【月考试卷】山东省武城县2017届九年级数学上学期第一次月考试题 新人教版
人教版九年级数学上册第一次月考答案(新)

人教版九年级数学试题2017-2018学年第一学期 九年级数学第一次月考答案一、选择题 (本大题共6小题,每小题3分,共18分)1 2 3 4 5 6 DACCBC二、填空题 (本大题共6个小题,每小题3分,共18分)7. 4 , —3 , —7 ; 8.260x x +-=; 9.1m >; 10. 4 ; 11. 4 ; 12. (1)(3)(4) .三、解答题(本大题共4小题,13题12分,14、15、16题每题6分,共30分) 13.(12分) ()2(1)225x -= ()22430x x --=127,3x x ==- 1272,72x x =+=-+()()()33121x x x -=- ()245140x x --=122,13x x == 127,2x x ==-14.(6分)解:(1)由题意可知:10m -≠① 210m -=②所以=1m -.(2)将=1m -带入方程()012122=-++-m x x m 整理有:20x x -=即()10x x -=,所以该方程的另外一个根是1x =. 15.(6分)解:(1)根据二次函数的图象可以知道:()()()1,04,003A B C --、、, 对称轴方程为143.22x -+== (2)把()()()1,04,003A B C --、、,代入2y ax bx c =++可得:0a b c -+= ①1640a b c ++=②15题图3c =- ③, 计算得出39,, 3.44a b c ==-=-即二次函数的解析式为239344y x x =--.(也可以设抛物线顶点式进行求解)16.(6分)解:设道路为x 米宽, 由题意得()()32220570x x --=,整理得:236350x x -+=,解得:12=135x x =,,经检验是原方程的解,但是3520x =>,因此35x =不合题意舍去. 答:道路为1m 宽.四.(本大题共3小题,每小题8分,共24分) 17.(8分)解:(1) ∵关于x 的方程()222110x k x k +-+-=有两个实数根12x x 、. ∴()()22=2141450k k k ∆---=-+≥解得:54k ≤. (2) ∵关于x 的方程()222110x k x k +-+-=有两个实数根12x x 、.∴2121212,1x x k x x k +=-⋅=-,()()()()()()222121212121222212+=16+2161216314120620,6,2;51, 2.4x x x x x x x x x x k k k k k k k k k k +-=+-=+---=-+===-≤=-,即代入有,整理可得:解得:由知所以,18.(8分) 解:(1)将点()()1,0,3,0A B -带入抛物线2y x bx c =++有10b c -+=①和9+30b c +=②解得:2,3b c =-=-.(2)由(1)可知抛物线解析式为()2223=14y x x x =----,即抛物线对称轴为1x =,所以当1x =时,min 4y =-;当4x =时,max 5y =; 而由已知知: 04x <<,所以此时y 的范围为45y -≤<.32m20m(3)当点P 在抛物线顶点()1,4-时PAB S ∆最大, 最大面积为11=44822PAB p S AB y ∆⋅⋅=⨯⨯=. 19.(8分)解:(1)()10160080,y x x x =+<<为偶数.(2)()()2805016010101404800W x x x x =--+=-++,即()21075290W x =--+.由函数图象的性质可知,抛物线开口向下,对称轴为7x =, 又x 为偶数,∴W 在6x =或8x =时取得最大值, 即max 5280W =,此时销售单价为807472x -=或.所以,当销售单价定为72或74元时,每周销售利润最大,为5280元. 五.(本大题共2小题,每小题9分,共18分) 20.(9分)解:(1)若一元二次方程230x x c -+=是“倍根方程”,则c= 2 ; (2)∵()()20x mx n --=是倍根方程,且122,n x x m ==,∴14n nm m==或, ∴4n m n m ==或,∵()()22454m mn n m n m n -+=--,∴22450.m mn n -+= (3)∵方程()200ax bx c a ++=≠是倍根方程,不妨设12=2,x x∵相异两点()()1,,4,M t s N t s +-都在抛物线2y ax bx c =++上,∴由抛物线的对称轴12145222x x t t x +++-===可知:125x x += 又∵12=2,x x ∴2225x x +=,即253x =,∴1103x =即()200ax bx c a ++=≠的两根分别为1103x =,253x =.21. (9分)解:(1)∵点P,Q 在抛物线上且纵坐标相同,∴P 、Q 关于抛物线对称轴对称并且到对称轴距离相等.∴抛物线对称轴31,42b x -+=-=∴b=4. (2)由(1)可知,关于x 的一元二次方程为22410x x ++=,∵2=416880b ac ∆-=-=> ∴方程有两个不相等的实数根,由求根公式可得:42221b x -±∆-±===-. (3)由题意将抛物线2241y x x =++的图象向上平移k(k 是正整数)个单位,使平移后的图象与x 轴无交点,∴设平移后的抛物线为2241y x x k =+++,∵方程22410x x k +++=没根,∴()16810k ∆=-+<,即1k >,又∵k 是正整数,∴k 的最小值是2. 六.(本大题共12分)解:(1)抛物线21y x =-+的勾股点的坐标为()0,1;(2)抛物线2y ax bx =+过原点,即点()0,0A , 如图,作PG x ⊥轴于点G,∵点P 的坐标为(3,, ∴()221,3,13 2.AG PG PA ===+=∴3060APG PAG ∠=∠=,, ∴在Rt PAB ∆中, 30PBA ∠=, ∴223PB PG ==,()()22222234,4,0AB PA PB B =+=+=即点的坐标为.∴不妨设抛物线解析式为()4y ax x =-,将点(13P ,代入得: 33a =,即抛物线解析式为23333y x x =-+. (3)①当点Q 在x 轴上方时,由ABQ ABP S S ∆∆=知点Q 的纵坐标为3, 则有233333x x -+=, 计算得出: 123,1x x ==(与P 点重合,不符合题意,舍去), ∴点Q 的坐标为()33,;②当点Q 在x 轴下方时,由ABQ ABP S S ∆∆=知点Q 的纵坐标为3-, 则有23433x x +=, 计算得出: 122+7,27x x ==-, ∴点Q 的坐标为()+732,-或()732-,-; 综上,满足条件的点Q 有3个: ()33,或()+732,-或()732-,-.习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。
人教版2016-2017学年九年级数学上册第一次月考试题及答案

2016-2017学年九年级数学上册第一次月考试题一、选择题(每题3分,共计30分)1.实数-8,-3,-5,0中最小的数是( )A.0B.-8C.-5D.-32.下列运算中,正确的是( )A .156=-a aB .933a a a =⋅ C .236a a a =÷ D .632)(a a =3.下列图形中,既是轴对称图形又是中心对称图形的是 ( )4.点 A(3,2)在双曲线y=xk上,则k 的值为 ( ) (A) 1 (B) 2 (C) 3 (D) 65.如图,在⊙O 中,∠ABC =50°,则∠AOC 等于( )A .50°B .80°C .90°D .100°(5题)6.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A ′B ′C .若∠A=40°,∠B ′=110°,则∠BCA ′的度数是( ).A .110° B. 80° C. 40° D. 30°7.在反比例函数的图象的每一条曲线上,y 都随x 的增大而减小,则k 的取值范围是( )A .k >1B .k >0C . k ≥1D .k <18. 抛物线y=(x-1)2+2与y 轴交点坐标为( )A. (0,1)B. (0,2)C. (1,2)D. (0,3)9.下面说法正确的是( )A .圆上两点间的部分叫做弦B .垂直于弦的直径平分弦,并且平分弦所对的两条弧C .圆周角度数等于圆心角度数的一半AB OC(6题)D .90度的角所对的弦是直径10.甲、乙两辆汽车沿同一路线赶赴距出发地480km 的某地,甲匀速行驶一段时间出现 故障,停车检修后又继续行驶,图中折线OABC 、线段DE 分别表示甲、乙两车所行路 程y(km)与甲车出发时间x(h)间的函数关系,以下结论中错误的有( ) ①乙车比甲车晚出发2h ;②乙车的平均速度为60km /h ;③甲车检修后的平均速度为l20km /h ;④两车第二次相遇时,它们距出发地320km ; (A)1个 (B)2个 (C)3个 (D)4二、填空题 (每题3分,共30分)11.长城总长约为 6700 000米,用科学记数法表示为 米. 12.函数y =12-x x的自变量x 的取值范围是________________ 13. 计算:18-8=__________.14.把多项式x 3-4x 分解因式的结果为 .15.如图,在⊙O 中,OC ⊥弦AB 于点C ,AB=4,OC=1,则OB 的长是______________. .16.不等式组10213x x +>-≤⎧⎨⎩的解集为______________.17. 如图,△ABC 内接于⊙O ,∠A=50°,则∠OBC 的度数为_________.18. 抛物线y=ax 2+bx+c 的对称轴是x=2,其函数图象与x 轴有两个交点,其中一个交点的坐标为(5,0),则另一个交点坐标为_______19.在△ABC 中,∠ABC=90°,点D 在AC 上,△ABD 是以AB 为腰的等腰三角形,若AB=15,BC=20,则CD 的长为 。
新人教版九年级数学上册第一次月考试卷

新人教版九年级数学上册第一次月考试卷一、选择题:(本大题共8个小题,每小题3分,共24分)每小题只有一个答案是正确的,请将正确答案的代号填入下列对应题号内.1.已知二次函数y=mx2+x﹣1的图象与x轴有两个交点,则m的取值范围是()A.m >﹣B.m≥﹣C.m >﹣且m≠0D.m≥﹣且m≠02.已知抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为()A.x=﹣1 B.x=1 C.x=2 D.y轴3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4 B.3 C.2 D.14.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(3, y2),C (,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y25.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x26.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)7.已知函数y=2x2的图象是抛物线,现在同一坐标系中,将该抛物线分别向上、向左平移2个单位,那么所得到的新抛物线的解析式是()A.y=2(x+2)2+2 B.y=2(x+2)2﹣2 C.y=2(x﹣2)2﹣2D.y=2(x﹣2)2+28.抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为()A.y=﹣x2B.y=﹣x2+1 C.y=x2﹣1 D.y=﹣x2﹣1二、填空题(本大题共7个小题,每小题3分,共21分)9.若把函数y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式,其中m,k为常数,则m+k=.10.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是.11.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x … ﹣2 ﹣1 0 1 2 …y … 0 4 6 6 4 …从上表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线;④在对称轴左侧,y随x增大而增大.12.函数y=2x2﹣3x+1与y轴的交点坐标为,与x轴的交点的坐标为,.13.请写出符合以下三个条件的一个函数的解析式:①过点(3,1);②当x>0时,y随x的增大而减小;③当自变量的值为2时,函数值小于2.14.抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为.15.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是.(只要求填写正确命题的序号)三、解答题16.(12分)解方程①x2﹣3x+2=0 ②4x2﹣8x﹣7=﹣11.③5x﹣2x2=0 ④x2+6x﹣1=017.(8分)用配方法将二次函数化成y=a(x﹣h)2+k的形式,并写出顶点坐标和对称轴①y=2x2+6x-12 ②y= -0.5x2-3x+318.(8分)已知二次函数y=2x2﹣4x﹣6.(1)用配方法将y=2x2﹣4x﹣6化成y=a(x﹣h)2+k的形式;(2)当x取何值时,y随x的增大而减少?(3)当0<x<4时,求y的取值范围;(4)求函数图象与两坐标轴交点所围成的三角形的面积.19.(8分)二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于A点.求(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,﹣3),∠ABC=45°,∠ACB=60°,求这个二次函数的解析式.20.(8分)已知抛物线C1:y=x2﹣2(m+2)x+m2﹣10的顶点A到y轴的距离为3.(1)求顶点A的坐标及m的值;(2)若抛物线与x轴交于C、D两点.点B在抛物线C1上,且求点B的坐标.21.(9分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?22.(8分)已知函数y=ax2 +60x,在x>20时,y随x增大而减小,求:(1)a的取值范围;(2)若该函数为飞机着陆后滑行距离y(m)与滑行时间x(s)之间的函数关系,已知函数的对称轴为直线x=20,请写出自变量滑行时间的取值范围,并求出飞机着陆后需滑行多少米才能停下来?23.(14分)如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,满足到线段CB距离最大,求点P坐标。
【九年级数学月考试题】2017届九年级上学期第一次月考数学试题

九年级第一次教学质量检测试卷数学一、选择题(本题共8小题,每小题3分,共24分).1.一元二次方程(x ﹣4)2=2x ﹣3化为一般式是()A .x 2﹣10x+13=0B .x 2﹣10x+19=0C .x 2﹣6x+13=0D .x 2﹣6x+19=0[来源学。
科。
网]2.已知x=1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是()A .1B .﹣1C .0D .无法确定3.方程x (x+3)=x+3的解为()A .x 1=0,x 2=﹣3B .x 1=1,x 2=﹣3C .x 1=0,x 2=3D .x 1=1,x 2=34.方程012kx x的根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.方程的根的情况与k 的取值有关5.将抛物线y=x 2先向左平移1个单位,再向下平移2个单位得到的抛物线是()A .y=(x+1)2﹣2B .y=(x ﹣1)2+2C .y=(x ﹣1)2﹣2D .y=(x+1)2+26.抛物线y=x 2﹣6x+5的顶点位于()A .第一象限B .第二象限C .第三象限D .第四象限7.在同一直角坐标系中,一次函数y=ax +c 和二次函数y=ax 2+c 的图象大致为()A .B .C .D .8.如果抛物线y=x 2﹣6x+c ﹣2的顶点到x 轴的距离是3,那么c 的值等于()A .8B .14C .8或14D .﹣8或﹣14二、填空题(本题共7小题,每小题3分,共21分)[来源学&科&网]9.已知关于x 的一元二次方程x 2+2x+m=0有实数根,则m 的取值范围是10.已知一元二次方程x 2+px+3=0的一个根为﹣3,则p=.11.已知三角形的两边长分别是4和7,第三边是方程x 2﹣16x+55=0的根,则第三边长是.。
新人教版九年级数学上册第一次月考质量检测

新人教版九年级数学上册第一次月考质量检测一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题..纸.相应位置....上) 1.抛物线()213y x =--的对称轴是 ( ) A .y 轴 B .直线x =-1 C .直线x =1 D .直线x =-3 2.把抛物线y =-2x 2先向右平移1个单位,再向上平移2个单位后,所得函数的表达式为 ( ) A .y =-2(x -1)2+2 B .y =-2(x +1)2+2 C .y =-2(x +1)2-2 D .y =-2(x -1)2-23.抛物线22y x =,22y x =-,212y x =的共同性质是 ( ) A .开口向上 B .对称轴是y 轴C .都有最高点D .y 随x 的增大而增大4.如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( )A .6B 5C .4D .3第4题 第6题 第7题5. 用一条长为40 cm 的绳子围成一个面积为a cm 2的长方形,a 的值不可能...为( ) A .20 B .40 C .100 D .1206.二次函数y =ax 2+bx +c (a ≠0)的图像如图,其对称轴为x =1,下列结论中错误的( )A .abc <0B .2a +b =0C .b 2-4ac >0D .a -b +c >0 7. 如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠AOD 等于( ) A .160° B .150° C .140° D .120°第8题 第9题8.二次函数2y x bx =+的图象如图,对称轴为直线x =1,若关于x 的一元二次方程20x bx t +-=(t 为实数)在-1<x <4的范围内有解,则t 的取值范围是( ) A . t ≥-1 B .-1≤ t <3 C . -1 ≤ t <8 D . 3<t <89.如图,⊙O 的半径为1,△ABC 是⊙O 的内接等边三角形,点D 、E 在圆上,四O B A y x -1x=1O C O D B A D E OCB A 1O x y边形BCDE 为矩形,这个矩形的面积是 ( )A . 2B . 3C . 32D . 310.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是 ( )二、填空题(本题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题纸相应位置上)11.已知(-2,y 1),(-1,y 2),(3,y 3)是二次函数24y x x m =-+上的点,则1y ,2y ,3y 到大用“<”排列是 .12.已知抛物线2y ax bx c =++(0a ≠)与x 轴交于A 、B 两点,若点A 的坐标为(-2,0),抛物线的对称轴为直线x =2,则线段AB 的长为 .13.抛物线223y x x =-+的顶点坐标为 .14. 抛物线y =2x 2+8x +m 与x 轴只有一个公共点,则m 的值为_ __. 15.如图,在⊙O 中,半径OA 垂直弦BC 于点D ,若∠ACB =33°,则∠OBC 的大小为 度. 16. 如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,AB =8则DE 的长为 .第15题 第16题 第18题17.二次函数)0(4)4(2≠--=a x a y 的图象在1<x <2这一段位于x 轴的下方,在7<x <8这一段位于x 轴的上方,则a 的值为 .18.如图,半径为 6cm 的⊙O 中,C ,D 为直径AB 的三等分点,点E ,F 分别在AB 两侧的半圆上,∠BCE =∠BDF = 60°,连结AE ,BF . 则图中两个阴影部分的面积和为 cm 2.三、解答题(本题共10小题,共96分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)O DC B P Q O O O O Oy y y y yx x x x x A . B . C . D .第10题 O ED C BA O C DFBED C B A O 已知二次函数y =-x 2-2x +3. (1)求它的顶点坐标和对称轴; (2)求它与坐标轴的交点坐标;20.(本题满分8分)已知二次函数2223y x mx m =-++(m 是常数)(1)求证:不论m 为何值,该函数的图象与x 轴没有公共点;(2)把该函数的图象沿y 轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?21.(本题满分8分)已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C ,D (如图). (1)求证:AC =BD ;(2)若大圆的半径R =10,小圆的半径r =8,且圆心O 到直线AB 的距离为6,求AC 的长.22.(本题满分8分)如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E .y xABCD O(1)若∠B =72°,求∠CAD 的度数; (2)若AB =13,AC =12,求DE 的长.23.(本题满分10分)如图, 二次函数的图象与x 轴交于A (-3,0)和B (1,0)两点,交y 轴于点C (0,3),点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D . (1)请直接写出D 点的坐标; (2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x 的取值范围.24.(本题满分9分)某商店购进一批单价为30元的纪念品,如果按每件40元出售,那么每天可销售100件.经市场调研发现,纪念品的销售单价每上涨1元,其销售量每天相应减少5件,如果每件纪念品的利润不超过40%,设纪念品的销售单价上涨x 元,每天销售量为y 件.(1)直接写出y 与x 之间的函数关系式;(2)将纪念品销售单价定为多少,才能使每天所获销售利润最大?最大利润是多少?25.(本题满分10分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E .点M 在⊙O 上,MD 恰好经过圆心O ,连接MB .OED C BAO EMDC BA(1)若CD =16,BE =4,求⊙O 的直径; (2)若∠M =∠D ,求∠D 的度数.26. (本题满分10分)如图,为了绿化小区,某物业公司要在形如五边形ABCDE 的草坪上建一个矩形花坛PKDH .已知:PH //AE ,PK //BC ,DE =100米,EA =60米,BC =70米,CD =80米.以BC 所在的直线为x 轴,AE 所在的直线为y 轴,建立平面直角坐标系,坐标原点为O . (I )求直线AB 的解析式.(II )若设点P 的横坐标为x ,矩形PKDH 的面积为S .(1)用x 表示S ;(2)当x 为何值时,S 取最大值,并求出这个最大值.27. (本题满分12分)如图,在直角坐标系中,抛物线经过点A (0,4),B (1,0),C (5,0),其对称轴与x 轴相交于点M .(1)求抛物线的解析式和对称轴;xy OK P EHDCBA4y MBC 51A O y lOB AQ P(2)在抛物线的对称轴上是否存在一点P ,使△P AB 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)连接AC ,在直线AC 的下方的抛物线上,是否存在一点N ,使△NAC 的面积最大?若存在,请求出点N 的坐标;若不存在,请说明理由.28. (本题满分13分)已知抛物线y =x 2﹣2mx +m 2+m ﹣1(m 是常数)的顶点为P ,直线l :y =x ﹣1 (1)求证:点P 在直线l 上;(2)当m =﹣3时,抛物线与x 轴交于A ,B 两点,与直线l 的另一个交点为Q ,求△BPQ 的面积;(3)若以抛物线和直线l 的两个交点及坐标原点为顶点的三角形是等腰三角形请直接写出所有符合条件的m 的值.。
2017九年级上册数学第一次月考测试卷

2017九年级上册数学第一次月考测试卷出差订酒店就用趣出差,单单有返现,关注微信小程序或下载APP立即领取100元返现红包九年级上册数学第一次月考测试与学生的学习是息息相关的。
下面是我为大家带来的关于2017九年级上册数学第一次月考的测试卷,希望会给大家带来帮助。
一、选择题每小题3分,共36分1.下列函数:中,是关于的反比例函数的有个A. 1个B.2个C. 3个D.4个2. 同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是A.点数之和为12.B.点数之和小于3.C.点数之和大于4且小于8.D.点数之和为13.3. 已知反比例函数y= 的象在每一个象限内,y随x增大而减小,则 .A.m≥5B.m5 D.m≤54. 从2,3,4,5中任意选两个数,记作和,那么点,在函数象上的概率是5.下列四个三角形,与左中的三角形相似的是6.已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=A.7B.7.5C.8D.8.57.已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是A.ABAD=ACAEB.ABAD=BCDEC.∠B=∠DD.∠C=∠AED8. 将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为9. 二次函数y=kx - 6x + 3的像与X轴有交点,则K的取值范围是A.K﹤3B.K﹤3且K≠0C.K≤3D.K≤3且K≠010. 在函数中,自变量的取值范围是11. 已知反比例函数的象如右所示,则二次函数的象大致为12. ,在矩形ABCD中,AB=10 , BC=5 . 若点M、N分别是线段AC、AB上的两个动点,则BM+MN的最小值为A. 10B. 8C.D. 6二、填空题每小题3分,共18分13.在一个袋中,装有五个除数字外其它完全相同的小球,球面上分别写有1,2,3,4, 5这5个数字. 小芳从袋中任意摸出一个小球,球面数字的算术平方根是无理数的概率是.14. 从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数 100 400 800 1 000 2 000 5 000发芽种子粒数 85 398 652 793 1 604 4 005发芽频率 0.850 0.745] 0.851 0.793 0.802 0.801根据以上数据可以估计,该玉米种子发芽的概率约为精确到0.1.15. 在函数 a为常数的像上三点—1 ,,,则函数值、、的大小关系是__________________.16. 反比例函数y= x<0的象经过点P ,则k的值为______.17.△ABC∽△DEF,且相似比是3:4,△ABC的面积是18cm2,则△DEF的面积为___________cm2.18. 在△ABC中,AB=6,AC=4,P是AC的中点,过P点的直线交AB于点Q,若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为__________.三、解答题19-25题每题8分,26题10分共66分19.本小题8分在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.1随机地从箱子里取出1个球,则取出红球的概率是多少?2随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.20. 本小题8分一次函数的象与x轴、y轴分别相交于A、B两点,且与反比例函数y= k≠0的象在第一象限交于点C,如果点B的坐标为0,2,OA=OB,B 是线段AC的中点.1求一次函数解析式及反比例函数的解析式;2若一次函数值大于反比例函数值,请求出相应的自变量的取值范围.21.本小题8分为了解中考体育科目训练情况,长沙市从全市九年级学生中随机抽取了部分学生进行了一次中考体育科目测试把测试结果分为四个等级:A 级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘成了如下两幅不完整的统计.请根据统计中的信息解答下列问题:1本次抽样测试的学生人数是;21中∠α的度数是,并把2条形统计补充完整;3若全市九年级有学生35000名,如果全部参加这次中考体育科目测试,请估计不及格的人数为.4测试老师想从4位同学分别记为E、F、G、H,其中E为小明中随机选择两位同学了解平时训练情况,请用列表或画树形的方法求出选中小明的概率.22. 本小题8分某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物深度微克/毫升与服药时间小时之间的函数关系所示当时,与成反比1请根据象求出与之间的函数关系式;2问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?23.△ABC是一块锐角三角形余料,边BC=180 mm,高AD=120 mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上.1若这个矩形是正方形,那么边长是多少?2若这个矩形的长是宽的2倍,则边长是多少?24. 本小题8分⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.1求∠D的度数;2若 ,求线段的长.25. 本小题8分已知:△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点不与B,C点重合,∠ADE=45°.1求证:△ABD∽△DCE;2设BD=x,AE=y,求y关于x的函数关系式;3当△ADE是等腰三角形时,求AE的长.26. 本小题10分在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点不与C、B重合,反比例函数y= k>0的象经过点D且与边BA交于点E,连接DE.1连接OE,若△EOA的面积为2,则k= ;2连接CA,请问DE与CA是否平行?请说明理由;3是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A D B D B B B A D C D B二、填空题 13. 14.0.8 15. 16. -6 17. 32 18.3或三、解答题19. 解:1∵在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出红球的概率是:;………………3分2画树状得:………………6分∵共有9种等可能的结果,两次取出相同颜色球的有3种情况,∴两次取出相同颜色球的概率为:= . ………………8分20.解:1∵OA=OB,点B的坐标为0,2,∴点A﹣2,0,点A、B在一次函数y=kx+bk≠0的象上,∴ ,解得k=1,b=2,∴一次函数的解析式为y=x+2.………………2分∵B是线段AC的中点,∴点C的坐标为2,4,又∵点C在反比例函数y= k≠0的象上,∴k=8∴反比例函数的解析式为y = .………………4分2 或………………8分21. 解:1本次抽样测试的学生人数是: =40人,………………1分2根据题意得:360°× =54°,答:1中∠α的度数是54°; (2)分C级的人数是:40﹣6﹣12﹣8=14人,:………………3分3根据题意得:35000× =7000人,答:不及格的人数为7000人. ………………4分4根据题意画树形如下:共有12种情况,选中小明的有6种,………………7分则P选中小明= = .………………8分22.解:1当时,;………………3分当时,………………6分2血液中药物浓度不低于4微克/毫升持续时间为6小时. (8)分23.解:1 72mm ………………4分2 mm, mm 或45mm,90mm. ………………8分24.解:1 ∠D=45°………………4分2 ………………8分25.解:1提示:除∠B=∠C外,可证∠ADB=∠DEC.………………3分2提示:由已知及△ABD∽△DCE可得从而y=AC-CE=x2- 其中.………………6分3当∠ADE为顶角时:提示:当△ADE是等腰三角形时,△ABD≌△DCE.可得当∠ADE为底角时:………………8分26.解:1连接OE,如,1,∵Rt△AOE的面积为2,∴k=2×2=4.………………3分2连接AC,1,设Dx,5,E3,,则BD=3﹣x,BE=5﹣,= ,∴ ∴DE∥AC.………………6分3假设存在点D满足条件.设Dx,5,E3,,则CD=x,BD=3﹣x,BE=5﹣,AE= .作EF⊥OC,垂足为F,2,易证△B′CD∽△EFB′,∴ ,即 = ,∴B′F= ,∴OB′=B′F+OF=B′F+AE= + = ,∴CB′=OC﹣OB′=5﹣,在Rt△B′CD中,CB′=5﹣,CD=x,B′D=BD=3﹣x,由勾股定理得,CB′2+CD2=B′D2,5﹣ 2+x2=3﹣x2,解这个方程得,x1=1.5舍去,x2=0.96,∴满足条件的点D存在,D的坐标为D0.96,5.………………10分11 11。
人教版九年级上册数学第一次月考试题含答案
人教版九年级上册数学第一次月考试卷一、选择题。
(每小题只有一个正确答案)1.下列是二次函数的是()A .22y x =+B .21y x =+C .11y x=-+D .220(0)ax a -=≠2.若关于x 的一元二次方程20x x m -+=的一个根是1x =,则m 的值是()A .1B .0C .-1D .23.关于x 的一元二次方程220(0,40)ax bx c a b ac ++=≠->的根是()A .2b a ±B .2b a -C .2b -D .2b a-±4.下列一元二次方程没有实数根的是()A .2210x x ++=B .220x x ++=C .210x -=D .2210x x --=5.用配方法解方程2640x x +-=时,配方结果正确的是()A .()235x +=B .()265x +=C .()2313x +=D .()2613x +=6.对于二次函数()212y x =--+的图象与性质,下列说法正确的是()A .对称轴是直线1x =,最大值是2B .对称轴是直线1x =,最小值是2C .对称轴是直线1x =-,最大值是2D .对称轴是直线1x =-,最小值是27.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是()A .a <-2B .a >-2C .-2<a <0D .-2≤a <08.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a 万件和b 万件,则()A .b=(1+22.1%×2)aB .b=(1+22.1%)2aC .b=(1+22.1%)×2aD .b=22.1%×2a9.将抛物线y=2x 2平移后得到抛物线y=2x 2+1,则平移方式为()A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位10.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①ac >0;②当x≥1时,y 随x 的增大而减小;③2a+b=0;④b 2-4ac <0;⑤4a-2b+c >0,其中正确的个数是()A .1B .2C .3D .4二、填空题11.方程x 2=9的解为_____.12.把一元二次方程2346x x =-化成一般式是__________.13.已知函数24y x x m =-+的图象与x 轴只有一个交点,则m 的值为_______.14.已知二次函数2y x =,在14x -≤≤内,函数的最小值为______________.15.抛物线y =(x -h )2-k 的顶点坐标为(-3,1),则h -k=______________16.已知关于x 的方程2x mx 60+-=的一个根为2,则这个方程的另一个根是__.17.二次函数y =ax 2+bx +c (a ≠0)的部分对应值如下表:则二次函数y =ax 2+bx +c 在x =2时,y =_________.X …-3-20135…y…7-8-9-57…三、解答题18.解方程,2230x x +-=.19.已知抛物线的顶点为(1,4),与y 轴交点为(0,3),求该抛物线的解析式.20.若关于x 的二次方程(m+1)x 2+5x+m 2﹣3m=4的常数项为0,求m 的值.21.关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根.(1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.22.己知:二次函数y =ax 2+bx +6(a ≠0)与x 轴交于A ,B 两点(点A 在点B 的左侧),点A ,点B 的横坐标是一元二次方程x 2﹣4x ﹣12=0的两个根.(1)求出点A ,点B 的坐标.(2)求出该二次函数的解析式.23.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.24.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y (单位:m )与飞行时间x (单位:s )之间具有函数关系y=﹣5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m 时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?25.如图,已知抛物线y=-x2+4x+m与x轴交于A,B两点,AB=2,与y轴交于点C.(1)求抛物线的解析式;(2)若P为对称轴上一点,要使PA+PC最小,求点P的坐标.参考答案1.A【分析】直接利用二次函数以及一次函数的定义分别判断得出答案.【详解】A、y=x2+2,是二次函数,故此选项正确;B、y=-2x+1,是一次函数,故此选项错误;C 、y=1x-+1,不是二次函数,故此选项错误;D 、()2200x a -=≠,是一次二次方程,故此选项错误;故选A .【点睛】此题主要考查了二次函数与一次函数定义,正确把握相关定义是解题关键.2.B 【分析】根据一元二次方程的解的定义,把x=1代入一元二次方程可得到关于m 的一元一次方程,然后解一元一次方程即可.【详解】把x=1代入x 2-x+m=0得1-1+m=0,解得m=0.故选B .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.3.D 【详解】当20,40a b ac ≠->时,一元二次方程20ax bx c ++=的求根公式为x =2b b ac a-.故选D.4.B 【分析】通过计算方程根的判别式,满足0 即可得到结论.【详解】解:A 、2=2411=0-⨯⨯ ,方程有两个相等的实数根,故本选项错误;B 、2=1421=-70-⨯⨯ ,方程没有实数根,故本选项正确;C 、2=04(1)=40-⨯- ,方程有两个不相等的实数根,故本选项错误;D 、2=(-2)41(1)=80-⨯⨯- ,方程有两个不相等的实数根,故本选项错误;故答案为B.【点睛】本题考查了根的判别式,熟练掌握一元二次方程的根与判别式的关系是解题的关键.(1)当0 ,方程有两个不相等的两个实数根;(2)当=0 ,方程有两个相等的两个实数根;(3)当0 时,方程无实数根.5.C 【分析】将常数项移到等式的右边,再两边配上一次项系数的一半可得.【详解】∵x 2+6x=4,∴x 2+6x+9=4+9,即(x+3)2=13,故选C .【点睛】本题主要考查配方法解一元二次方程,熟练掌握配方法的基本步骤是解题的关键.6.A 【分析】根据抛物线的图象与性质即可判断.【详解】解:由抛物线的解析式:y=-(x-1)2+2,可知:对称轴x=1,开口方向向下,所以有最大值y=2,故选:A .【点睛】本题考查二次函数的性质,解题的关键是正确理解抛物线的图象与性质,本题属于基础题型.7.C【分析】由关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根可得2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解不等式即可求出a 的取值范围.【详解】∵关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,∴2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解得:a >−2,∵a <0,∴−2<a <0.故选C .【点睛】本题考查一元二次方程根的判别式,掌握根的判别式的应用为解题关键.8.B 【详解】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a 万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a ,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a 万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a 万件,即b=(1+22.1%)2a 万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.C 【解析】根据二次函数图象的平移规律“上加下减,左加右减”,将原抛物线以各个选项描述的平移方式进行平移可以获得不同的解析式,与题目中给出的解析式一致的选项即为正确选项.A 选项:将原抛物线向左平移1个单位,平移后的抛物线应为y =2(x +1)2,故A 选项错误;B 选项:将原抛物线向右平移1个单位,平移后的抛物线应为y =2(x -1)2,故B 选项错误;C 选项:将原抛物线向上平移1个单位,平移后的抛物线应为y =2x 2+1,故C 选项正确;D 选项:将原抛物线向下平移1个单位,平移后的抛物线应为y =2x 2-1,故D 选项错误.因此,本题应选C.点睛:本题考查了二次函数图象平移的相关知识.二次函数图象向上或向下平移时,应将平移量以“上加下减”的方式作为常数项添加到原解析式中;二次函数图象向左或向右平移时,应先以“左加右减”的方式将自变量x 和平移量组成一个代数式,再用该代数式替换原解析式中的自变量x .要特别注意理解和记忆二次函数图象左右平移时其解析式的相关变化.10.B 【详解】(1)由图可知,0 0a c ><,,∴0ac <,故①错;(2)由图可知,当1≥x 时,y 随x 的增大而增大,故②错;(3)由图可知,抛物线的对称轴为直线:12bx a=-=,∴2b a =-,即20a b +=,故③正确;(4)由图可知,抛物线和x 轴有两个不同的交点,∴240b ac ->,故④错;(5)由图可知,当2x =-时,图象在x 轴上方,即当2x =-时,420y a b c =-+>,故⑤正确;∴有2个结论正确,故选B.11.x=±3【分析】直接用开平方法求解即可.【详解】解:∵29x =,∴x=±3.故答案为:x=±3.【点睛】本题考查了解一元二次方程-直接开平方法,解决本题的关键是理解平方根的定义,注意一个正数的平方根有两个,这两个数互为相反数.12.23460x x -+=【分析】方程整理为一般形式即可.【详解】方程整理得:3x 2-4x+6=0,故答案为3x 2-4x+6=0.【点睛】此题考查了一元二次方程的一般形式,其一般形式为ax 2+bx+c=0(a≠0).13.4【分析】由抛物线与x 轴只有一个交点,得到根的判别式等于0,即可求出m 的值.【详解】∵函数y=x 2-4x+m 的图象与x 轴只有一个交点,∴b 2-4ac=(-4)2-4×1×m=0,解得:m=4,故答案为4【点睛】此题考查了抛物线与x 轴的交点,熟练掌握二次函数的性质是解本题的关键.14.0【分析】根据二次函数的性质即可判断出函数的最小值.【详解】∵a=1>0,∴二次函数2y x =的图象开口向上,∴二次函数2y x =的图象在14x -≤≤内有最低点,为原点(0,0),故二次函数2y x =,在14x -≤≤内,函数的最小值为0,故答案为0.【点睛】本题主要考查了二次函数的图象与性质.熟记二次函数的图象与性质是解题关键.15.-2【分析】根据二次函数的顶点式可直接进行求解.【详解】解:由题意得:h=-3,k=-1,∴()312h k -=---=-;故答案为-2.【点睛】本题主要考查二次函数的顶点式,熟练掌握二次函数的性质是解题的关键.16.-3.【解析】∵方程2x mx 60+-=的一个根为2,设另一个为a ,∴2a=-6,解得:a=-3.17.-8【分析】观察表中的对应值得到x =−3和x =5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x =1,所以x =0和x =2时的函数值相等.【详解】解:∵x =−3时,y =7;x =5时,y =7,∴二次函数图象的对称轴为直线x =1,∴x =0和x =2时的函数值相等,∴x =2时,y =−8.故答案为:−8.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.18.1231x x ,=-=【分析】利用因式分解法求一元二次方程的解即可.【详解】原方程因式分解得:(3)(1)0x x +-=∴1231x x ,=-=【点睛】本题考查利用因式分解法求一元二次方程的解.熟练掌握因式分解法是解答本题的关键.19.y=-(x-1)2+4.【分析】根据顶点坐标设其顶点式,再将(0,3)代入求解可得.【详解】设抛物线的解析式为y=a (x-1)2+4,将点(0,3)代入,得a+4=3.解得a=-1,抛物线的解析式为y=-(x-1)2+4.【点睛】解题的关键是熟练掌握待定系数法求函数解析式.20.4【解析】试题分析:根据方程中常数项为0,求出m 的值,检验即可.试题解析:解:∵关于x 的二次方程(m+1)x 2+5x+m 2﹣3m ﹣4=0的常数项为0,∴m 2﹣3m ﹣4=0,即(m ﹣4)(m+1)=0,解得:m=4或m=﹣1,当m=﹣1时,方程为5x=0,不合题意;则m 的值为4.考点:一元二次方程的一般形式.21.(1)m >-54;(2)x 1=0,x 2=-3.【详解】试题分析:(1)由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论.试题解析:(1)∵关于x 的一元二次方程2x +(2m+1)x+2m ﹣1=0有两个不相等的实数根,∴△=()()2221411m m +-⨯⨯-=4m+5>0,解得:m >54-;(2)m=1,此时原方程为2x +3x=0,即x (x+3)=0,解得:1x =0,2x =﹣3.考点:根的判别式;解一元二次方程——因式分解法;解一元一次不等式.22.(1)A (-2,0),B (6,0),(2)y=-12x 2+2x+6.【分析】(1)利用因式分解法解方程x 2-4x-12=0即可得到A 点和B 点坐标;(2)设交点式y=a (x+2)(x-6)=ax 2-4ax-12a ,则-12a=6,解得a=-12,所以抛物线解析式为y=-12x 2+2x+6.【详解】(1)解方程x 2-4x-12=0得x 1=-2,x 2=6,所以A (-2,0),B (6,0),(2)因为抛物线与x 轴交于点A (2,0),B (6,0),则抛物线解析式为y=a (x+2)(x-6)=ax 2-4ax-12a ,则-12a=6,解得a=-12,所以y=-12x 2+2x+6.【点睛】本题考查了抛物线与x 轴的交点问题:从二次函数的交点式y=a (x-x 1)(x-x 2)(a ,b ,c 是常数,a≠0)中可直接得到抛物线与x 轴的交点坐标(x 1,0),(x 2,0).也考查了二次函数的性质.23.(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x ,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用24.(1)在飞行过程中,当小球的飞行高度为15m 时,飞行时间是1s 或3s ;(2)在飞行过程中,小球从飞出到落地所用时间是4s ;(3)在飞行过程中,小球飞行高度第2s 时最大,最大高度是20m .【详解】分析:(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.详解:(1)当y=15时,15=﹣5x 2+20x ,解得,x 1=1,x 2=3,答:在飞行过程中,当小球的飞行高度为15m 时,飞行时间是1s 或3s ;(2)当y=0时,0═﹣5x 2+20x ,解得,x 3=0,x 2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s ;(3)y=﹣5x 2+20x=﹣5(x ﹣2)2+20,∴当x=2时,y 取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s 时最大,最大高度是20m .点睛:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.25.(1)243y x x =-+-;(2)P 点坐标为(2,-1)【分析】(1)设点A 的坐标为()1,0x ,点B 的坐标为()2,0x ,然后根据AB=2及抛物线的对称轴可求解A 、B 的坐标,进而抛物线解析式可求;(2)连接BC ,交直线x =2于点P ,则PA =PB ,则有PA +PC =PB +PC =BC ,所以此时PA +PC 最小,然后求出直线BC 的解析式,进而问题可求.【详解】解:(1)设点A 的坐标为()1,0x ,点B 的坐标为()2,0x ,2121222x x x x +⎧=⎪⎨⎪-=⎩,∴1213x x =⎧⎨=⎩,把点A 的坐标(1,0)代入24y x x m =-++得3m =-,所以抛物线的解析式为243y x x =-+-;(2)解:连接BC ,交直线x =2于点P ,则PA =PB,如图所示:∴PA +PC =PB +PC =BC ,∴此时PA +PC 最小,设直线BC 的解析式为y =kx +b ,把C (0,-3),B (3,0)代入得330b k b =-⎧⎨+=⎩,解得31b k =-⎧⎨=⎩,∴直线BC 的解析式为y =x -3,当x =2时,y =x -3=2-3=-1,∴P 点坐标为(2,-1).【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的性质是解题的关键.。
新人教版2017-2018学年九年级上第一次月考数学试题含答案
新人教版2017-2018学年九年级上第一次月考数学试题含答案2017—2018学年度(上)学期9月份阶段验收九年级数学试卷2017.9.29一、选择题(每小题3分,共计30分)1.点M(-1,2)关于x轴对称的点的坐标为()(A)(-1,-2)(B)(-1,2)(C)(1,-2)(D)(2,-1)2.下列计算正确的是()(A)235a a a+=(B)()326a a=(C)326aaa=÷(D)aaa632=⨯3.下列图案中,既是轴对称图形又是中心对称图形的是()4.抛物线()2345y x=-+的顶点坐标是()(A)(4,5)(B)(-4,5)C、(4,-5)(D)(-4,5)5.等腰三角形的一边长为4cm,另一边长为9cm,则它的周长为()(A)13cm(B)17cm(C)22cm(D)17cm或22cm6.已知反比例函数kyx=的图象经过点P(-l,2),则这个函数的图象位于()(A)第二、三象限(B)第一、三象限(C)第三、四象限(D)第二、四象限7.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到l210辆,则该厂四、五月份的月平均增长率为()(A)12.1%(B)20%(C)21%(D)10%8.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△ADE可以由△ABC绕点A顺时针旋转900得到,点D与点B是对应点,点E与点C是对应点),连接CE,则∠CED的度数是()(A)45°(B)30°(C)25°(D)15°9.如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=600,AB=5,则AD的长是()(A)53(B)52(C)5(D)1010.甲乙两车分别从M、N两地相向而行,甲车出发1小时后,乙车出发,并以各自的速度匀速行驶,(A)(B)(C)(D)(第8题图)(第9题图)(第10题图)两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的路程S(千米)与甲车所用时间t(小时)之间的函数图象,其中D 点表示甲车到达N 地停止运行,下列说法中正确的是()(A )M 、N 两地的路程是1000千米;(B )甲到N 地的时间为4.6小时;(C )甲车的速度是120千米/小时;(D )甲乙两车相遇时乙车行驶了440千米.二、填空题(每小题3分,共计30分)11.将2580000用科学记数法表示为.12.函数12y x =-的自变量x 的取值范围是.13.计算:82+=.14.分解因式:322_____________x x x ---=.15.抛物线223y x bx =-+的对称轴是直线1x =-,则b 的值为.16.如图,CD 为⊙O 的直径,AB ⊥CD 于E ,DE =8cm ,CE =2cm ,则AB =cm.17.不等式组⎩⎨⎧-≤--14352x x >的解集是.18.如图,在⊙O 中,圆心角∠BOC=60°,则圆周角∠BAC 的度数为度.19.在ΔABC 中,若AB=34,AC=4,∠B=30°,则ABC S ∆=.20.如图,△ABC ,AB=AC ,∠BAC=90°,点D 为BC 上一点,CE ⊥BC ,连接AD 、DE ,若CE=BD ,DE=4,则AD 的长为.三、解答题(其中21-22题各7分.23-24题各8分.25-27题各l0分.共计60分)21.先化简,再求值:2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x=12+.22.如图,图1和图2都是7×4正方形网格,每个小正方形的边长是1,请按要求画出下列图形,所(第16题图)(第18题图)(第20题图)画图形的各个顶点均在所给小正方形的顶点上.(1)在图1中画出一个等腰直角△ABC ;(2)在图2中画出一个钝角△ABD ,使△ABD 的面积是3.图1图223.某中学为了丰富校园文化生活.校学生会决定举办演讲、歌唱、绘画、舞蹈四项比赛,要求每位学生都参加.且只能参加一项比赛.围绕“你参赛的项目是什么?(只写一项)”的问题,校学生会在全校范围内随机抽取部分学生进行问卷调查.将调查问卷适当整理后绘制成如图所示的不完整的条形统计图.其中参加舞蹈比赛的人数与参加歌唱比赛的人数之比为1:3,请你根据以上信息回答下列问题:(1)通过计算补全条形统计图;(2)在这次调查中,一共抽取了多少名学生?(3)如果全校有680名学生,请你估计这680名学生中参加演讲比赛的学生有多少名?24.已知:BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE=AF.(1)如图1,求证:四边形ADEF 是平行四边形;(2)如图2,若AB=AC ,∠A=36°,不添加辅助线,请你直接写出与DE 相等的所有线段(AF 除外).图1图225.哈尔滨地铁“二号线”正在进行修建,现有大量的残土需要运输.某车队有载重量为8吨、10吨的卡车共12台,全部车辆运输一次可以运输110吨残土.(1)求该车队有载重量8吨、10吨的卡车各多少辆?(2)随着工程的进展,该车队需要一次运输残土不低于165吨,为了完成任务,该车队准备再新购进这两种卡车共6辆,则最多购进载重量为8吨的卡车多少辆?26.如图,在⊙O 中,AB 、CE 是直径,BD ⊥CE 于G ,交⊙O 于点D ,连接CD 、CB.(1)如图1,求证:∠DCO=90°-21∠COB ;(2)如图2,连接BE ,过点G 作BE 的垂线分别交BE 、AB 、CD 于点F 、H 、M ,求证:MC=MD ;(3)在(2)的条件下,连接AC 交MF 于点N ,若MN=1,NH=4,求CG 的长.(第26题图1)(第26题图2)(第26题图3)27.已知:如图,抛物线y=-x 2+bx+c 与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴正半轴交于点C ,OA=3,O B=1,点M 为点A 关于y 轴的对称点.(1)求抛物线的解析式;(2)点P 为第三象限抛物线上一点,连接PM、PA,设点P 的横坐标为t,△PAM 的面积为S,求S 与t 的函数关系式;(3)在(2)的条件下,PM 交y 轴于点N,过点A 作PM 的垂线交过点C 与x 轴平行的直线于点G,若ON∶CG=1∶4,求点P 的坐标.答案一、ABCACDDDAC二、11、2.58×10612、x ≠213、2314、-x(x+1)215、-416、817、x ≥518、3019、34或3820、22三、21、(7分)原式=2211=-x 22、(1)(3分)(2)(4分)23、(1)30%;(2分)(2)100-30-35-5=30,补图略;(3分)(3)(5÷100)×2000=100人(3分)24、(1)(4分)EB=ED=AF ,ED ∥AF∴四边形ADEF 为平行四边形;(2)(4分)CD 、BE 、BG 、FG25、(1)(4分)设89吨卡车有x 辆8x+10(12-x)=110解得:x=5,∴12-x=7;(2)(4分)设购进载重量8吨a 辆8(a+5)+10(6+7-a)≥165a≤2.5∵a 为整数,∴a 的最大值为226、(1)略(2)略(3)AC ∥BE ,△CNG≌△BFH,设GN=x,CE=x+1,BC=2x+2=FN=x+4,x=2CN=22,CG=3227、(1)322+--=x x y (2)963S 2-+=x x (3)过点A 作CG 的垂线,垂足为E ,四边形CEAO 为正方形△AGE ≌△MNO ,ON=EG ,CE=3ON=3,N (0,-1)直线MP 解析式为131-=x y ,⎪⎩⎪⎨⎧+--=-=321312x x y x y解得P (6193-7-,18193-25-)。
新人教版九年级上册数学第一次月考试题卷(新).doc
1第一学期九年级数学第一次月考试题卷一、填空题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列方程中,是一元二次方程的是( )A . 2)3(2+=-x x xB . 02=++c bx axC . 02132=+-xx D . 122=x 2.一元二次方程0562=--x x 配方可变形为( )A .14)3(2=-xB .4)3(2=-xC .14)3(2=+xD .4)3(2=+x3.某商品原价为200元,连续两次降价a %后售价为148元,下列方程正确的是( )2.200(1%)148A a +=.200(12%)148B a +=2.200(1%)148C a -= .200(12%)148D a -=4.已知抛物线22y x x =+上三点()15,A y -,()21,B y ,()312,C y ,则1y ,2y ,3y 满足的关系式为( )A .1y <2y <3yB .3y <2y <1yC .2y <1y <3yD .3y <1y <2y 5.当0b <时,函数y ax b =+与2y ax bx c =++在同一坐标系内的图象可能是( )6.对于抛物线()21132y x =-++,下列结论: (1)抛物线的开口向下; (2)对称轴为直线1x =;(3)顶点坐标为()1,3-; (4)当1x >时,y 随x 的增大而减小。
其中正确结论的个数为( )。
A . 1B . 2C . 3D . 4二、填空题(本大题共6小题,每小题3分,共18分)7.方程2437x x =+的二次项系数是 ,一次项系数是 ,常数项是 . 8. 以3-和2为根的一元二次方程是___________ .9.抛物线()21y m x =-开口向上,则m 的取值范围是 . 10.若方程23520x x --=有一根是a ,则2610a a -= . 11.如图,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为 .12.如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于A B 、两点,与y 轴交于点C ,且OA OC =,则下列结论:()()()()2410;20;310;44b ac cabc ac b OA OB a a-<>-+=⋅=- 其中正确的结论是_____ .(只填写序号)三、(本大题共4小题,13题12分,14、15、16题每题6分,共30分)13.用适当的方法解下列方程:()2(1)225x -= ()22430x x --=()()()33121x x x -=- ()245140x x --=14.关于x 的一元二次方程()012122=-++-m x x m 有一个根是0=x ,求:(1)m 的值;(2)该一元二次方程的另一根.15.如图,二次函数2y ax bx c =++的图象与x 轴交于点A B 、,与y 轴交于点C .(1)写出A B C 、、三点的坐标和对称轴方程; (2)求出二次函数的解析式15题图12题图11题图【本文由书林工作坊整理发布,谢谢你的关注!】216.如图,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为2570m ,道路应为多宽? 四.(本大题共3小题,每小题8分,共24分)17.关于x 的方程()222110x k x k +-+-=有两个实数根12x x 、.(1)求实数k 的取值范围;(2)若12x x 、满足221212+=16+x x x x ,求实数k 的值18.如图,已知抛物线2y x bx c =++经过()()1,0,3,0A B -两点.(1)求b 和c ;(2)当04x <<时,求y 的取值范围;(3)点P 为x 轴下方抛物线上一点,试说明P 点运动到哪个位置时PAB S ∆最大,并求出最大面积.19.某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x 元(x 为偶数),每周销售量为y 个.(1)直接写出销售量y 个与降价x 元之间的函数关系式;(2)设商户每周获得的利润为W 元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?五.(本大题共2小题,每小题9分,共18分)20.如果关于x 的一元二次方程()200ax bx c a ++=≠有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程2680x x -+=的两个根是2和4,则方程2680x x -+=就是“倍根方程”.(1)若一元二次方程230x x c -+=是“倍根方程”,则c= ;(2)若()()()200x mx n m --=≠是“倍根方程”,求代数式2245m mn n -+的值;(3)若方程()200ax bx c a ++=≠是倍根方程,且相异两点()1,M t s +,()4,N t s -都在抛物线2y ax bx c =++上,求一元二次方程()200ax bx c a ++=≠的根.21.已知()3,P m -和()1,Q m 是抛物线221y x bx =++上的两点.(1)求b 的值;(2)判断关于x 的一元二次方程221=0x bx ++是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值. 六.(本大题共12分)22.定义:如图1,抛物线()20y ax bx c a =++≠与x 轴交于A B 、两点,点P 在抛物线上(点P 与A B 、两点不重合),如果ABP ∆的三边满足222AP BP AB +=,则称点P 为抛物线()20y ax bx c a =++≠的勾股点。
人教版九年级上册数学第一次月考试卷及答案
人教版九年级上册数学第一次月考试题一、单项选择题。
(每小题3分,共30分)1.下列方程中,是关于x 的一元二次方程的是()A .2130x x++=B .220xy x +=C .252x x =-D .20ax bx c ++=2.小明在解方程220x x -=时,只得出一个根2x =,则漏掉的一个根是()A .2x =-B .0x =C .1x =D .3x =3.二次函数2231y x x =-+图象一定过点()A .()1,1-B .(),215-C .()0,1-D .()3,74.若1x 、2x 是一元二次方程2280x x --=的两个根,则1212x x x x +-的值是()A .10B .8-C .6-D .25.将抛物线()212y x =-+向左平移1个单位,再向下平移5个单位后所得抛物线的解析式为()A .()227y x =-+B .()223y x =-+C .23y x =-D .27y x =+6.对于二次函数()=+-2y x 12的图象,下列说法正确的是()A .开口向下B .对称轴1x =C .顶点坐标()1,2--D .与x 轴无交点7.有1个人得了流感,经过两轮传染共有144人患流感,则第三轮后共有()人患流感.A .1000B .1331C .1440D .17288.在同一坐标系中,一次函数2y ax =+与二次函数2y x a =+的图像可能是()A .B .C .D .9.如果关于x 的一元二次方程k 2x 2-(2k+1)x+1=0有两个不相等的实数根,那么k 的取值范围是()A .k>-14B .k>-14且0k ≠C .k<-14D .k ≥-14且0k ≠10.抛物线2(0)y ax bx c a =++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是1x =.下列结论中:①0abc <;②20a b +=;③0a c +>;④若点(),A m n 在该抛物线上,则2am bm c a b c ++≤++.⑤方程24ax bx c ++=有两个不相等的实数根;其中正确的有()A .5个B .4个C .3个D .2个二、填空题11.一元二次方程290x -=的解是______.12.二次函数245y x x =-+的顶点坐标是__________.13.关于x 的方程22(2)(3)20mm x m x --+--=是一元二次方程,则m 的值为____.14.关于x 的一元二次方程x 2﹣x+m=0没有实数根,则m 的取值范围是______.15.一元二次方程23100x x +-=的两个根是12x =-,253x =,那么二次函数2310y x x =+-与x 轴的交点坐标是________.16.a 是方程210x x +-=的一个根,则代数式3222007a a ++的值是________.17.如图,坐标平面上,二次函数24y x x k =-+-的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且0k >.若ABC ∆与ABD ∆的面积比为1:3,则k 值为________.三、解答题18.解方程2340x x +-=.19.一个二次函数,当自变量0x =时,函数值1y =-,且过点()2,0-和点1,02⎛⎫⎪⎝⎭,求这个二次函数的解析式.20.某家快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同,求该快递公司投递总件数的月平均增长率.21.已知关于x 的一元二次方程2240x x m --=.(1)求证:该方程有两个不等的实根;(2)若该方程的两个实数根1x 、2x 满足1229x x +=,求m 的值.22.已知二次函数y=x 2-2x-3.(1)用配方法把y=x 2-2x-3化为y=a (x-h )2+k 的形式为__________(2)完成下表,并在平面直角坐标系中画出这个函数图像.x ……y……(3)结合图像回答:不等式2230x x --<的解集是.23.王老师对小明推铅球的录像进行技术分析,发现铅球行进的高度(m)y 与水平距离(m)x 之间的关系可以表示为2+112243y x x =-+,铅球从出手到落地的路线如图所示.(1)求铅球出手点的离地面的高度OA 是多少米?铅球推出的水平距离OB 是多少米?(2)求铅球推出的水平距离是多少米时铅球到达最高点?24.如图,用长为6m 的铝合金条制成“日”字形窗框,若窗框的宽为xm ,窗户的透光面积为ym 2(铝合金条的宽度不计).(1)求出y 与x 的函数关系式(结果要化成一般形式);(2)能否使窗的透光面积达到2平方米,如果能,窗的高度和宽度各是多少?如果不能,请说明理由.(3)窗的宽度为多少米时,窗户的透光面积最大?并求出此时的最大面积.25.如图,在平面直角坐标系中,已知抛物线y =x 2+bx +c 过A ,B ,C 三点,点A 的坐标是(3,0),点C 的坐标是(0,﹣3),动点P 在抛物线上.(1)求抛物线的解析式;(2)若动点P在第四象限内的抛物线上,过动点P作x轴的垂线交直线AC于点D,交x 轴于点E,垂足为E,求线段PD的长,当线段PD最长时,求出点P的坐标;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.参考答案1.C2.B3.B4.A5.C6.C7.D8.D9.B10.B11.x 1=3,x 2=﹣3.12.(2,1)13.2-14.m>0.2515.()2,0-,5,03⎛⎫ ⎪⎝⎭16.200817.118.14x =-,21x =19.2312y x x =+-20.10%.21.(1)证明见解析;(2)22.(1)()214y x =--;(2)见解析;(3)1x <-或3x >23.(1)铅球出手点离地面的高度是2米,铅球推出的水平距离DB 是12米;(2)铅球推出水平距离是4米时到达最高点,最高点是83米24.(1)233(02)2y x x x =-+<<;(2)不能使窗的透光面积达到2平方米,理由见解析;(3)窗的宽度为1米时,面积最大为32平方米25.(1)y =x 2﹣2x ﹣3;(2)315,24P ⎛⎫- ⎪⎝⎭;(3)存在,点P 的坐标为(1,﹣4)或(﹣2,5).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上学期第一次月考数学试题
一=选择题(第题3分,共30分)
1.已知关于x 的一元二次方程220x x a +-=有两个相等的实数根,则a 的值是( )
A .4
B .-4
C .1
D .-1
2.用配方法解方程0142
=-+x x ,下列配方结果正确的是( ).
A .5)2(2
=+x B .1)2(2
=+x C .1)2(2
=-x D .5)2(2
=-x 3.下列说法错误的是(
)
A .二次函数23y x =中,当0x >时,y 随x 的增大而增大
B .二次函数26y x =-中,当0x =时,y 有最大值0
C .a 越大图象开口越小,a 越小图象开口越大
D .不论a 是正数还是负数,抛物线2(0)y ax a =≠的顶点一定是坐标原点 4.函数243y x x =---的图象顶点坐标是(
)
A .(2,1)-
B .(2,1)-
C .(2,1)--
D .(2,1)
5.已知二次函数2
(2)y mx x m m =++-的图象经过原点,则m 的值为(
)
A . 0或2
B .0
C .2
D .1或2
6.直角坐标平面上将二次函数22(1)2y x =---的图象向左平移1个单位,再向上平移1个单位,则其顶点为( )
A .(0,0)
B .(1,2)-
C .(0,1)-
D .(2,1)-
7.直角三角形一条直角边和斜边的长分别是一元二次方程2
16600x x -+=的一个实数根,则该三角形的面积是( )
A .24
B .24或30
C .48
D .30
8.若113(,)4A y -
、2(1,)B y - 、35
(,)3
C y 为二次函数245y x x =-++的图象上的三点,则1y 、2y 、3y 的大小关系是( )
A .123y y y <<
B .321y y y <<
C .312y y y <<
D .213y y y <<
9.在同一坐标系内,一次函数y=ax+b 与二次函数y=ax 2
+8x+b 的图象可能是( )
10.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线x=1,且经过点P (3,0),则c b a +-的值为( )
A .0
B .-1
C . 1
D . 2 二、填空题(每3分,共24分) 11.已知方程2
7
(3)230m
m x mx --++=是一元二次方程,则m= ;
12.已知关于x 的方程2
0x x m ++=的一个根是2,则m = ,另一根为 . 13.若抛物线29y x bx =-+的顶点在x 轴上,则b 的值为 14.已知1x ,2x 是方程2630x x ++=的两实数根,则21
12
x x x x +的值为______ . 15.抛物线24
(3)9
y x =
- 与x 轴的交点为A ,主y 轴的交点为B ,则AOB ∆的面积为 16.已知一条抛物线的形状与抛物线2
23y x =+形状相同,与;另一条抛物线
21
(1)22
y x =-+-的顶点坐标相同,这条抛物线的解析式为 .
17.要组织一场足球比赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,问比赛组织者应邀请多少只球队参赛?设比赛组织者应邀请x 支球队参赛,根据题意列出的方程是________________________________. 18.如图,二次函数c bx ax y ++=2
的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴相交于负半轴。
给出四个结论:①0<abc ;②02>+b a ;③1=+c a ;④1>a ,其中正确结论的序号是___________
三、解答题 19.(15分)解下列方程
(1)(2x -1)2
-25=0;
(2)y 2
=2y +3; (3)x (x +3)=2-x .
20.(10分)关于x 的方程x 2
-2x +k+1=0有两个不等的实数根. (1)求k 的取值范围;
(2)若k +1是方程x 2
-2x +k+1=0的一个解,求k 的值.
21.(9分) 如图,直线y x m =+和抛物线2y x bx c =++都经过点A (1,0),B (3,2)。
(1)求m 的值和抛物线的解析式;
(2)求不等式2
x bx c x m ++>+的解集。
(直接写出答案)
22.(10分)为落实国务院房地产调控政策,使“居者有其屋”.某市加快了廉租房的建设力度,2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同. (1)求每年市政府投资的增长率;
(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房? 23.(10分)某工厂生产的某种产品按质量分为10个档次,据调研显示,每个档次的日产量及相应的单件利润如下表所示(其中x 为正整数,且1≤x≤10):
利润为y 万元.
(1)求y 关于x 的函数关系式;
(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值. 24.( 12分)如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1, 0)、C (3, 0)、D (3, 4).以A 为顶点的抛物线y =ax 2
+bx +c 过点C .动点P 从点A 出发,以每秒
2
1
个单位的速度沿线段AD 向点D 运动,运动时间为t 秒.过点P 作PE⊥x 轴交抛物线于点M ,交AC 于点N .
(1)直接写出点A 的坐标,并求出抛物线的解析式; (2)当t 为何值时,△AC M 的面积最大?最大值为多少?
九年级上学期第一次月考
数学试题
二、填空题(每3分,共24分) 11. 12.
13.
14. 15.
16.
17. 18.
三、解答题(共66分) 19.(15分)解下列方程
(1)(2x -1)2
-25=0; (2)y 2
=2y +3;
(3)x (x +3)=2-x .
装 订 班
级 姓
名
考
号。