为直径,AD平分∠BAC交⊙O于D,点P为△ABC的内心,PD=5,AB=8.下列结论:=6.①∠BAD=45°;②PD=PB;③PD=BC;④S△APC其中正确结论的个数是()A.4 B.3 C.2 D.1【考点】三角形的内切圆与内心;圆周角定理.【分析】连结PC、DC、BD,作PF⊥BC于F,PE⊥AC于E,PH⊥AB于H,根据内心的性质得∠ACP=∠BCP,根据圆周角定理由BC为直径得到∠BAC=90°,而AD平分∠BAC,则∠BAD=∠CAD=∠BAC=45°,推出①成立,再次根据圆周角定理得到∠DBC=∠BCD=45°,于是可判断△BDC为等腰直角三角形,则BC=DC,然后利用三角形外角性质证明∠DPC=∠DCP得到DC=DP,推出②不成立,所以有BC=DP,推出③成立,由DP=5得到BC=10,根据勾股定理计算出AC=6,根据切线长定理可计算出△ABC的内切圆半径为r=2,由此即可求出△APC的面积,即可判断④成立.【解答】证明:连结PC、DC、BD,作MF⊥BC于F,PE⊥AC于E,PH⊥AB于H,如图,∵点P为△ABC的内心,∴PC平分∠ACB,∴∠ACP=∠BCP,∵BC为直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC=45°,故①正确,∴∠DBC=∠BCD=45°,∴△BDC为等腰直角三角形,∴BC=DC,又∵∠DPC=∠PAC+∠ACP=45°+∠ACP,而∠DCP=∠BCD+∠BCP,∴∠DPC=∠DCP,∴DC=DP=BD,假设②正确,则△PDB是等边三角形,∴∠ADB=60°=∠ACB,显然不可能,故②错误.∴BC=DP,即PD=BC,故③正确,∵DP=5,∴BC=DP=10,而AB=8,∴AC==6,设△ABC的内切圆半径为r,∵点P为△ABC的内心,∴PH=PE=PF=r,∴四边形AHME为正方形,∴AH=AE=r,则CE=CF=6﹣r,BH=BF=8﹣r,而BF+FC=BC,∴8﹣r+6﹣r=10,解得r=2,=•AC•PE=×6×2=6,故④正确,∴S△APC故正确的有①③④,故选B.二、填空题(每题3分,共18分)11.如图,AB是⊙O的直径,∠ABC=70°,则∠D的度数为20°.【考点】圆周角定理.【分析】由AB是⊙O的直径,可得∠ACB=90°,然后由圆周角定理,可求得∠D的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=70°,∴∠A=90°﹣∠ABC=20°,∴∠D=∠A=20°.故答案为:20°.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞40条鱼做上标记,然后放归鱼塘.经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有1600 条鱼.【考点】用样本估计总体.【分析】先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有40条鱼做上标记,即可得出答案.【解答】解:∵打捞200条鱼,发现其中带标记的鱼有5条,∴有标记的鱼占×100%=2.5%,∵共有40条鱼做上标记,∴鱼塘中估计有40÷2.5%=1600(条).故答案为:1600.13.如图,AB 是⊙O 的直径,C 是⊙O 上一点,且AC=,∠CAB=30°.图中阴影部分的面积是 + .【考点】扇形面积的计算. 【分析】首先作OD ⊥AC 于D ,连接OC ,根据垂径定理和三角函数求得OD 即半径OA 的长,然后明确阴影部分的面积=S △OAC +S 扇形OBC ,然后依面积公式计算即可.【解答】解:如图,作OD ⊥AC 于D ,连接OC ,∴AD=AC=,∠BOC=2∠CAB=60°,∴AO==1,OD=ADtan ∠CAB=则阴影部分面积=S △OAC +S 扇形BOC =××+=+,故答案为:+.14.如图,半径为4的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于 4π .【考点】轨迹.【分析】根据题意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可.【解答】解:由图形可知,圆心先向前走OO 1的长度,从O 到O 1的运动轨迹是一条直线,长度为圆的周长,然后沿着弧O 1O 2旋转圆的周长,则圆心O 运动路径的长度为:×2π×4+×2π×4=4π,故答案为:4π.15.如图,在半⊙O 中,∠BOD=60°,DA ⊥OB ,EB 是切线,OE 交弧BD 于点M ,点C 在BE 上,∠BOE=∠MCE=45°,连接CM .若BC=1,则AB= (+1) .【考点】切线的性质;勾股定理;垂径定理.【分析】连接BM ,如图,根据切线的性质得∠OBE=90°,再判断△CME 为等腰直角三角形,则CE=CM=,所以BE=+1,于是得到OD=OB=BE=+1,然后在Rt △OAD 中利用含30度的直角三角形三边的关系得到OA=OD=(+1),最后计算OB ﹣OA 即可.【解答】解:连接BM ,如图,∵EB 为切线,∴OB ⊥BE ,∴∠OBE=90°,∵∠BOE=45°,∴∠E=45°,∴△CME为等腰直角三角形,∴CE=CM=,∴BE=+1,∴OB=BE=+1,∴OD=+1,在Rt△OAD中,∵∠AOD=60°,∴OA=OD=(+1)∴AB=OB﹣OA=+1﹣(+1)=(+1).故答案为(+1).16.已知a、b是方程x2﹣3x+m﹣1=0(m≠1)的两根,在直角坐标系下有A(a,0)、B(0,b),以AB为直径作⊙M,则⊙M的半径的最小值为.【考点】根与系数的关系;坐标与图形性质;勾股定理.【分析】根据根与系数的关系可得a+b=3,由勾股定理可得出AB=,根据完全平方公式可得出AB=≥(a+b),代入a+b的值即可得出AB的最小值,再结合半径与直径的关系即可得出结论.【解答】解:∵a、b是方程x2﹣3x+m﹣1=0(m≠1)的两根,∴a+b=3.∵A(a,0)、B(0,b),∴AB=.∵(a+b)2=a2+b2﹣2ab≥0,∴≥(a+b),当a=b时,取等号.∴⊙M的半径的最小值为AB=.故答案为:.三、解答题17.某校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,从这5名学生中选取2名同时跳绳,求恰好选中一男一女的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到一男一女的情况,再利用概率公式即可求得答案.【解答】解:画树状图如下:由树状图可知共有20种等可能性结果,其中抽到一男一女的情况有12种,所以抽到一男一女的概率为P(一男一女)==,18.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示.(1)用尺规作图确定这个圆孔的圆心位置;(不写作法,保留作图痕迹)(2)求这个小圆孔的宽口AB的长度.【考点】作图—应用与设计作图;垂径定理.【分析】(1)如图,在⊙O上取一点C,连接AC,作线段AC、AB的垂直平分线,它们的交点即为圆心O(2)在Rt△OAG中,利用勾股定理即可解决问题.【解答】解:(1)如图,在⊙O上取一点C,连接AC,作线段AC、AB的垂直平分线,它们的交点即为圆心O.(2)作OG⊥AB于G,则AG=GB,∵OA=5,OG=8=5=3,在Rt△AOG中,AG===4,∴AB=2AG=8.19.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:(精确到0.01)落在“铅笔”的频率0.8 .0.1)(3)假如你去转动该转盘一次,你获得铅笔的概率约是0.8 .(精确到0.1)(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少(精确到1°)【考点】利用频率估计概率;扇形统计图.【分析】(1)根据频率的算法,频率=,可得各个频率;填空即可;(2)根据频率的定义,可得当n很大时,频率将会接近其概率;(3)根据概率的求法计算即可;(4)根据扇形图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比计算即可.【解答】解:(1)落在“铅笔”的频率=0.8,故答案为:0.8;(3)获得铅笔的概率约是0.8,故答案为:0.8;(4)扇形的圆心角约是0.8×360°=288度.20.正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.【考点】正方形的性质;矩形的判定;圆周角定理.【分析】(1)直接利用正方形的性质、圆周角定理结合平行线的性质得出∠BED=∠BAD=90°,∠BFD=∠BCD=90°,∠EDF=90°,进而得出答案;(2)直接利用正方形的性质的度数是90°,进而得出BE=DF,则BE=DG.【解答】证明:(1)∵正方形ABCD内接于⊙O,∴∠BED=∠BAD=90°,∠BFD=∠BCD=90°,又∵DF∥BE,∴∠EDF+∠BED=180°,∴∠EDF=90°,∴四边形EBFD是矩形;(2))∵正方形ABCD内接于⊙O,∴的度数是90°,∴∠AFD=45°,又∵∠GDF=90°,∴∠DGF=∠DFG=45°,∴DG=DF,又∵在矩形EBFD中,BE=DF,∴BE=DG.21.在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).【考点】列表法与树状图法;等腰三角形的判定;平行四边形的判定.【分析】(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,即可得出答案;(2)利用树状图得出从A、D、E、F四个点中先后任意取两个不同的点,一共有12种可能,进而得出以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,即可求出概率.【解答】解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,故P(所画三角形是等腰三角形)=;(2)用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,∴所画的四边形是平行四边形的概率P==.故答案为:(1),(2).22.如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为2cm,求图中阴影部分的面积.【考点】切线的性质;扇形面积的计算.【分析】(1)先证明∠P=180°﹣∠AOB,根据∠AOB=2∠ACB求出∠AOB即可解决问题.(2)连接OP,如图,根据切线的性质和切线长定理得到∠PAO=∠PBO=90°,∠APO=30°,则根据四边形内角和得到∠AOB=180°﹣∠APB=120°,再在Rt△PAO中利用含30度的直角三角形三边的关系得到AP=OA=2,则S△PAO=2,然后根据扇形面积公式,利用阴影部分的面积=S四边形AOBP ﹣S扇形AOB进行计算.【解答】解:(1)连接OA、OB,∵PA、PB是⊙O切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,∵∠P+∠PAO+∠AOB+∠PBO=360°,∴∠P=180°﹣∠AOB,∵∠ACB=60°,∴∠AOB=2∠ACB=120°,∴∠P=180°﹣120°=60°,(2)如图,连接OP,∵PA ,PB 是⊙O 的两条切线,∴OA ⊥AP ,OB ⊥PB ,OP 平分∠APB ,∴∠PAO=∠PBO=90°,∠APO=×60°=30°,∴∠AOB=180°﹣∠APB=180°﹣60°=120°,在Rt △PAO 中,∵OA=2,∠APO=30°,∴AP=OA=2,∴S △PAO =×2×2=2,∴阴影部分的面积=S 四边形AOBP ﹣S 扇形AOB =2×2﹣=4﹣π.23.如图,在平面直角坐标系xOy 中,A (0,2),B (0,6),点P 在直线y=x 上,⊙P 的半径为3,设P (x ,y ).(1)求⊙P 与直线x=2相切时点P 的坐标;(2)动点C 在直线y=x 上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数是 3 .【考点】切线的性质;一次函数图象上点的坐标特征;等腰三角形的判定;直线与圆的位置关系.【分析】(1)先根据直线和圆的位置关系和已知求出P 的横坐标,即可得出答案;(2)分为三种情况,根据勾股定理得出方程,求出方程的解即可.【解答】解:(1)∵⊙P 的半径为3,⊙P 与直线x=2相切,∴点P 到直线x=2的距离是3,即P的横坐标为2+3=5或2﹣3=﹣1,∵P在直线y=x上,∴P点的坐标为(5,5)或(﹣1,﹣1);(2)分为三种情况:①BP=AP,此时P在AB的垂直平分线上,∵A(0,2),B(0,6),∴AB=4,P点的纵坐标为4,∵P在直线y=x上,∴此时P的坐标为(4,4);②AB=AP=4,∵A(0,2),P(x,y),x=y,∴(x﹣0)2+(x﹣2)2=42,∴x=1±,此时P的坐标为(1+,1+)或(1﹣,1﹣);③AB=BP,∵B(0,6),P(x,y),x=y,∴∴(x﹣0)2+(x﹣6)2=42,此方程无解,即不存在AB=BP;所以符合的有3个,故答案为:3.24.已知△ABC内接于⊙O,过点A作直线EF,(1)如图1,若AB为直径,要使得EF是⊙O的切线,还需要添加的条件是(只须写出两种不同情况)①EF⊥AB 或②∠EAC=∠B .(2)如图2,若AB为非直径的弦,∠CAE=∠B,试说明EF是⊙O的切线.【考点】切线的判定.【分析】(1)添加条件EF⊥AB,根据切线的判定推出即可;添加条件∠EAC=∠B,根据直径推出∠CAB+∠B=90°,推出∠EAC+∠CAB=90°,根据切线判定推出即可;(2)作直径AM,连接CM,推出∠M=∠B=∠EAC,求出∠EAC+∠CAM=90°,根据切线的判定推出即可.【解答】(1)解:添加的条件是①EF⊥AB,理由是∵EF⊥AB,OA是半径,∴EF是⊙O的切线;②∠EAC=∠B,理由是:∵AB是⊙O的直径,∴∠C=90°,∴∠B+∠CAB=90°,∵∠EAC=∠B,∴∠EAC+∠CAB=90°,∴EF⊥AB,∵OA是半径,∴EF是⊙O的切线;(2)解:作直径AM,连接CM,即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠EAC=∠B,∴∠EAC=∠M,∵AM是⊙O的直径,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠EAC+∠CAM=90°,∴EF⊥AM,∵OA是半径,∴EF是⊙O的切线.25.如图,在平面直角坐标系中,O是原点,以点M(2,2)为圆心,4为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点N在⊙M上.(1)点A坐标(2﹣2,0),点B坐标(2+2,0);(2)求抛物线的解析式;(3)点P(m,n)在直线y=﹣x+上方的抛物线上,且∠APB>60°,求m的取值范围;(4)在该抛物线上是否存在一点D,使线段ON与MD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)过点C作DC⊥AB,垂足为D.由垂径定理可知:AD=DB,然后由勾股定理可求得AD的长,从而得到点A和点B的坐标;(2)由图形的对称性可知P在CD上,从而可求得点P的坐标,设抛物线的解析式为y=a(x ﹣2)2+6,将点B的坐标代入可得到a的值,从而可得到抛物线的解析式;(3)如图2中,设直线y=﹣x+与抛物线的交点为E、F,由∠AMB=120°,可知点P在直线y=﹣x+上方(包括E、F两点,除点N),都是满足条件∠APB>60°(∠ANB=AMB=60°),利用方程组求出点E、F两点坐标即可解决问题.(4)取OP的中点E,连接CE,并延长CE到D使ED=CE.首先由线段的中点坐标公式求得点D 的坐标,然后判断点D是否在抛物线上即可.【解答】解:如图1所示:过点M作MD⊥AB,垂足为D.∵MD⊥AB,∴AD=DB.∵在Rt△ADC中,AC=4,CD=2,∴AD==2.∴DB=2.∴A(2﹣2,0)、B(2+2,0).故答案为(2﹣2,0),(2+2,0).(2)如图1所示:∵点A与点B关于MD对称,∴MD为抛物线的对称.∴顶点N在MD上.∵MD=2,MN=4,∴ND=6.∴N(2,6).设抛物线的解析式为y=a(x﹣2)2+6.∵将点B的坐标代入得:12a+6=0,解得:a=﹣,∴抛物线的解析式y=﹣(x﹣2)2+6,即y=﹣x2+2x+4.(3)如图2中,设直线y=﹣x+与抛物线的交点为E、F.在Rt△AMD中,∵AM=2DM,∴∠MAD=30°,∴∠AMD=∠BMD=60°,∴∠AMB=120°,∴点P在直线y=﹣x+上方(包括E、F两点,除点N),都是满足条件∠APB>60°(∠ANB= AMB=60°),由解得或,∴F(1,),E(5,),∴m的取值范围:1≤m≤5且m≠2.(4)存在.理由:如图3所示:取ON的中点E,连接ME,并延长ME到D使ED=ME.设点D的坐标为(x,y).∵ON与MD相互平分,∴=, =,∴x=0,y=4,∵将x=0代入抛物线的解析式得y=4,∴点D在抛物线上.∴当点D的坐标为(0,2)时,OP与CD相互平分.。