差动变压器实验
实验2 差动变压器性能实验

实验二差动变压器性能实验一、实验目的了解差动变压器的工作原理和特性, 了解差动变压器零点残余电压补偿的方法。
二、实验仪器差动变压器(差动电感)、测微头、差动放大器、信号源、示波器。
三、实验原理差动变压器由一只初级线圈和两只次级线圈及一个铁芯组成。
铁芯连接被测物体。
移动线圈中的铁芯, 由于初级线圈和次级线圈之间的互感发生变化促使次级线圈的感应电动势发生变化, 一只次级线圈的感应电动势增加, 另一只次级线圈的感应电动势则减小, 将两只次级线圈反向串接(同名端连接)引出差动输出, 则输出的变化反映了被测物体的移动量。
四、由于差动变压器两只次级线圈的等效参数不对称, 初级线圈的纵向排列不均匀性, 次级线圈的不均匀, 不一致性, 铁芯的B-H 特性非线性等, 因此在铁芯处于差动线圈中间位置时其输出并不为零, 称其为零点残余电压。
五、实验内容与步骤(1)差动传感器性能1. 根据图2-1 将差动变压器安装在传感器固定架上(传感器固定架为实验通用支架。
如果做其他实验, 可直接将传感器更换。
如做电容传感器实验, 可将差动变压器直接换成电容传感器)。
图2-1 差动变压器安装图图2-2 差动变压器接线图2.将传感器引线插头插入“差动电感”插座中, 音频信号由信号源的“Us1 00”处输出, 打开电源, 调节Us1 的频率和幅度(用示波器监测), 使输出信号频率为4-5kHz, 幅度为Vp-p=2V, 按图2-2 接线(差动电感接差动放大器输入端)。
3.将“差动放大器”的增益调到最大(增益调节电位器顺时针旋到底)。
用示波器观测“差动放大器”的输出, 旋动测微头, 使上位机或示波器观测到的波形峰-峰值Vp-p 为最小, 这时可以左右位移, 假设其中一个方向为正位移, 另一个方向位移为负, 从Vp-p 最小开始旋动测微头, 每隔0.2mm 从示波器或上位机上读出输出电压Vp-p 值, 填入表2-1, 再从Vp-p 最小处反向位移做实验, 填入表2-2。
差动变压器性能实验1

差动变压器性能实验1差动变压器是电力系统中常用的一种电力变压器,其具有保护电力系统的重要作用。
差动变压器可用于检测电力系统中的故障,并在故障发生时及时切断电力系统,以防止事故的发生。
为了保证差动变压器的性能和可靠性,需要开展相应的实验以检测其性能。
本文就差动变压器性能实验逐一进行介绍。
I. 实验目的1. 学习差动变压器的原理和结构;2. 掌握差动变压器的性能测试方法;3. 理解差动保护的基本原理,了解保护系统的作用;4. 学会对差动变压器性能测试结果进行分析和处理。
差动变压器、电源、电压表、电流表、直线阻抗测试仪、开关等。
差动变压器的原理是将电流互感器的原理应用到电力变压器中。
在一定的工作电压下,电流互感器中的一侧绕绕组所产生的磁通会感应到另一侧绕绕组中的电势,从而将电流传送到另一侧。
差动变压器由采样变压器和比率变压器组成,其中采样变压器用于测量绕组中的电流,比率变压器用于将电压进行变形,从而使电流保持平衡。
差动保护是一种非常重要的保护方式,其基本原理是通过对差流进行检测,以判断电力系统中是否存在故障。
在正常运行时,电流经过差动变压器的两侧绕组时是相等的,由于采样变压器可采集绕组中的电流,因此通过对两侧绕组的电流进行比较,即可得出电力系统中是否存在故障。
当系统中发生故障时,绕组间会产生一定的差流,此时保护系统会将信号反馈给操作员,使其切断电力系统以保证电力系统的安全。
1. 搭建差动变压器测试电路,连接直线阻抗测试仪,检查电路是否连接正确;2. 检测差动变压器的电气参数,包括绕组阻抗、变比、绕组耦合系数、相位差等;3. 测试差动保护的作用,包括灵敏度试验、速动保护试验和完整性试验等;4. 对测试结果进行分析,分析差动变压器的工作状态和保护系统的工作状态,确定是否达到安全标准;5. 记录测试结果,撰写实验报告。
V. 实验结果通过测试差动变压器的工作状态和保护系统的工作状态,得到了以下重要参数:1. 差动保护的灵敏度:建议灵敏度位于1%至10%之间,且灵敏度应该能够检测到所有系统中可能出现的故障;2. 差动保护的速动系数:速动系数应该足够高,以确保在故障发生时能够及时切断电力系统;3. 差动保护的完整性:保护系统应该具有良好的完整性,能够在系统出现故障时正常工作,不受其他因素的影响。
差动变压器性能测试实验报告

差动变压器性能测试实验报告实训项目:差动变压器的性能实验实训目的:了解差动变压器的工作原理和特性。
基本原理:差动变压器由一只初级线圈和两只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。
当差动变压器随着被测体移动时差动变压器的铁芯也随着轴向位移,从而使初级线圈和次级线圈之间的互感发生变化,促使次级线圈感应电势产生变化,一只次级线圈感应电势增加,另一只感应电势则减少,将两只次级线圈反向串接(同名端连接),就引出差动电势输出。
其输出电势反映出被测体的移动量。
实训器材:主机箱、差动变压器、差动变压器实验模板、测微头、双踪示波器。
实训步骤:1(将差动变压器和测微头(参照附:测微头使用)安装在实验模板的支架座上,差动变压器的原理图已印刷在实验模板上,L1为初级线圈;L2、L3为次级线圈;,号为同名端,如图十一所示。
图十一差动变压器特性试验连接示意图 2(按图十一接线,差动变压器的原边,,的激励电压必须从主机箱中音频振荡器的Lv端子引入,检查接线无误后合上总电源开关,调节音频振荡器的频率为4 KHz,5KHz(可用主机箱的频率表输入Fin 来监测);调节输出幅度峰峰值为Vp-p,2V(可用示波器监测:X轴为0.2ms/div)。
3(松开测微头的安装紧固螺钉,移动测微头的安装套使示波器第二通道显示的波形Vp-p为较小值(变压器铁芯大约处在中间位置),拧紧紧固螺钉,仔细调节测微头的微分筒使示波器第二通道显示的波形Vp-p为最小值(零点残余电压)并定为位移的相对零点。
这时可以左右位移,假设其中一个方向为正位移,另一个方向位移为负,从Vp-p最小开始旋动测微头的微分筒,每隔2mm(可取10—25点)从示波器上读出输出电压Vp-p值,填入表7,再将测微头退回到Vp-p最小处开始反方向做相同的位移实验。
在实验过程中应注意:?从Vp-p最小处决定位移方向后,测微头只能按所定方向调节位移,中途不允许回调,否则,由于测微头存在机械回差而引起位移误差;所以,实验时每点位移量须仔细调节,绝对不能调节过量,如过量则只好剔除这一点继续做下一点实验或者回到零点重新做实验。
差动变压器测位移持性实验

实验步骤
• 1、相敏检波器电路调试:将主机箱的音频振荡器的幅 度调到最小(幅度旋钮逆时针轻轻转到底),将 ±2V~±10V可调电源调节到±2V档,再按示意图接 线,检查接线无误后合上主机箱电源开关,调节音频 振荡器频率f=5kHz,峰峰值Vp-p=5V(用示波器测量。 提示:正确选择双踪示波器的“触发”方式及其它设 置,触发源选择内触发CH1、水平扫描速度TIME/DIV 在0.1mS~10µS范围内选择、触发方式选择AUTO ; 垂直显示方式为双踪显示DUAL、垂直输入耦合方式选 择直流耦合DC、灵敏度VOLTS/DIV在1V~5V范围内 选择。当CH1、CH2输入对地短接时移动光迹线居中 后再去测量波形。)。调节相敏检波器的电位器钮使 示波器显示幅值相等、相位相反的两个波形。到此, 相敏检波器电路已调试完毕,以后不要触碰这个电位 器钮。关闭电源。
• 相敏检波器电路调试接线示意图
相敏检波器电路调试接线示意图
• 2、 调节测微头的微分筒,使微分筒的
0刻度值与轴套上的10mm刻度值对准。 按 • 示意图安装、接线。将音频振荡器幅 度调节到最小(幅度旋钮逆时针轻转 到底);电压表的量程切换开关切到 20V档。检查接线无误后合上主机箱电 源开关。
• 差动变压器测位移组成、接线示意图
差动变压器测位移组成、接线示意图
• 本实验用虚拟仪器代替示波器方法: • 在计算机桌面上点击CSY-9.0后选择虚拟仪 CH2) 。 • 3、调节音频振荡器频率f=5KHz、幅值Vpp=2V(用示波器监测)。
• 4、松开测微头安装孔上的紧固螺钉。顺着差动变压器 衔铁的位移方向移动测微头的安装套(左、右方向都 可以),使差动变压器衔铁明显偏离L1初级线圈的中 点位置,再调节移相器的移相电位器使相敏检波器输 出为全波整流波形(示波器CH2的灵敏度VOLTS/DIV 在1V~50mV范围内选择监测)。再慢悠悠仔细移动 测微头的安装套,使相敏检波器输出波形幅值尽量为 最小(尽量使衔铁处在L1初级线圈的中点位置)并拧 紧测微头安装孔的紧固螺钉。 • 5、调节差动变压器实验模板中的RW1、RW2(二者 配合交替调节)使相敏检波器输出波形趋于水平线 (可相应调节示波器量程档观察)并且电压表显示趋 于0V。 • 6、调节测微头的微分筒,每隔△X=0.2mm从电压表 上读取低通滤波器输出的电压值,填入表中。
差动变压器的性能实验

差动变压器的性能实验一、实验目的:了解差动变压器的工作原理和特性。
二、基本原理:差动变压器的工作原理电磁互感原理。
差动变压器的结构如图所示,由一个一次绕组1和二个二次绕组2、3及一个衔铁4组成。
差动变压器一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移改变而变化。
由于把二个二次绕组反向串接(*同名端相接),以差动电势输出,所以把这种传感器称为差动变压器式电感传感器,通常简称差动变压器。
当差动变压器工作在理想情况下(忽略涡流损耗、磁滞损耗和分布电容等影响),它的等效电路如图所示。
图中U1为一次绕组激励电压;M1、M2分别为一次绕组与两个二次绕组间的互感:L1、R1分别为一次绕组的电感和有效电阻;L21、L22分别为两个二次绕组的电感;R21、R22分别为两个二次绕组的有效电阻。
对于差动变压器,当衔铁处于中间位置时,两个二次绕组互感相同,因而由一次侧激励引起的感应电动势相同。
由于两个二次绕组反向串接,所以差动输出电动势为零。
当衔铁移向二次绕组L21,这时互感M1大,M2小,差动变压器的结构示意图差动变压器的等效电路图因而二次绕组L21内感应电动势大于二次绕组L22内感应电动势,这时差动输出电动势不为零。
在传感器的量程内,衔铁位移越大,差动输出电动势就越大。
同样道理,当衔铁向二次绕组L22一边移动差动输出电动势仍不为零,但由于移动方向改变,所以输出电动势反相。
因此通过差动变压器输出电动势的大小和相位可以知道衔铁位移量的大小和方向。
由图可以看出一次绕组的电流为:二次绕组的感应动势为:由于二次绕组反向串接,所以输出总电动势为:其有效值为:差动变压器的输出特性曲线如图所示.图中E21、E22分别为两个二次绕组的输出感应电动势,E2为差动输出电动势,x表示衔铁偏离中心位置的距离。
其中E2的实线表示理想的输出特性,而虚线部分表示实际的输出特性。
E0为零点残余电动势,这是由于差动变压器制作上的不对称以及铁心位置等因素所造成的。
实验四 差动变压器性能

实验四差动变压器的性能实验一、实验目的:了解差动变压器的工作原理和特性。
二、基本原理:差动变压器同一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。
当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。
其输出电势反映出被测体的移动量。
三、需用器件与单元:差动变压器实验模板、测微头、双线示波器、差动变压器,音频信号源(音频振荡器)、直流电源、万用表。
四、实验步骤:1、根据图3-1,将差动变压器装在差动变压器实验模板上。
图3-1 差动变压器电容传感器安装示意图2、在模块上近图3-2接线,音频振荡器信号必须从主控箱中的L v端子输出,调节音频振荡器的频率,输出频率为4~5KHz(可用主控箱的数显表的频率档Fin输入来监测)。
调节幅度使输出幅度为峰一峰值V p-p=2V(可用示波器监测:X轴为0.25ms/div、Y轴CH1为1V/div、CH2为20mv/div)。
判别初次级线圈及次级线圈同名端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。
当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅值变化很大,基本上能过零点,而且相位与初级圈波形(L v音频信号V p-p=2V波形)比较能同相和反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。
图中(1)、(2)、(3)、(4)为模块中的实验插孔。
图3-2 双线示波与差动变压器连结示意图3、旋动测微头,使示波器第二通道显示的波形峰一峰值V p-p为最小。
这时可以左右位移,假设其中一个方向为正位移,则另一方向移为负。
从V p-p最小开始旋动测微头,每隔0.2mm从示波器上读出输出电压V p-p值填入下表(3-1)。
差动变压器实验报告

差动变压器实验报告一、实验目的二、实验原理1.差动变压器的结构和工作原理2.差动保护的基本原理三、实验器材和仪器四、实验步骤及结果分析1.接线方法及注意事项2.实验步骤及数据记录3.结果分析及误差分析五、实验结论与体会一、实验目的1.掌握差动保护的基本原理,了解差动变压器在电力系统中的应用;2.熟悉差动变压器的结构和工作原理;3.学习使用实验仪器,掌握接线方法及注意事项。
二、实验原理1.差动变压器的结构和工作原理差动变压器由两个同等容量的互感器组成,其中一个互感器为主绕组,另一个为副绕组。
主绕组和副绕组中都有相同数量的匝数。
当主绕组中通以电流时,在副绕组中也会产生相应大小和方向相反的电流。
这是由于两个互感器之间有共同磁链所致。
2.差动保护的基本原理在电力系统中,发生故障时,通常会出现电流突变。
差动保护的基本原理是通过检测主绕组和副绕组中的电流差来判断电力系统是否发生故障。
如果两个绕组中的电流差超过了设定值,则认为电力系统发生了故障,保护装置将触发并切断故障部分。
三、实验器材和仪器1.差动变压器;2.交流电源;3.数字万用表;4.示波器。
四、实验步骤及结果分析1.接线方法及注意事项将主绕组和副绕组依次接入交流电源,数字万用表和示波器上分别接入主绕组和副绕组的两端。
注意接线顺序,避免短路或错误连接。
2.实验步骤及数据记录按照实验要求依次进行以下步骤,并记录数据:(1)在未发生故障时,记录主绕组和副绕组的电流值,并计算其差值。
(2)在发生故障时,记录主绕组和副绕组的电流值,并计算其差值。
(3)比较两次测量结果,分析误差来源。
3.结果分析及误差分析通过实验数据的比较和分析,可以得出以下结论:(1)在未发生故障时,主绕组和副绕组的电流值应该相等,差异应该为零。
(2)在发生故障时,主绕组和副绕组的电流值会有所变化,差异会增大。
(3)误差来源主要包括接线不当、测量仪器精度不足等。
五、实验结论与体会通过本次实验,我们掌握了差动保护的基本原理和差动变压器的结构和工作原理。
差动变压器实验报告

差动变压器实验报告差动变压器实验报告引言:差动变压器是一种常用的电力设备,用于保护电力系统中的变压器。
本次实验旨在深入了解差动变压器的原理和工作机制,并通过实验验证其性能。
一、实验目的:1. 掌握差动变压器的基本原理和结构;2. 了解差动保护的工作原理;3. 通过实验验证差动变压器的性能。
二、实验仪器与设备:1. 差动变压器实验装置;2. 电源;3. 电流互感器;4. 电压互感器;5. 示波器。
三、实验原理:差动变压器是由两个或多个互感器组成的,其中一个为主互感器,其余为副互感器。
主互感器的一侧与电源相连,另一侧与负载相连。
副互感器的一侧与主互感器的相同端子相连,另一侧与差动继电器相连。
差动保护的基本原理是通过比较主互感器和副互感器的输出信号来判断系统是否发生故障。
在正常情况下,主互感器和副互感器的输出信号相等,差动继电器不动作;而在发生故障时,由于主互感器和副互感器的输出信号不同,差动继电器会动作,从而实现对系统的保护。
四、实验步骤:1. 将差动变压器实验装置接入电源,调整电压和电流的大小;2. 通过电流互感器和电压互感器分别测量主互感器和副互感器的输出信号;3. 将测得的信号输入示波器,观察波形;4. 通过改变电流和电压的大小,以及引入不同的故障情况,观察差动继电器的动作情况。
五、实验结果与分析:通过实验观察,我们可以得到以下结论:1. 在正常情况下,主互感器和副互感器的输出信号相等,差动继电器不动作;2. 在发生故障时,主互感器和副互感器的输出信号不同,差动继电器会动作;3. 不同类型的故障会导致差动继电器的动作时间和动作方式不同。
六、实验总结:通过本次实验,我们深入了解了差动变压器的原理和工作机制,并通过实验验证了其性能。
差动变压器作为一种重要的保护设备,在电力系统中起着至关重要的作用。
掌握差动保护的原理和应用,对于保障电力系统的安全运行具有重要意义。
在今后的学习和工作中,我们应该进一步加深对差动变压器的理解和应用,不断提高自己的技能和知识水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按表要求,参照 ③与④ 的操作步骤,分别使动铁芯产生1mm 和2mm 的位 移,保持位移量与输入信号的幅度不变,分别改变信号频率为:1、3 、 5、 7、9KHZ,并记录不同频率时的输出电压数据。
X fkHz VO
1 3 5 7 9
1mm
2mm
3mm
根据实验数据,计算出每一频率时的灵敏度S,说明灵敏度与激励频率的关系曲 线。
2.仔细调节测微头使次级的差动输出电压uo最小,这个最小电压叫做 (零点残余电压)。可以看出它与输入电压的相位差约为(90度),因此 是(基波)正交分量。
3.根据所测结果,将零点残余电压最小,定为座标轴“0”点,输入同相 为正,反之为负。画出差动变压器输出电压特性(uo p_p -X)曲线, 指出线性工作范围,
实验用差动变压器(电感式)传感器主要性能: 量程:≥5mm 直流电阻:5Ω-10Ω
由一个初级、二个次级线圈绕制而成的透明空心线圈,铁芯 为软磁铁氧体。
三、实验应知知识
3、差动变压器传感器的组成结构
差动变压器由一只初级线圈和二只次线圈及一个铁芯组成, 根据内外层排列不同,有二段式和三段式,本实验采用三段式 结构,如图所示。
② 调整测微头,使次级输出电压最小。 ③ 调整测微头,使动铁芯产生3mm的位移,记录此时的输出电压数据。 ④ 保持位移量与输入信号的幅度不变,分别改变信号频率为:1、5、7、 9KHZ,并记录不同频率时的输出电压数据。
按表要求,参照 ③与④ 的操作步骤,分别使动铁芯产生1mm和2 mm的位移,
四、实验应会技能
V S X 4.求出灵敏度:根据实验数据,计算出位移1mm与3mm时的灵敏度
值。
四、实验应会技能
2 激励频率对差动变压器性能的影响
差动变压器输出电压的有效值近似关系式为:
UO
(M1
R
2 p
M 2 )Ui
2L2p
式中:Lp、Rp为初级线圈电感和损耗电阻,Ui、ω为激励电压和频率,M1、M2 为初级与两次级间互感系数
当动铁处于中间位置时,磁阻
RM
Rm1=Rm2 ,即互感M1=M2,
1
OUT 且极性相反,因采用差动输出,
铁
故此时输出电压Uo = 0 。
芯
Vo
RM2
三、实验应知知识
4、差动变压器传感器的工作原理
② 当动铁上移时,磁阻 Rm1< Rm2 ,则 M1> M2 ,此时输出电压Uo<0 。输出与输入信号反 相
3、霍尔传感器的特性测试及应用
4、附加——移相器与相敏检波器实验 在大家学习《传感技术》期间,本实验室可以向对 传感器知识感兴趣的同学开放。
实验一
差动变压器性能标定 及零点残余电压补偿
实验知识准备
1.做本实验时应具备的知识点:
i.什么差动变压器传感器? ii.什么零点残余电压及补偿方法? iii.差动变压器传感器的性能标定方法。 iV.差动变压器传感器应用。
四、实验应会技能
4、差动变压器传感器的性能标定
① 按图所示,确保无误的连接好实验电路。尔后开启电源。调整好信号源并输入。 ② 调整测微头,使差动变压器铁芯处于线圈的平衡位置(即10mm处)。再微调测微头 和电桥调零网络的电位器W1、W2,使电压表指示最小或指零。 ③旋转测微头,给铁芯一个较大的向右的位移(如:位移5mm即15mm处),同时用示 波器观察相敏检波器端(Vo)的输出波形,调整移相器与相敏检波器的电位器,使电压 表指示为最大且为全波整流波形。并记录之。 ④旋动测微头,使铁芯产生向左的较大位移(即5mm处),用示波器观察相敏检波器 (Vo)的输出波形,并记录之。 ⑤ 按表所列数据,每隔1mm读取一组数据,将实验数据填入表中
感测技术实验
武汉理工大学信息工程学院 专业综合实验中心
感测技术实验概述
大家知道,当今时代,是“信息时代”。计算机被 称为“大脑”,传感器被称为“五官”。信息的获取 和处理都离不开“大脑”和“五官”。作为提供信息 的传感技术及传感器倍受重视,进入到一个飞速发展 的新由阶于段传。感器技术的空前发展,其应用领域不断深入, 已十分广泛地应用于国防、航空、航天、交通运输、 工业自动化、家用电器等各个领域。并已发展为一种 专门的技术学科,成为现代信息技术的重要基础之一。 鉴于传感器在现代科学技术中的重要地位,作为新世 纪的大学生有必要对这一领域有所了解与掌握。
轴套上的主尺有两排刻度线,标有数字的是整毫米刻线(1mm/ 格),另一排是半毫米刻线(0.5mm/格);微分筒前部圆周表面 上刻有50等分的刻线(0.01mm/格)。
四、实验应会技能
1、差动变压器传感器的工作原理验证
① 观察差动变压器式电感传感器的外形构造, 并按图连接实验电路。
②调整音频振荡器,用示波器测量。使其输出频 率为4KHZ/2Vp-p;并从音频振荡器的Lv端口 输出。旋动测微头,并将其调整到10mm 处, 前后移动测微头,使示波器第二通道显示的波形 峰-峰值Vp-p为最小,并将此定为座标轴“0”点, 再将测微头用螺丝固定。
RM2
Vi
M1 OUT
动
M2
Vo
铁
芯
输出电压的幅 度可表明物体 位移量的大小.
输入/输出电压 的极性,表明 了物体位移的 方向.
四、实验应会技能
1、熟悉并掌握实验用差动变压器传感器模块
实验用差动变压器传感器如图示:
四、实验应会技能
2、熟悉并掌握测微头的组成与使用
实验用测微头的组成和读数如图所示:
2、电感传感器的用途与特点
电感传感器可用来测量位移、压力、流量、振动等非电量信 号。主要特点有:
结构简单、工作可靠; 灵敏度高,能分辨0.01μm的位移变化; 测量精度高、零点稳定、输出功率较大; 可实现信息的远距离传输、记录、显示和控制,在工业自动 控制系统中被广泛采用;
三、实验应知知识
3、差动变压器传感器的定义:
二、实验内容
一、差动变压器工作原理验证测试 二、激励频率对差动变压器传感器特性的影响。 零点残余电压的补偿 三、差动变压器传感器零点残余电压的补偿 四、差动变压器的性能标定。
三、实验应知知识
1、电感传感器的基本定义
利用电磁感应原理将被测非电量转换成线圈自感量或互感量 的变化,进而由测量电路转换为电压或电流变化量的装置,称为 电感传感器。电感式传感器种类很多,主要有自感式传感器、 差动变压器式电感式传感器、电涡流式电感传感器三种。
四、实验应会技能
3、差动变压器传感器零点残余电压的测量与补偿
① 按图所示,连接实验电路。完成后通电。将音频振荡器调到4KHZ/2Vp-p,LV端口输 出。 ② 调整测微头,使差动放大器输出电压最小。再依次调整W1、W2使输出电压进一步减 小。 ③ 从示波器上观察,差动变压器的零点残余电压值(峰-峰值)。(注:这时的零点残余 电压是经放大后的零点残余电压,实际零点残余电压应为:Vo=Vop-p/K (K=5) ④ 用示波器观察CH2通道零点残余电压的波形,注意与激励信号电压波形相比较。经过 被偿后的残余电压波形为( 不规则 )波形。这说明波形中有(高次谐波)分量。
2、传感器的基本组成
传感器一般由敏感元件与转换元件组成。
敏感元件是指:传感器中能够直接感受或响应被测量的部
分。
转换元件是指:传感器中能将敏感元件感受或响应的被测
量,转换成适于传输或测量的电信号部分。
传感器的基本功能
传感器是感知、获取、检测和转换信息的窗口, 处于研究对象与传输处理系统的接口位置。被喻为计 算机实现智能化的“五官”,因此可以说,传感器是 实现信息化时代的主要技术基础。
1、按传感器的物理量分类,可分为位移、力、速度、 温度、流量、气体成份等传感器
2、按传感器工作原理分类,可分为电阻、电容、电 感、电压、霍尔、光电、光栅、热电偶等传感器。
3、按传感器输出信号的性质分类,可分为:输出为 开关量(“1”和"0”或“开”和“关”)的开关型传 感器;输出为模拟型传感器;输出为脉冲或代码的数 字型传感器。
③从Vo(p-p)最小开始旋动测微头,使传感器产生位移,每位移1mm,从示波器上读出
差动变压器输出端的峰峰值,填入表1。在实验过程中,注意左、右位移时,初、次级 波形的相位关系 。(要求位移5mm)
X(mm)
10
Vo(v)
输入波形
输出波形
实验数据记录
1.记录当碰芯从“0”移到右时,差动变压器初、次级信号波形的相位关 系的变化,两者的相位由(同)相变为(反)相。
当传感器的输出、输入量的量纲相同时,灵敏度可理 解为放大倍数。
提高灵敏度,可得到较高的测量精度。但灵敏度愈 高,测量范围愈窄,稳定性也往往愈差。
感测技术实验目的
通过对传感器系统的综合实验,使我们能 够做到:
1、了解传感器的强大生命力,掌握它的组成结构、 工作原理与基本功能。
2、掌握常用各类传感器的外形特征、性能标定、测 量方法与实际应用技术。
传感器基础知识
1、什么是传感器?
国家标准GB7665-87对传感器下的定义是:能感受规定的被 测量并按照一定的规律转换成可用信号的器件或装置,称为传 感器。传感器是一种检测装置,能感受到被测量的信息,并能 将检测感受到的信息,按一定规律变换成为电信号或其他所需 形式的信息输出,以满足信息的传输、处理、存储、显示、记 录和控制等要求。它是实现自动检测和自动控制的首要环节。
在科学研究、民用新产品开发的各个领域,特别是 现代许多高科技应用中,传感器起着举足轻重的作用。 传感器可以对声、压力、形变、转矩、转速、位移、 液面、温度、加速度、光强等各种非电量转换为电测 量。高精度的传感器对航空、航天、军事领域的应用 是不可缺少的。
传感器的分类
目前对传感器尚无一个统一的分类方法,但比较常 用的有如下三种:
差动变压器式传感器是互感式传感器,是一种线圈互 感随衔铁位移变化的变磁阻式传感器。其原理类似于变压 器。不同的是:变压器为闭合磁路,差动变压器为开磁路; 变压器初、次级间的互感为常数,差动变压器初、次级间 的互感随衔铁移动而变,且两个次级绕组按差动方式工作, 因此又称为差动变压器。它与自感式传感器统称为电感式 传感器。本次实验选用的是差动变压器传感器.