专题08 函数的极值(解析版)
专题08 导数中的极值和极值点偏移(解析版)

专题08 导数中的极值和极值点偏移一、重点题型目录【题型】一、求已知函数的极值 【题型】二、根据极值点求参数【题型】三、函数或导函数图象与极值的关系 【题型】四、函数或导函数图象与极值点的关系 【题型】五、求已知函数的极值点 【题型】六、函数最值与极值的关系 【题型】七、导数中的极值偏移问题 二、题型讲解总结【题型】一、求已知函数的极值例1.(2023·全国·高三专题练习)等比数列{}n a 中的项1a ,105a 是函数()32692f x x x x =-+-的极值点,则53a =( )A .3B .C .D 【答案】D【分析】先根据题意确定函数的极值点,进而得到1105a a ⋅,然后根据等比中项求得答案.【详解】由题意,()()()23129313f x x x x x =-+=--',则(),1x ∈-∞时0fx ,函数单调递增,()1,3x ∈时()0f x '<,函数单调递减,()3,x ∈+∞时0fx ,函数单调递增,于是x =1和x =3是函数的两个极值点,故1a ,105a 是()231290x x f x =-+='的两个根,所以11053a a ⋅=,所以25311053a a a =⋅=,又110540a a +=>,所以10a >,1050a >,设公比为q ,525310a a q =>,所以55a =故选:D.例2.(2023·全国·高三专题练习)下列函数中存在极值点的是( ) A .1y x= B .e x y x =- C .2y = D .3y x =【答案】B【分析】对每个选项求导,然后判断即可 【详解】对选项A ,210y x '=-<,故没有极值点; 对选项B ,1e x y '=-,则极值点为0x =,故正确; 对选项C ,0y '=,故没有极值点; 对选项D ,230y x '=≥,故没有极值点;故选:B例3.(2023·全国·高三专题练习)已知函数()22e e x a f x a x =-至多有2个不同的零点,则实数a 的最大值为( ). A .0 B .1 C .2 D .e【答案】C【分析】先将零点问题转化为两函数交点问题,构造函数,研究其单调性,极值,画出函数图象,从而得到20e a a =或224e e a a ≥,再次构造关于a 的函数()2e a a h a =,研究其单调性,解出不等式,求出数a 的最大值.【详解】令()22e e 0xa f x a x =-=,得到22e ex a x a=,函数()22e e xa f x a x =-至多有2个不同的零点,等价于22e ex a x a=至多有两个不同的根,即函数2e x x y =与2e a a y =至多有2个不同的交点令()2ex x g x =,则()22exx x g x -'=, 当02x <<时,()0g x '>,()g x 单调递增, 当0x <或2x >时,()0g x '<,()g x 单调递减,所以0x =与2x =为函数()g x 的极值点,且()()2400,2e g g ==, 且()20e x x g x =≥在R 上恒成立,画出()2ex x g x =的图象如下:有图可知:20e a a =或224e e a a ≥时,符合题意,其中20e aa=,解得:0a = 设()2e a a h a =,则()22e aah a -'=,当1a <时,()0h a '>,当1a >时,()0h a '<, 所以()2e aah a =在()1-∞,上单调递增,在()1+∞,上单调递减, 由224e e a a ≥可得:()()2h a h ≥,所以2a ≤, 综上:实数a 的最大值为2 故选:C【点睛】对于函数零点问题,直接求解无法求解时,可以转化为两函数的交点问题,数形结合进行解决.例4.(2023·全国·高三专题练习)已知t 和3t +是函数()32f x x ax bx c =+++的零点,且3t +也是函数()f x 的极小值点,则()f x 的极大值为( ) A .1 B .4C .43D .49【答案】B【分析】根据给定条件,结合三次函数的特点可得2()()(3)f x x t x t =---,再借助导数求出极大值作答.【详解】因函数()f x 在3t +处取得极小值0,又t 是函数()f x 的另一零点,因此函数()f x 只有两个零点,从而有2()()(3)f x x t x t =---,求导得:()3(1)(3)f x x t x t '=----, 当1x t <+或3x t >+时,()0f x '>,当13t x t +<<+时,()0f x '<, 于是,()f x 在3x t =+处取得极小值,在1x t =+处取得极大值(1)4f t +=, 所以()f x 的极大值为4. 故选:B【题型】二、根据极值点求参数例5.(2023·全国·高三专题练习)已知函数()2e 1x f x x a =+-()a R ∈有两个极值点,则实数a 的取值范围为( ) A .1,0e ⎛⎫- ⎪⎝⎭B .2,0e ⎛⎫- ⎪⎝⎭C .1,e ⎛⎫-+∞ ⎪⎝⎭D .2,e ⎛⎫-+∞ ⎪⎝⎭【答案】B【分析】将函数有两个极值点转化为其导数有两个零点进行求解即可.【详解】对原函数求导得,()2e xf x x a '=+,因为函数()()2e 1xf x x a a R =+-∈有两个极值点,所以()0f x '=有两个不等实根,即2e 0x x a +=有两个不等实根, 亦即2e xxa -=有两个不等实根. 令()2e x xg x =,则()()21exx g x -'= 可知()g x 在(),1-∞上单调递增,在()1,+∞上单调递减, 所以()()max 21eg x g ==, 又因为当0x <时,()0g x <,当0x >时,()0g x >,所以2e 0a a ⎧-<⎪⎨⎪->⎩,解得20e a -<<, 即a 的范围是2,0e ⎛⎫- ⎪⎝⎭.故选:B例6.(2023·全国·高三专题练习)若函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭在区间[0,π)内有且只有两个极值点,则正数ω的取值范围是( ) A .58,33⎡⎤⎢⎥⎣⎦B .58,33⎡⎫⎪⎢⎣⎭C .713,66⎛⎤ ⎥⎝⎦D .713,66⎡⎫⎪⎢⎣⎭【答案】C【分析】根据极值点的定义,利用整体法,列出关于ω的不等关系,即可求得参数范围. 【详解】因为()f x 在[)0,π有2个极值点,也即()f x 在区间[)0,π取得一次最大值,一次最小值;又0ω>,则当[)0,x π∈,,333x πππωωπ⎡⎫+∈+⎪⎢⎣⎭, 要使得()f x 满足题意,只需35232ππωππ<+≤,解得713,66ω⎛⎤∈ ⎥⎝⎦.故选:C.例7.(2023·全国·高三专题练习)若2x =是函数21()2ln 2f x ax x x =--的极值点,则函数( )A .有最小值2ln2-,无最大值B .有最大值2ln2-,无最小值C .有最小值2ln2-,最大值2ln 2D .无最大值,无最小值【答案】A【分析】对()f x 求导,根据极值点求参数a ,再由导数研究其单调性并判断其最值情况.【详解】由题设,2()1f x ax x '=--且(2)0f '=,∴220a -=,可得1a =.∴2(1)(2)()1x x f x x x x+-'=--=且0x >,当02x <<时()0f x '<,()f x 递减;当2x >时()0f x '>,()f x 递增; ∴()f x 有极小值(2)2ln 2f =-,无极大值. 综上,有最小值2ln2-,无最大值. 故选:A例8.(2023·全国·高三专题练习)已知函数e 1()ln x f x k x x x ⎛⎫=++ ⎪⎝⎭,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是_______. 【答案】1k ≥-【分析】先求函数()f x 的导函数2(e )(1)()x k x f x x+-'=,由条件1x =是函数()f x 的唯一极值点,说明e 0x k +=在,()0x ∈+∞上无解,或有唯一解1x = ,求实数k 的取值 【详解】e 1()ln x f x k x x x ⎛⎫=++ ⎪⎝⎭的定义域为(0,)+∞222(1)e 11(e )(1)()()x x x k x f x k x x x x -+-'∴=+-+=1x =是函数()f x 的唯一极值点1x ∴= 是导函数()0f x '=的唯一根 (∴)e 0x k +=在(0,)+∞无变号零点令()e x g x k =+ ,则()e 0x g x '=> ,即()g x 在(0,)+∞上单调递增 此时min ()10g x k =+≥ 1∴≥-k(∴)当()e x g x k =+ 在(0,)+∞有解1x = 时,此时e 0k += ,解得e k =- 此时()f x 在(0,1) 和(1,)+∞ 上均单调递增,不符合题意 故答案为:1k ≥-【题型】三、函数或导函数图象与极值的关系例9.(2023·全国·高三专题练习)已知定义在R 上的函数f (x ),其导函数()f x '的大致图象如图所示,则下列叙述正确的是( )A .()()()f b f a f c >>B .函数()f x 在x =c 处取得最大值,在e x =处取得最小值C .函数()f x 在x =c 处取得极大值,在e x =处取得极小值D .函数()f x 的最小值为()f d 【答案】C【分析】根据导函数的图象确定()f x 的单调性,从而比较函数值的大小及极值情况,对四个选项作出判断.【详解】由题图可知,当x c ≤时,()0f x '≥,所以函数()f x 在,c 上单调递增,又a <b <c ,所以()()()f a f b f c <<,故A 不正确. 因为()0f c '=,()0f e '=,且当x c <时,0f x;当c <x <e 时,()0f x '<;当x >e 时,0fx.所以函数()f x 在x =c 处取得极大值,但不一定取得最大值,在x =e处取得极小值,不一定是最小值,故B 不正确,C 正确.由题图可知,当d x e ≤≤时,()0f x '≤,所以函数()f x 在[d ,e ]上单调递减,从而()()f d f e >,所以D 不正确. 故选:C .例10.(2023·全国·高三专题练习)已知函数()f x 的导函数的图像如图所示,则下列结论正确的是( )A .3-是()f x 的极小值点B .1-是()f x 的极小值点C .()f x 在区间(),3-∞上单调递减D .曲线()y f x =在2x =处的切线斜率小于零【答案】D【分析】根据导函数图像,求得函数单调性,结合极值点定义,即可判断ABC 选项,根据导数的定义和几何意义即判断D 选项,从而得出答案. 【详解】由图像知,当3x <-或3x >时,0fx,()f x 单调递增,当33x -<<时,()0f x '<,()f x 单调递减,所以()f x 在区间(),3-∞-,()3,+∞内单调递增,在区间()3,3-内单调递减, 3-是()f x 的极大值点,3是()f x 的极小值点,故ABC 错误;又因为()20f '<,所以曲线()y f x =在2x =处切线斜率小于零,故D 正确. 故选:D.例11.(2023·全国·高三专题练习)函数()f x 定义域为(),a b ,其导函数'()f x 在(),a b 内的图象如图所示,则函数()f x 在区间(),a b 内极小值点的个数是( )A .1B .2C .3D .4【答案】A【分析】根据导函数的图象可判断出()f x 的单调性,结合极小值点的概念即可得结果. 【详解】由()f x '的图象可得:函数()f x 在()1,a x 上单调递增,在()12,x x 上单调递减, 在()24,x x 上单调递增,在()4,x b 上单调递减,故2x x =为函数()f x 的极小值点,即()f x 在区间(),a b 内极小值点的个数是1, 故选:A.例12.(2023·全国·高三专题练习)已知定义在[,]a b 上的函数()y f x =的导函数()y f x '=的图象如图所示,给出下列命题:∴函数()y f x =在区间[]24,x x 上单调递减; ∴若45x m n x <<<,则()()22f m f n m n f ++⎛⎫>'' ⎝'⎪⎭;∴函数()y f x =在[,]a b 上有3个极值点;∴若23x p q x <<<,则[][()()]()()0f p f q f p f q ''-⋅-<. 其中正确命题的序号是( )A .∴∴B .∴∴C .∴∴D .∴∴【答案】B【分析】根据()y f x '=图象判断函数()y f x =单调性和极值点情况,并利用单调性比较函数值的大小,逐一判断四个命题的正误即可.【详解】∴中,看图知,在区间[]23,x x 上,()0f x '≥,在区间[]34,x x 上,()0f x '≤,故函数()y f x =在区间[]24,x x 上先增再减,∴错误;∴中,看图知,在区间[]45,x x 上,()y f x '=是下凸的,任意连接两点()(),(),,()m f m n f n '',中点为()(),22m n f m f n M ''++⎛⎫ ⎪⎝⎭,线段一定在()y f x '=图象上方,故中点也在图象上方,即()()22f m f n m n f ++⎛⎫>'' ⎝'⎪⎭,故∴正确;∴中,看图知,在区间[]3,a x 上,()0f x '≥,在区间[]35,x x 上,()0f x '≤,在区间[]5,x b 上,()0f x '≥,所以()y f x =有一个极大值点3x 和一个极小值点5x ,故∴错误;∴中,看图知,在区间[]23,x x 上,()0f x '≥,且()f x '递减,故()y f x =单调递增,故()(),()()f p f q f p f q '<'>,故[][()()]()()0f p f q f p f q ''-⋅-<,即∴正确.综上,正确命题的序号是∴∴. 故选:B.【点睛】方法点睛:利用导数判断函数()f x 的单调性和极值的方法:∴写定义域,对函数()f x 求导()f x ';∴在定义域内,令 ()0f x '>的区间即是增区间,令()0f x '<的区间即是减区间,∴根据单调区间,判断极值点即可.【题型】四、函数或导函数图象与极值点的关系 例13.(2023·全国·高三专题练习)函数f (x )=ax 3+bx 2+cx +d 的图像如图,则函数y =ax 2+323cbx +的单调递增区间是( )A .(-∞,-2]B .1[,)2+∞C .[2,3)D .9[,)8+∞【答案】D【分析】由图象知0a >,0d =,不妨取1a =,先对函数32()f x x bx cx d =+++进行求导,根据2x =-,3x =时函数取到极值点知(2)0f '-=,(3)f '0=,故可求出b ,c 的值,再根据函数单调性和导数正负的关系得到答案. 【详解】解:不妨取1a =,32()f x x bx cx =++,2()32f x x bx c '∴=++由图可知(2)0f '-=,(3)f '0=1240b c ∴-+=,2760b c ++=, 1.5b ∴=-,18c =-2964y x x ∴=--,924y x '=-,当98x >时,0'>y2964y x x ∴=--的单调递增区间为:9[8,)∞+故选:D .例14.(2023·全国·高三专题练习)已知函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,将()f x 的图象向右平移3π个单位长度得到函数()g x 的图象,若函数()g x 在(),a a -上存在唯一极值点,则实数a 的取值范围是( ) A .11,2424ππ⎡⎫⎪⎢⎣⎭B .11,2424ππ⎡⎤⎢⎥⎣⎦C .11,2424ππ⎛⎫⎪⎝⎭D .11,2424ππ⎛⎤ ⎥⎝⎦【答案】D【分析】首先求函数()f x 的解析式,再根据平移公式,求解函数()g x 的解析式,结合函数的图象,列式求实数a 的取值范围. 【详解】由题意知()f x 的最小正周期2T ππω==,∴2ω=,∴()sin 24f x x π⎛⎫=+ ⎪⎝⎭,∴()5sin 2sin 23412g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,作出()g x 的图象如图所示,数形结合可知0112424a a a ππ⎧⎪>⎪⎪≤⎨⎪⎪-<-⎪⎩ ,解得:112424a ππ<≤ ∴实数a 的取值范围是11,2424ππ⎛⎤⎥⎝⎦.故选:D例15.(2023·全国·高三专题练习)如图是函数()y f x =的导数()'y f x =的图象,则下面判断正确的是( )A .在()3,1-内()f x 是增函数B .在()4,5内()f x 是增函数C .在1x =时()f x 取得极大值D .在2x =时()f x 取得极小值【答案】B【分析】根据()'y f x =图象判断()f x 的单调性,由此求得()f x 的极值点,进而确定正确选项.【详解】由图可知,()f x 在区间()33,,2,42⎛⎫-- ⎪⎝⎭上()()'0,f x f x <递减;在区间()3,2,4,52⎛⎫- ⎪⎝⎭上()()'0,f x f x >递增.所以1x =不是()f x 的极值点,2x =是()f x 的极大值点.所以ACD 选项错误,B 选项正确. 故选:B例16.(2023·全国·高三专题练习)已知函数()x af x a x =-(0x >,0a >且1a ≠),则( )A .当e a =时,()0f x ≥恒成立B .当01a <<时,()f x 有且仅有一个零点C .当e a >时,()f x 有两个零点D .存在1a >,使得()f x 存在三个极值点 【答案】ABC【分析】选项A ,不等式变形后求函数的最值进行判断;选项B ,确定函数的单调性,利用零点存在定理判断;选项C ,结合选项A 中的新函数进行判断;选项D ,求导,由导函数等于0,构造新函数确定导函数的零点个数,得极值点个数,判断D .【详解】对于A 选项,当e a =时,()0f x ≥,即e ln 1e eln e x x x x x x ≥⇔≥⇔≤,设()ln x g x x=, 则()21ln xg x x-'=,故当()0,e x ∈时,()0g x '>,当()e,x ∈+∞时,()0g x '<, 所以()()ln e 1e e eg x g ≤==,故A 正确; 对于B 选项,当01a <<时,()x af x a x =-单调递减,且当0x +→时,()1f x →,()110f a =-<,因此()f x 只有一个零点,故B 正确;对于C 选项,()0ln ln x af x a x x a a x =⇔=⇔=,即ln ln x ax a=,当e a >时,由A 选项可知,()10eg a <<,因此()()g x g a =有两个零点,即()f x 有两个零点,故C 正确;对于D 选项,()1ln x a f x a a ax -'=-,令()0f x '=,得11ln x a a a x --=,两边同时取对数可得,()()()1ln ln ln 1ln x a a a x -+=-,设()()()()1ln ln ln 1ln h x x a a a x =-+--,则()1ln a h x a x -'=-,令()0h x '=,得1ln a x a -=,则()h x 在10,ln a a -⎛⎫ ⎪⎝⎭上单调递减,在1,ln a a -⎛⎫+∞ ⎪⎝⎭上单调递增,因此()h x 最多有两个零点,所以()f x 最多有两个极值点,故D 错误. 故选:ABC.【题型】五、求已知函数的极值点例17.(2023·全国·高三专题练习)已知函数3()1f x x x =-+,对于以下3个命题: ∴函数()f x 有2个极值点 ∴函数()f x 有3个零点∴点(0,1)是函数()f x 的对称中心 其中正确命题的个数为( ) A .0 B .1 C .2 D .3【答案】C【分析】利用导数研究()f x 的单调性确定极值情况,结合零点存在性定理判断零点个数,根据()()2f x f x +-=判断对称中心. 【详解】令2()310f x x '=-=,可得x =所以(,-∞、)+∞上()0f x '>,()f x递增;(上()0f x '<,()f x 递减;所以x =是()f x 的极值点, 又(2)50f -=-<,(10f =>,10f =->,所以()f x在(2,-上存在一个零点,所以()f x 有2个极值点,1个零点,∴正确,∴错误;33()()112f x f x x x x x +-=-+-++=,故(0,1)是函数()f x 的对称中心,∴正确.故选:C例18.(2023·全国·高三专题练习)已知0x 是函数()12sin cos 3f x x x x =-的一个极值点,则20tan x 的值是( )A .1B .12C .37D .57【答案】D【分析】由题知0()0f x '=,可得01cos26x =,由二倍角公式可算得207cos 12x =,进而有205sin 12x =,所以205tan 7x =. 【详解】()2001112cos2,cos22cos 1366f x x x x =-∴=∴-=',∴207cos 12x =,∴22005sin 1cos 12x x =-=, ∴220020sin 5tan cos 7x x x == 故选:D例19.(2023·全国·高三专题练习)已知函数()8sin 26f x x π⎛⎫=- ⎪⎝⎭,(]0,4x π∈,则()f x 所有极值点的和为( ) A .223πB .13πC .17πD .503π【答案】D【分析】根据已知条件,令()0f x '=,求出方程的根,判断根左右两侧的导函数符号可得极值点,从而可求解()f x 所有极值点的和.【详解】解:()16cos 26f x x π⎛⎫'=- ⎪⎝⎭,令()16cos 206f x x π⎛⎫'=-= ⎪⎝⎭,得,23k x k Z ππ=+∈, 因为()f x '在,23k x k Z ππ=+∈两侧异号,所以,23k x k Z ππ=+∈是函数()f x 的极值点, 又(]0,4x π∈,所以极值点54117171023,,,,,,,36363636x ππππππππ=,所以()f x 所有极值点的和为5411717102350,363636363πππππππππ++++++=, 故选:D.例20.(2023·江苏·苏州中学高三阶段练习)已知函数()2sin 212cos xf x x=+,则下列说法中正确的是( ) A .()()f x f x π+= B .()f xC .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增D .若函数()f x 在区间[)0,a 上恰有2022个极大值点,则a 的取值范围为60646067,33ππ⎛⎤⎥⎝⎦【答案】ABD【分析】利用二倍角公式进行化简,再根据函数的的性质分别判断各选项. 【详解】()2sin 2sin 2sin 21cos 212cos 2cos 2122xx xf x x xx ===+++⎛⎫+ ⎪⎝⎭, A 选项:()()()()sin 22sin 22cos 222cos 2x x f x f x x xπππ++===+++,A 选项正确;B 选项:设()sin 22cos 2xf x t x==+,则()sin 2cos 222x t x t x ϕ-==+≤解得213t ≤,t ≤≤,即max t =,即()f x B 选项正确; C 选项:因为022f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,所以()f x 在,22ππ⎛⎫- ⎪⎝⎭上不单调,C 选项错误;D 选项:()()()()()222cos 22cos 2sin 22sin 24cos 222cos 22cos 2x x x x x f x x x +--+'==++,令()0f x '=,解得1cos 22x =-,即3x k ππ=+或23x k ππ=+,Z k ∈, 当2,33x k k ππππ⎛⎫∈++ ⎪⎝⎭,Z k ∈时,()0f x '<,函数单调递减, 当当24,33x k k ππππ⎛⎫∈++⎪⎝⎭,Z k ∈时,0f x ,函数单调递增,所以函数()f x 的极大值点为3π,43π,,()13n ππ+-,又函数()f x 在区间[)0,a 上恰有2022个极大值点,则2021,202233a ππππ⎛⎤∈++ ⎥⎝⎦,即60646067,33a ππ⎛⎤∈ ⎥⎝⎦,D 选项正确;故选:ABD.【题型】六、函数最值与极值的关系例21.(2022·江苏·高三专题练习)已知函数222()xx x f x e+-=,则下列结论不正确的是( ) A .函数()f x 有极小值也有最小值 B .函数()f x 存在两个不同的零点 C .当260k e -<<时,()f x k =恰有三个实根 D .若[0,]x t ∈时,max 26()f x e=,则t 的最小值为2 【答案】C【分析】先求导,通过导函数的单调性分析出原函数大致图象,然后画出图象,结合图象来分析每一个选项即可求出答案.【详解】由222()x x x f x e +-=,得()22'2(22)(22)4()x x x x x e x x e x f x e e +-+--+==, 令'()0f x =,则2x =-或2x =,当<2x -或2x >时,'()0f x <;当22x -<<时,'()0f x > , 所以()f x 在(,2)-∞-和(2,+)∞上单调递减,在(2,2)-上单调递增,所以()f x 有极小值()2244222f e e ---==--,有极大值()224+4262f e e-==, 当x →-∞时,()f x →+∞, 当x →+∞时,()0f x →, 故函数的图象如图,由图像可知A ,B ,D 正确,C 错误. 故选:C例22.(2022·全国·高三专题练习)对函数()242()ln 1f x x a x x =+++(x R ∈,a R ∈且0a ≠)的极值和最值情况进行判断,一定有( ) A .既有极大值,也有最大值 B .无极大值,但有最大值 C .既有极小值,也有最小值 D .无极小值,但有最小值【答案】C【分析】先求出导数,34242()21x xf x x a x x '+=+⋅++4221x x x =++()42(21)1x a x a ++++,然后讨论方程42(21)10x a x a ++++=根的情况,进而判断各选项【详解】34242()21x xf x x a x x '+=+⋅++4221x x x =++()42(21)1x a x a ++++,下面讨论方程42(21)10x a x a ++++=根的情况.令2[0,)u x =∈+∞,2()(21)1g u u a u a =++++,(1)当(0)10g a =+<时(即1a <-),()g u 仅有一个唯一的正零点,不妨设为0u ,此时()f x '有三个不同零点,分别为0(2)当(0)10g a =+=时(即1a =-)3422()(1)(1)1x f x x x x x =+-++';满足既有极小值,也有最小值;(3)当(0)10g a =+>时(即1a >-且0a ≠),若2102a u +=-≤(即12a ≥-且0a ≠),则()f x 仅有一个唯一的极小值点为0,若212a u +=-1012a ⎫⎛>-<<- ⎪⎝⎭,结合22Δ(21)4(1)43a a a =+-+=-分析可知:当1a -<<()g u 有两个不同的正零点(令为1u ,2u 且12u u <).此时()f x 在(,-∞,(),上单调递减,当12a ≤<-时,则()f x 仅有一个唯一的极小值点为0. 满足既有极小值,也有最小值;综上分析, 故选:C【点睛】关键点睛:解题的关键在于:求导后讨论方程42(21)10x a x a ++++=根的情况,讨论的时候,分情况:(1)当(0)10g a =+<;(2)当(0)10g a =+=;(3)当(0)10g a =+>,进而判断各选项,属于难题例23.(2022·全国·高三专题练习)已知函数()2()x f x x a e =+有最小值,则函数()y f x '=的零点个数为( ) A .0 B .1 C .2 D .不确定【答案】C【解析】对函数求导,转化条件为()0f x '<有解,再结合二次函数的性质即可得解.【详解】由题意,()2()2xf x x a e x +'=+,因为函数()f x 有最小值,且e 0x >,所以函数存在单调递减区间,即()0f x '<有解, 所以220x x a ++=有两个不等实根, 所以函数()y f x '=的零点个数为2. 故选:C.【点睛】本题考查了利用导数研究函数的最值,考查了运算求解能力,属于基础题. 例24.(2022·全国·高三专题练习)已知函数()y f x =的导函数()y f x '=的图象如图所示,则下列结论正确的是( )A .()()()f a f b f c <<B .()()()f e f d f c <<C .x c =时,()f x 取得最大值D .x d =时,()f x 取得最小值【答案】AB【分析】由()f x '图象可确定()f x 的单调性,结合单调性依次判断各个选项即可得到结果. 【详解】由()f x '图象可知:当()(),,x c e ∈-∞+∞时,0fx;当(),x c e ∈时,()0f x '<;f x 在(),c -∞,(),e +∞上单调递增,在(),c e 上单调递减;对于A ,a b c <<,()()()f a f b f c ∴<<,A 正确; 对于B ,c d e <<,()()()f e f d f c ∴<<,B 正确;对于C ,由单调性知()f c 为极大值,当>x e 时,可能存在()()0f x f c >,C 错误; 对于D ,由单调性知()()f e f d <,D 错误. 故选:AB.【题型】七、导数中的极值偏移问题例25.(2023·全国·高三专题练习)关于函数()2ln f x x x=+,下列说法错误的是( ) A .2x =是()f x 的极小值点 B .函数()y f x x =-有且只有1个零点 C .存在正实数k ,使得()f x kx >恒成立D .对任意两个正实数1x ,2x ,且12x x >,若()()12f x f x =,则124x x +> 【答案】C【分析】对于A ,分析()f x 导函数可作判断;对于B ,考查函数()y f x x =-的单调性可作判断;对于C ,分离参数,再分析函数()f x x最值情况而作出判断;对于D ,构造函数()()(4)(02)g x f x f x x =--<<讨论其单调性,确定()0g x >即可判断作答.【详解】对于A 选项:()f x 定义域为(0,)+∞,22212()x f x x x x'-=-+=, 02x <<时,()0,2f x x '<>时()0f x '>,2x =是()f x 的极小值点,A 正确;对于B 选项:令222()(),()0x x h x f x x h x x -+'=-=-<, ()h x 在(0,)+∞上递减,(1)1,(2)ln 210h h ==-<, ()h x 有唯一零点,B 正确;对于C 选项:令23()2ln ln 4(),()f x x x x x x x x x x x ϕϕ-+'==+=-, 令()ln 4F x x x x =-+,()ln ,(0,1)F x x x '=∈时,()0,(1,)F x x '<∈+∞时,()0F x '>,()F x 在(0,1)上递减,在(1,)+∞上递增,则min ()(1)30F x F ==>,()0x ϕ'<,()ϕx 在(0,)+∞上递减,()ϕx 图象恒在x 轴上方,与x 轴无限接近,不存在正实数k 使得()f x kx >恒成立,C 错误; 对于D 选项:由A 选项知,()f x 在(0,2)上递减,在(2,)+∞上递增, 因正实数1x ,2x ,且12x x >,()()12f x f x =,则2102x x <<<,02x <<时,令()()(4)g x f x f x =--,()()()()2222404x x g x f x f x x x --=+-'+-''=<, 即()g x 在(0,2)上递减,于是有()()20g x g >=,从而有()()122(4)f x f x f x =>-, 又242x -> ,所以124x x >-,即124x x +>成立,D 正确. 故选:C.例26.(2023·全国·高三专题练习)已知函数()ln xf x x=,则( ) A .()()25f f >B .若()f x m =有两个不相等的实根1x 、2x ,则212e x x <C .ln 2D .若23x y =,x ,y 均为正数,则23x y > 【答案】AD【分析】A :代入2,5直接计算比较大小;B :求()f x 的导函数,分析单调性,可得当()f x m=有两个不相等实根时1x 、2x 的范围,不妨设1x 2x <,则有10e x <<2x <,比较()211,e f x f x ⎛⎫⎪⎝⎭的大小关系,因为()()12f x f x =,可构造()()2e F x f x f x ⎛⎫=- ⎪⎝⎭(0e)x <<,求导求单调性,计算可得()0F x <成立,可证212e x x >;C :用()f x 在()0,e 上单调递增,构造ln 2ln e2e<可证明;D :令23xyt ==,解出lg lg 2t x =,lg lg 3ty =,做差可证明23x y >.【详解】解:对于A :()()12ln 52525n f f ====又105232==1025=,3225>>()()25f f >,A 正确;对于B :若()f x m =有两个不相等的实根1x 、2x ,则212e x x >,故B 不正确;证明如下:函数()ln x f x x =,定义域为()0,∞+,则()21ln xf x x -'=, 当0fx时,0e x <<;当()0f x '<时,e x >;所以()f x 在()0,e 上单调递增,在()e,+∞上单调递减,则()max 1ef x =且e x >时,有()0f x >,所以 若()f x m =有两个不相等的实根1x 、2x ,有10em <<,不妨设1x 2x <,有10e x <<2x <,要证212e x x >,只需证221e x x >,且221e e x x >>,又()()12f x f x =,所以只需证()211e f x f x ⎛⎫< ⎪⎝⎭,令()()2e F x f x f x ⎛⎫=-⎪⎝⎭(0e)x << 则有()()()22241111e ln e F x f x f x x x x ⎛⎫⎛⎫'''=+⋅=-- ⎪ ⎪⎝⎭⎝⎭当0e x <<时,1ln 0x ->,24110e x ->,所以有()0F x '>,即()F x 在(0,e)上单调递增,且()0e F =,所以()0F x <恒成立,即()211e f x f x ⎛⎫< ⎪⎝⎭,即()221e f x f x ⎛⎫< ⎪⎝⎭,即212e x x >.对于C :由B 可知,()f x 在()0,e 上单调递增,则有()()2e f f <,即ln 2ln e2e<,则有2ln 2e <<C 不正确; 对于D :令23x y t ==,则1t >,2lg log lg 2t x t ==,3lg log lg 3ty t ==, 2lg 3lg lg (lg9lg8)230lg 2lg3lg 2lg3t t t x y -∴-=-=>⋅, 23∴>x y ,故D 正确;故选:AD.【点睛】知识点点睛:(1)给定函数比较大小的问题,需判断函数单调性,根据单调性以及需要比较的数值构造函数,利用函数的单调性可比较大小;(2)极值点偏移法证明不等式,先求函数的导数,找到极值点,分析两根相等时两根的范围,根据范围以及函数值相等构造新的函数,研究新函数的单调性及最值,判断新函数小于或大于零恒成立,即可证明不等式.例27.(2023·全国·高三专题练习)已知函数()(0).e xaxf x a =≠ (1)若对任意的x R ∈,都有1()ef x ≤恒成立,求实数a 的取值范围;(2)设,m n 是两个不相等的实数,且e m n m n -=.求证: 2.m n +>【答案】(1)(0,1] (2)证明见解析【分析】(1)先判断a<0不成立,当0a >时,求出函数的导数,结合最值可得参数的取值范围;(2)设()()(2)(1)h x g x g x x =-->,可得()0h x >恒成立,从而可证不等式. (1)当a<0时,111e af a ⎛⎫= ⎪⎝⎭, 因为10e e a<<,所以111e e a>,即11e f a ⎛⎫> ⎪⎝⎭,不符合题意;当0a >时,(1)()e xa x f x -'=, 当(,1)x ∞∈-时,()0f x '>,当(1,)x ∈+∞时,()0f x '<, 所以()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减. 所以()(1)eaf x f ≤=. 由1()e f x ≤恒成立可知1e ea ≤,所以1a ≤.又因为0a >,所以a 的取值范围为(0,1]. (2)因为e m n m n -=,所以e e m n m n --=,即e em n m n=. 令()e xxg x =,由题意可知,存在不相等的两个实数m ,n ,使得()()g m g n =. 由(1)可知()g x 在区间(,1)-∞上单调递增,在区间(1,)+∞上单调递减. 不妨设m n <,则1m n <<.设()()(2)(1)h x g x g x x =-->,则2221e 1()()[(2)](1)e (1)0e e x x x xx h x g x g x x x ----'''=--=+-=-⋅>, 所以()h x 在(1,)+∞上单调递增,所以()0h x >,即()(2)g x g x >-在区间(1,)+∞上恒成立. 因为1n >,所以()(2)g n g n >-. 因为()()g m g n =,所以()(2)g m g n >-.又因为1m <,21n -<,且()g x 在区间(,1)-∞上单调递增, 所以2m n >-,即2m n +>.【点睛】思路点睛:不等式恒成立问题,可转化函数的最值问题,而极值点偏移问题,通过可构建新函数,并利用原函数的单调性进行转化.例28.(2023·全国·高三专题练习)已知函数2()1e (1),1,1x f x k x x k R x ⎛⎫=--->-∈ ⎪+⎝⎭. (1)若0k =,证明:(1,0)x ∈-时,()1f x <-;(2)若函数()f x 恰有三个零点123,,x x x ,证明:1231x x x ++>.【答案】(1)证明见解析(2)证明见解析【分析】(1)当0k =时,1()e ,(1,0)1x x f x x x -=∈-+,求导,得到导函数大于0恒成立,故得到()(0)1f x f <=-;(2)首先确定1x =为函数的一个零点,接下来研究e ()1xF x k x =-+,构造差函数,求导后单调性,得到证明.(1)0k =时,函数1()e ,(1,0)1x x f x x x -=∈-+, 则221()e 0(1)x x f x x +='>+, ()f x 在(1,0)-上单调递增, 所以1()e (0)11x x f x f x -=<=-+. (2) e ()(1)1x f x x k x ⎛⎫=-- ⎪+⎝⎭,显然1x =为函数的一个零点,设为3x ; 设函数e ()1xF x k x =-+,2e ()(1)x x F x x '=+ 当(1,0)x ∈-时,()0F x '<,当,()0x ∈+∞时,()0F x '>,故()F x 在(1,0)-上单调递减,在(0,)+∞上单调递增.由已知,()F x 必有两个零点12,x x ,且1210x x -<<<,下证:120x x +>.设函数()()(),(1,0)h x F x F x x =--∈-,则e e ()11x x h x x x -=++-, 2e 11()e e (1)11x x x x x x h x x x x -++⎛⎫⎛⎫=+- ⎪⎪+--⎝⎭⎝⎭', 由于(1,0)x ∈-,则2e 1e 0(1)1x x x x x x -+⎛⎫-< ⎪+-⎝⎭,由(1)有1e 01x x x ++>-,故()0h x '<, 即函数()h x 在(1,0)-上单调递减, 所以()(0)0h x h >=,即有()()()211F x F x F x =>-, 由于12,(0,)x x -∈+∞,且在(0,)+∞上单调递增, 所以21x x >-,所以120x x +>.【点睛】对于极值点偏移问题,通常要构造差函数,结合差函数的单调性和最值,进行证明.。
高考数学专题复习《函数的极值最值》知识梳理及典型例题讲解课件(含答案)

(2)已知函数 在 <m></m> 处有极值10, 则 等于( )
A. 或18 B. C. D. 或18
解:因为函数 在 处有极值 ,所以 ,且 ,即 得 或 而当 , 时, ,函数在 处无极值,故舍去. 所以 ,所以 故选C.
解:由题意知, ,令 ,得 , ,因为 在区间 上的最大值就是函数 的极大值,所以极大值点为 ,所以 ,即 .故填 .
1.函数的极值
(1)函数极值的定义:如图,函数 在点 的函数值 比它在点 附近其他点的函数值都小, ;而且在点 附近的左侧 ,右侧 . 类似地,函数 在点 的函数值 比它在点 附近其他点的函数值都大, ;而且在点 附近的左侧 ,右侧 .我们把 叫做函数 的__________, 叫做函数 的________; 叫做函数 的__________, 叫做函数 的________.极小值点、极大值点统称为_______,极小值和极大值统称为______.
√
易错:注意检验
变式2.(1) 若函数 的极小值点是 <m> ,则 的极大值为( )
A. B. C. D.
√
解:由题意, ,所以 ,解得 ,故 ,可得 ,则 在 和 上单调递增,在 上单调递减,所以 的极大值为 .故选C.
(2)若 , 是函数 的两个极值点,则
√
(5)有极值的函数一定有最值,有最值的函数不一定有极值. ( )
×
3. 已知函数 的导函数 <m></m> 的图象如图所示,则( )
A.函数 有2个极大值点,2个极小值点B.函数 有1个极大值点,1个极小值点C.函数 有3个极大值点,1个极小值点D.函数 有1个极大值点,3个极小值点
专题08 二次函数与幂函数(解析版)

2023高考一轮复习讲与练08 二次函数与幂函数练高考 明方向1.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在0+∞(,)上递减,则α=_____【答案】1-【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-. 2.(2017浙江)若函数2()f x x ax b =++在区间[0,1]上的最大值是M ,最小值是m ,则M m -A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关 【答案】B【解析】函数()f x 的对称轴为2a x =-, ①当02a-≤,此时(1)1M f a b ==++,(0)m f b ==,1M m a -=+; ②当12a-≥,此时(0)M f b ==,(1)1m f a b ==++,1M m a -=--; ③当012a<-<,此时2()24a a m f b =-=-,(0)M f b ==或(1)1M f a b ==++,24a M m -=或214a M m a -=++.综上,M m -的值与a 有关,与b 无关.选B .3.(2016高考数学课标Ⅰ卷理科)若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c <(D )log log a b c c <【答案】C【解析】对A :由于01c <<,∴函数cy x =在R 上单调递增,因此1c c a b a b >>⇔>,A 错误;对B :由于110c -<-<,∴函数1c y x-=在()1,+∞上单调递减,∴111c c c c a b a b ba ab -->>⇔<⇔<,B 错误;对C : 要比较log b a c 和log a b c ,只需比较ln ln a c b 和ln ln b c a ,只需比较ln ln c b b 和ln ln ca a, 只需ln b b 和ln a a ,构造函数()()ln 1f x x x x =>,则()'ln 110f x x =+>>,()f x 在()1,+∞上单调递增,因此()()110ln ln 0ln ln f a f b a a b b a a b b >>⇔>>⇔<,又由01c <<得ln 0c <,∴ln ln log log ln ln a b c cb c a c a a b b<⇔<,C 正确,对D : 要比较log a c 和log b c ,只需比较 ln ln c a 和ln ln c b ,而函数ln y x =在()1,+∞上单调递增,故111ln ln 0ln ln a b a b a b>>⇔>>⇔<,又由01c <<得ln 0c <,∴ln ln log log ln ln a b c cc c a b>⇔>,D 错误 4.(2014北京)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t (单位:分钟)满足函数关系2p at bt c =++(a 、b 、c 是常数),下图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A .3.50分钟 B .3.75分钟 C .4.00分钟 D .4.25分钟【答案】B【解析】由题意可知2p at bt c =++过点(3,0.7),(4,0.8)(5,0.5),代入2p at bt c =++中可解得0.2, 1.5,2a b c =-==-,∴20.2 1.52p t t =-+-=20.2( 3.75)0.8125t --+, ∴当 3.75t =分钟时,可食用率最大.5.(2013广东)定义域为的四个函数,,,中,奇函数的个数是A .B .C .D .【答案】C【解析】是奇函数的为与,故选C .讲典例 备高考O 5430.80.70.5t p R 3y x =2x y =21y x =+2sin y x =43213y x =2sin y x =二次函数与幂函数奇函数的定义偶函数的定义 函数的对称性 奇偶性的判断奇偶性的应用周期性的判断 周期性的应用类型一、幂函数的定义 基础知识:1、幂函数的定义一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.基本题型:1.(幂函数的判断)下列函数中是幂函数的是( ) A .y =x 4+x 2 B .y =10x C .y =1x 3D .y =x +1【答案】C【详解】根据幂函数的定义知,y =1x 3是幂函数,y =x 4+x 2,y =10x ,y =x +1都不是幂函数.2.(幂函数的判断)给出下列函数:①31y x =;②32y x =-;③42y x x =+;④35y x=;⑤()21y x =-;⑥0.3xy =,其中是幂函数的有( )A .1个B .2个C .3个D .4个【答案】B【详解】由幂函数的定义:形如y x α=(α为常数)的函数为幂函数,则可知①331y x x -==和④5353y x x ==是幂函数.类型二、幂函数的图象 基础知识:1、五个常见幂函数的图象基本题型:1.(根据解析式确定图象)已知(),1,m n ∈+∞,且m n >,若26log log 13m n n m +=,则函数()nmf x x =的图像为( ).A .B .C .D .【答案】A【解析】由题意得:26log log 2log 6log 13m n m n n m n m +=+=,令()log 01m t n t =<<,则6213t t+=,解得12t =或6t =(舍去),所以n =,即21mn =,所以()2m n f x x =的图像即为()f x x =的图像.2.(根据图象确定解析式)图中1C 、2C 、3C 为三个幂函数y x α=在第一象限内的图象,则解析式中指数α的值依次可以是( )A .12、3、1- B .1-、3、12C .12、1-、3 D .1-、12、3 【答案】D【详解】由题意得,根据幂函数的图象与性质可知,2310C C C ααα>>>,所以解析式中指数α的值依次可以是11,,32-, 3.(利用图象比较大小)对于幂函数()45f x x =,若120x x <<,则122x x f +⎛⎫⎪⎝⎭,()()122f x f x +的大小关系是( )A .()()121222f x f x x x f ++⎛⎫>⎪⎝⎭B .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭C .()()121222f x f x x x f ++⎛⎫=⎪⎝⎭D .无法确定【答案】A【解析】幂函数()45f x x =在0,上是增函数,大致图象如图所示.设()1,0A x ,()2,0C x ,其中120x x <<,则AC 的中点E 的坐标为12,02x x +⎛⎫⎪⎝⎭,且()1AB f x =,()2CD f x =,122x x EF f +⎛⎫= ⎪⎝⎭.()12EF AB CD >+,()()121222f x f x x x f ++⎛⎫∴>⎪⎝⎭.4.(利用图象比较大小)已知函数y =x a ,y =x b ,y =x c 的图象如图所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b 【答案】A【解析】由幂函数图像特征知,1a >,01b <<,0c <,所以选A . 5.(幂函数图象的性质)下列命题中,假命题的个数为_________. ①幂函数的图象有可能经过第四象限;②幂函数的图象都经过点()1,1;③当0a =时,函数a y x =的图象是一条直线;④当0a <时,函数a y x =在定义域内是严格减函数; ⑤过点()1,1-的幂函数图象关于y 轴对称. 【答案】3【详解】对于①,正数的指数幂为正数,故幂函数的图象不可能经过第四象限,故错误;对于②,1的任何指数幂均为1,所以幂函数的图象都经过点()1,1,故正确;对于③,当0a =时,函数a y x =的定义域为{}0x x ≠,其a y x =图象是两条射线,故错误;对于④,当1a =-时,1y x=在定义域内不具有单调性,故错误;对于⑤,当幂函数过点()1,1-时,()11a-=得a 为偶数,故幂函数图象关于y 轴对称,故正确.类型三、幂函数的性质 基础知识:1、五个常见幂函数的性质1.(幂函数单调性)已知点(2,8)在幂函数()nf x x =的图象上,设,(ln ),a f b f c f π===⎝⎭⎝⎭,则,,a b c 的大小关系为( ) A .b a c << B .a b c << C .b c a << D .a c b <<【答案】D【解析】由已知得82n =,解得:3n =,所以3()f x x =1<1<,ln ln 1e π>=, 又0-==<,所以ln π<<,由3()f x x =在R 上递增,可得:(ln )f f f π<<⎝⎭⎝⎭,所以a c b <<.2.(幂函数图象的对称性)已知幂函数()()22322n nf x n n x-=+-(n Z ∈)的图象关于y 轴对称,且在()0,∞+上是减函数,则n 的值为______. 【答案】1【详解】因为()()22322n nf x n n x-=+-是幂函数,2221n n ∴+-=,解得3n =-或1,当3n =-时,()18=f x x 是偶函数,关于y 轴对称,在()0,∞+单调递增,不符合题意,当1n =时,()2f x x -=是偶函数,关于y 轴对称,在()0,∞+单调递减,符合题意,1n ∴=. 3.(幂函数的奇偶性)设11,2,3,,12a ⎧⎫∈-⎨⎬⎩⎭,则使函数a y x =的定义域为R 且函数a y x =为奇函数的所有a 的值为( )A .1,3-B .1,1-C .1,3D .1,1,3-【答案】C【详解】1a =时,函数解析式为y x =满足题意;2a =时,函数解析式为2yx ,偶函数,不符合题意;3a =时,函数解析式为3y x =满足题意;12a =时,函数解析式为12y x =,定义域为[)0,+∞,不符合题意;1a =-时,函数解析式为1y x -=,定义域为(,0)(0,)-∞+∞,不符合题意.类型四、二次函数的解析式 基础知识:二次函数解析式的三种形式基本题型:1.已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________. 【答案】12x 2-32x +2【解析】因为f (x )是二次函数且f (0)=2,所以设f (x )=ax 2+bx +2(a ≠0).又因为f (x +1)-f (x )=x -1,所以a (x +1)2+b (x +1)+2-(ax 2+bx +2)=x -1,整理得(2a -1)x +a +b +1=0,所以⎩⎪⎨⎪⎧2a -1=0,a +b +1=0,解得a =12,b =-32,所以f (x )=12x 2-32x +2.2.已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0),且有最小值-1,则f (x )=________. 【答案】f (x )=x 2+2x .【解析】法一:设函数的解析式为f (x )=ax (x +2)(a ≠0),所以f (x )=ax 2+2ax ,由4a ×0-4a 24a=-1,得a =1,所以f (x )=x 2+2x . 法二:由二次函数f (x )与x 轴交于(0,0),(-2,0),知f (x )的图象关于x =-1对称.设f (x )=a (x +1)2-1(a >0),又f (0)=0,得a =1,所以f (x )=(x +1)2-1=x 2+2x .3.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 【答案】f (x )=x 2-4x +3.【解析】∵f (2-x )=f (2+x )对x ∈R 恒成立,∴f (x )的对称轴为x =2.又∵f (x )的图象被x 轴截得的线段长为2,∴f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0).又∵f (x )的图象经过点(4,3),∴3a =3,a =1.∴所求f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.基本方法:求二次函数解析式的方法类型五、二次函数的图象与性质 基础知识:函数y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)图象定义域 R值域 ⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a对称轴 x =-b2a顶点坐标 ⎝⎛⎭⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数单调性在⎝⎛⎦⎤-∞,-b2a 上是减函数, 在⎣⎡⎭⎫-b 2a ,+∞上是增函数 在⎝⎛⎦⎤-∞,-b2a 上是增函数, 在⎣⎡⎭⎫-b 2a,+∞上是减函数基本题型:1.(根据函数图象求范围)(多选)二次函数y =ax 2+bx +c 的图象如图所示,则下列结论正确的是( )A .b =-2aB .a +b +c <0C .a -b +c >0D .abc <0 【答案】AD【解析】根据对称轴x =-b2a=1得到b =-2a ,A 正确;当x =1时,y =a +b +c >0,B 错误;当x =-1时,y =a -b +c <0,C 错误;函数图象开口向下,所以a <0,b =-2a >0,当x =0时,y =c >0,故abc <0,D 正确.2.(根据解析式确定函数图象)(多选)在同一平面直角坐标系中,函数f (x )=ax 2+x +1和函数g (x )=ax +1的图象可能是( )【答案】ABD【解析】若a =0,则f (x )=x +1,g (x )=1,A 符合;若a <0,则f (x )的图象开口向下,过点(0,1),对称轴的方程为x =-12a ,g (x )的图象过点(0,1)和⎝⎛⎭⎫-1a ,0,且-12a <-1a ,B 符合;若0<a <14, 则f (x )的图象开口向上,与x 轴有两个交点,过点(0,1),对称轴的方程为x =-12a,g (x )的图象过 点(0,1)和⎝⎛⎭⎫-1a ,0,且-12a >-1a ,C 不符合;若a >14,则f (x )的图象开口向上,与x 轴没有交点, 过点(0,1),对称轴的方程为x =-12a ,g (x )的图象过点(0,1)和⎝⎛⎭⎫-1a ,0,且-12a >-1a ,D 符合. 基本方法:1、分析二次函数图象问题的要点一是看二次项系数的符号,它决定二次函数图象的开口方向; 二是看对称轴和顶点,它们决定二次函数图象的具体位置;三是看函数图象上的一些特殊点,如函数图象与y 轴的交点、与x 轴的交点,函数图象的最高点或最低点等.从这三方面入手,能准确地判断出二次函数的图象.反之,也能从图象中得到如上信息. 类型四、二次函数给定区间上最值问题 基础知识:1、闭区间上二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合图象,根据函数的单调性及分类讨论的思想求解.2、二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.无论哪种类型,解题的关键都是图象的对称轴与区间的位置关系,当含有参数时,要依据图象的对称轴与区间的位置关系进行分类讨论. 基本题型:1.(轴定区间定)已知函数y =2x 2-6x +3,x ∈[-1,1],则f (x )的最小值是________. 【答案】-1【解析】∵函数f (x )=2x 2-6x +3的图象的对称轴为x =32>1,∴函数f (x )=2x 2-6x +3在[-1,1]上单调递减,∴f (x )min =2-6+3=-1.2、(轴动区间定)已知函数f (x )=-x 2+2ax +1-a 在0≤x ≤1时有最大值2,则实数a 的值为________. 【答案】-1或2【解析】易知y =-x 2+2ax +1-a (x ∈R)的图象的对称轴为直线x =a .当a <0时,函数f (x )的图象如图①中实线部分所示,当x =0时,y max =f (0)=1-a ,∴1-a =2,即a =-1. 当0≤a ≤1时,函数f (x )的图象如图②中实线部分所示,当x =a 时,y max =f (a )=-a 2+2a 2+1-a =a 2-a +1.∴a 2-a +1=2,解得a =1±52.∵0≤a ≤1,∴a =1±52不满足题意.当a >1时,函数f (x )的图象如图③中实线部分所示,当x =1时,y max =f (1)=a =2,∴a =2.综上可知,a 的值为-1或2.3、(轴定区间动)设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 【解析】f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为直线x =1.当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值为f (t )=t 2-2t +2.综上可知,当t ≤0时,f (x )min =t 2+1;当0<t <1时,f (x )min =1;当t ≥1时,f (x )min =t 2-2t +2.新预测 破高考1.已知幂函数()f x 的图象经过点(4,2),则下列命题正确的是( )A .()f x 是偶函数B .()f x 在定义域上是单调递增函数C .()f x 的值域为RD .()f x 在定义域内有最大值【答案】B【详解】设()f x x α=,则42α=,解得12α=,()12f x x ∴==()f x 的定义域为[)0,+∞,故A 错误;可得()f x 在定义域上是单调递增函数,故B 正确;值域为[)0,+∞,故C 错误;故()f x 在定义域内没有最大值,故D 错误.2.下列关于幂函数的结论,正确的是( ).A .幂函数的图象都过(0,0)点B .幂函数的图象不经过第四象限C .幂函数为奇函数或偶函数D .幂函数在其定义域内都有反函数【答案】B【解析】幂函数1y x -=不过点(0,0),则A 错误;当()0,x ∈+∞时,0a x >,则幂函数的图象不经过第四象限,则B 正确;12y x =的定义域为[0,)+∞,不关于原点或y 轴对称,则C 错误;2y x 在(,)-∞+∞内无反函数,则D 错误;3.已知函数:①2xy =;②12xy ⎛⎫= ⎪⎝⎭;③1y x -=;④12y x =;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )A .②①③④B .②③①④C .④①③②D .④③①②【答案】D【详解】①:函数2xy =是实数集上的增函数,且图象过点(0,1),因此从左到右第三个图象符合;②:函数12xy ⎛⎫= ⎪⎝⎭是实数集上的减函数,且图象过点(0,1),因此从左到右第四个图象符合;③:函数1y x-=在第一象限内是减函数,因此从左到右第二个图象符合;④:函数12y x =在第一象限内是增函数,因此从左到右第一个图象符合,4.(多选)函数f (x )=ax 2+2x +1与g (x )=x a 在同一坐标系中的图象可能为( )【答案】ACD【详解】当a <0时,g (x )=x a 为奇函数,定义域为{x |x ≠0},且在(0,+∞)上递减,而f (x )=ax 2+2x +1的图象开口向下,对称轴为x =-1a >0,f (0)=1,故A 符合;当a =2n (n ∈N *)时,g (x )=x a 为偶函数,且在(0,+∞)上递增,f (x )=ax 2+2x +1的图象开口向上,且对称轴为x =-1a <0,Δ=4-4a <0,其图象和x 轴没有交点,故D 符合;当a =12n (n ∈N *)时,函数g (x )=x a 的定义域为[0,+∞),且在[0,+∞)上递增,f (x )=ax 2+2x +1的图象开口向上,且对称轴为x =-1a <0,Δ=4-4a >0,图象和x 轴有两个交点,故C 符合.B 明显不符合题意,故选A 、C 、D. 5.若幂函数()222333m m y m m x+-=++的图象不过原点且关于原点对称,则( )A .2m =-B .1m =-C .2m =-或1m =-D .31m -≤≤-【答案】A【详解】根据幂函数的概念,得2331m m ++=,解得1m =-或2m =-,①若1m =-,则4y x -=,令()4f x x -=,其定义域为()(),00,-∞⋃+∞,且()()()44f x x x f x ---=-=≠-,显然幂函数为偶函数,不是奇函数,图象不关于原点对称,不符合题意,舍去;②若2m =-,则3y x -=,令()3f x x -=,其定义域为R ,且()()()33f x x x f x ---=-=-=-,即幂函数为奇函数,图象关于原点对称,符合题意.所以2m =-.6.若幂函数()y f x =的图象过点(8,,则函数()()21f x f x --的最大值为( )A .12B .12-C .34-D .-1【答案】C【解析】设幂函数()y f x x α==,图象过点(8,,故318=2=2ααα,故()f x =()()21f x f x x --=t =,则()21y t t =-+,0t ≥,∴12t =时,max 34y =-.7.幂函数()0y xαα=≠,当α取不同的正数时,在区间0,1上它们的图象是一簇曲线(如图).设点1,0A ,()0,1B ,连接AB ,线段AB 恰好被其中的两个幂函数m y x =,n y x =的图象三等分,即有BM MN NA ==,则mn 等于( )A .1B .2C .3D .无法确定【答案】A【解析】由题1,0A ,()0,1B ,BM MN NA ==,所以12,33M ⎛⎫ ⎪⎝⎭,21,33N ⎛⎫ ⎪⎝⎭,1233m ⎛⎫∴= ⎪⎝⎭,2133n⎛⎫= ⎪⎝⎭,11213333mmnn m⎡⎤⎛⎫⎛⎫⎛⎫∴===⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,1mn ∴=.8.幂函数f(x)=x 3m -5(m∈N)在(0,+∞)上是减函数,且f(-x)=f(x),则m 可能等于( )A .0B .1C .2D .3【答案】B【解析】∵幂函数f(x)=x 3m -5(m∈N)在(0,+∞)上是减函数,∴3m-5<0,即m <53.又∵m∈N, ∴m=0,1.∵f(-x)=f(x),∴函数f(x)是偶函数.当m =0时,f(x)=x -5是奇函数;当m =1时, f(x)=x -2是偶函数.∴m =1,故选B.9.已知当[0,1]x ∈ 时,函数2(1)y mx =-的图象与y m = 的图象有且只有一个交点,则正实数m的取值范围是A.(0,1])⋃+∞ B . (0,1][3,)⋃+∞ C .)⋃+∞ D .[3,)⋃+∞【答案】B【解析】当01m <≤时,11m≥ ,2(1)y mx =- 单调递减,且22(1)[(1),1]y mx m =-∈-,y m=单调递增,且[,1]y m m m =∈+ ,此时有且仅有一个交点;当1m 时,101m<< ,2(1)y mx =-在1[,1]m上单调递增,所以要有且仅有一个交点,需2(1)13m m m -≥+⇒≥. 10.已知幂函数()()22644m m f x m m x--=-+,()m R ∈,对任意1x ,()20,x ∈+∞,且12x x ≠,都有()()()12120x x f x f x --<⎡⎤⎣⎦,则()3f -,()1f -,()f π的大小关系是( )A .()()()π31f f f <-<-B .()()()13πf f f -<-<C .()()()31πf f f -<-<D .()()()3π1f f f -<<-【答案】A【详解】对任意1x ,()20,x ∈+∞,且12x x ≠,都有()()()12120x x f x f x --<⎡⎤⎣⎦,即()f x 在0,上单调减,又()f x 是幂函数,知:2244160m m m m ⎧-+=⎪⎨--≠⎪⎩,解得1m =或3m =(舍去),∴6()f x x -=,()f x是偶函数,∴(1)(1)f f -=,(3)(3)f f -=,而(1)(3)()f f f π>>,即(1)(3)()f f f π->->, 11.已知点⎝⎛⎭⎫2,18在幂函数f (x )=x n 的图象上,设a =f ⎝⎛⎭⎫33,b =f (ln π),c =f ⎝⎛⎭⎫22,则a ,b ,c 的大小关系为( )A .b <a <cB .a <b <cC .b <c <aD .a <c <b【答案】C【解析】因为点⎝⎛⎭⎫2,18在函数f (x )的图象上,所以18=2n ,解得n =-3,所以f (x )=x -3,易知当x >0时,f (x )单调递减.因为33<22<1,ln π>ln e =1,所以f ⎝⎛⎭⎫33>f ⎝⎛⎭⎫22>f (ln π),即a >c >b ,故选C. 12.(多选)已知函数f (x )=3x 2-6x -1,则( )A .函数f (x )有两个不同的零点B .函数f (x )在(-1,+∞)上单调递增C .当a >1时,若f (a x )在x ∈[-1,1]上的最大值为8,则a =3D .当0<a <1时,若f (a x )在x ∈[-1,1]上的最大值为8,则a =13【答案】ACD【解析】因为二次函数对应的一元二次方程的判别式Δ=(-6)2-4×3×(-1)=48>0,所以函数f (x )有两个不同的零点,A 正确.因为二次函数f (x )图象的对称轴为x =1,且图象开口向上,所以f (x )在(1,+∞)上单调递增,B 不正确.令t =a x ,则f (a x )=g (t )=3t 2-6t -1=3(t -1)2-4. 当a >1时,1a ≤t ≤a ,故g (t )在⎣⎡⎦⎤1a ,a 上先减后增,又a +1a 2>1,故最大值为g (a )=3a 2-6a -1=8, 解得a =3(负值舍去).同理当0<a <1时,a ≤t ≤1a ,g (t )在⎣⎡⎦⎤a ,1a 上的最大值为g ⎝⎛⎭⎫1a =3a 2-6a -1=8, 解得a =13(负值舍去).故C 、D 正确.13.已知幂函数()223mm y f x x --+==(其中22m -<<,m ∈Z )满足:①在区间,0上为减函数;②对任意的x ∈R ,都有()()0f x f x --=.则()f x 在[]0,4x ∈的值域为__________. 【答案】()4f x x =,值域为[]0,256【解析】22m -<<,m ∈Z ,1m ∴=-,0,1.对任意x ∈R ,都有()()0f x f x --=,即()()f x f x -=,f x 是偶函数.当1m =-时,()4f x x =,满足条件①②;当1m =时,()0f x x =,不满足条件①;当0m =时,()3f x x =,条件①②都不满足,故同时满足条件①②的幂函数()f x 的解析式为()4f x x =,且在区间[]0,4上是增函数,∴当[]0,4x ∈时,函数()f x 的值域为[]0,256。
专题08 双曲线中的参数范围及最值问题-2022年高考数学圆锥曲线重难点专题突破(解析版)

专题08 双曲线中的参数范围及最值问题一、单选题1.若点O 和点F 分别为双曲线2212x y -=的中心和左焦点,点P 为该双曲线上的任意一点,则OP FP ⋅的最小值为( ) A.2B.2C .12D .32-【解析】由题意,点()0,0O,点()F ,设点(),P x y ,则2212x y -=,2212x y =-,(),2,x ⎡∈-∞+∞⎣,所以()(),,OP x y FP x y ==,所以(2222331222OP FP x x y x x x ⎛-=- ⎝⋅=+=++⎭, 所以当x =OP FP ⋅取最小值233222⎛-= ⎝⎭.故选:B. 2.过双曲线()222103x y a a-=>的右焦点F 作直线l 与双曲线交于A ,B 两点,使得||6AB =,若这样的直线有且只有两条,则实数a 的取值范围是( ) A .(]()0,13,⋃+∞ B .()()0,13,+∞C .()0,1D .()3,+∞【解析】若A ,B 在同一支上,当min ||AB 时AB 为双曲线的通经,即有2min 26||b AB a a==; 若A ,B 不在同一支上,则min ||2AB a =.因为6a 与2a 不可能同时等于6,所以2666a a >⎧⎪⎨<⎪⎩或2666a a<⎧⎪⎨>⎪⎩,解得3a >或01a <<,故选:B3.已知0(M x ,0)y 是双曲线2222:1x y C a b-=上的一点,半焦距为c ,若||MO c (其中O 为坐标原点),则20y 的取值范围是( )A .420,b c ⎡⎤⎢⎥⎣⎦B .420,a c ⎡⎤⎢⎥⎣⎦C .42,b c ⎡⎫+∞⎪⎢⎣⎭D .42,a c ⎡⎫+∞⎪⎢⎣⎭【解析】||MO c 2220a b +222200x y a b ++,又2200221x y a b -=,所以222002(1)y x a b=+,所以 22222002(1)y a y a b b ++≤+,可得4422220b b y a b c =+,故选:A 4.设双曲线)(2222:1,0x y C a b a b-=>的焦距为2,若以点)()(,P m n m a <为圆心的圆P 过C 的右顶点且与C 的两条渐近线相切,则OP 长的取值范围是( )A .10,2⎛⎫⎪ ⎭⎝B .)(0,1C .1,12⎛⎫⎪ ⎭⎝D .11,42⎛⎫⎪ ⎭⎝【解析】由题可得渐近线方程为by x a=±,1c =, 由于圆P 与两条渐近线都相切,则P 在x 轴或y 轴上,又圆P 过C 的右顶点,则P 在x 轴正半轴上,即)()(,00P m m a <<,圆心)(,0P m bm =,又圆半径为a m -,则由题可得a m bm -=,即1am b =+, 又221a b +=,则()()2222211211111a b b m b b b b --====-+++++, ()0,1b ∈,()20,1m ∴∈,()0,1m ∴∈,则OP 长的取值范围是)(0,1.故选:B.5.设双曲线2222:1(0,0)x y C ab a b -=>>A ,B 是双曲线C 上关于原点对称的两个点,M 是双曲线C 上异于A ,B 的动点,直线,MA MB 斜率分别12,k k ,若11,23k ⎡⎤∈⎢⎥⎣⎦,则2k 的取值范围为( ) A .[24,4]--B .31,816⎡⎤--⎢⎥⎣⎦C .[4,24]D .13,168⎡⎤⎢⎥⎣⎦【解析】设00(,)M x y 11(,)A x y ,则11(,)B x y --,那么2200221x y a b -=,2211221x y a b-=两式相减得:22220101220x x y y a b ---=,整理得:222010101222010101()()()()y y y y y y b x x x x x x a --+==--+ 即2122b k k a = ,又因为双曲线2222:1(0,0)x y C ab a b -=>>所以c e a ==,所以2218b a =,故1218k k =,其中11,23k ⎡⎤∈⎢⎥⎣⎦,所以21113,8168k k ⎡⎤=∈⎢⎥⎣⎦,故选:D.6.已知M 、N 是双曲线()2222:10,0x y C a b a b-=>>上关于原点对称的两点,P 是C 上异于M 、N 的动点,设直线PM 、PN 的斜率分别为1k 、2k .若直线12y x =与曲线C 没有公共点,当双曲线C 的离心率取得最大值时,且123k ≤≤,则2k 的取值范围是( ) A .11,128⎡⎤⎢⎥⎣⎦B .11,812⎡⎤--⎢⎥⎣⎦C .11,32⎡⎤⎢⎥⎣⎦D .11,23⎡⎤--⎢⎥⎣⎦【解析】因为直线12y x =与双曲线()2222:10,0x y C a b a b -=>>没有公共点,所以双曲线C 的渐近线的斜率12b k a =≤, 而双曲线C的离心率c e a ==当双曲线C 的离心率取最大值时,b a 取得最大值12,即12b a =,即2a b =,则双曲线C 的方程为222214x y b b-=,设()11,M x y 、()11,N x y --、()00,P x y ,则2211222200221414x y b b x y b b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式相减得:()()()()10101010224x x x x y y y y b b +-+-=,即1010101014y y y y x x x x -+⋅=-+,即1214k k ⋅=, 又123k ≤≤,211,128k ⎡⎤∈⎢⎥⎣⎦.故选:A.7.已知P 是双曲线22:14y x E m-=上任意一点,M ,N 是双曲线上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为()1212,0k k k k ≠,若122k k +的最小值为1,则实数m 的值为( ) A .16B .32C .1或16D .2或8【解析】双曲线22:14y x E m -=中0m >,设()11,M x y ,()11,N x y --,()22,P x y ,则221114y x m-=,222214y x m -=,所以相减得2222121204y y x x m---=,∴221222124y y x x m -=-, 因此2221212112222121214y y y y y y k k x x x x x x m -+-=⋅==-+-.从而1221k k +≥=,所以32m =(当且仅当122k k =时取等号).故选:B .8.已知点()15,0F -,()25,0F .设点P 满足126PF PF -=,且12MF =,21NF =,则PM PN -的最大值为( )A .7B .8C .9D .10【解析】因为12610PF PF -=<,所以点P 在以1F ,2F 为焦点,实轴长为6,焦距为10的双曲线的右支上,则双曲线的方程为221916x y -=.由题意知M 在圆()221:54F x y ++=上,N 在圆()222:51F x y -+=上,如图所示,12PM PF ≤+,21PN PF ≥-,则()()12122139PM PN PF PF PF PF -≤+--=-+=.当M 是1PF 延长线与圆1F 的交点,N 是2PF 与圆2F 的交点时取等号.故选:C .二、多选题9.如果双曲线2222-1(0b 0)x y a a b=>,>的一条渐近线上的点(M -关于另一条渐近线的对称点恰为右焦点F P ,为双曲线上的动点,已知(3,1)A ,则PA PF +的值可能为( )A .32B .2C .72D .4【解析】由(M -在双曲线的渐近线上知,ba=(c,0)F ,由M 与F 关于b y x a ==1=-,故2c =,1a =,b =2213y x -=,设双曲线左焦点为1(2,0)F -,若P 在左支上,由双曲线定义知,112222PA PF PA PF AF +=++≥+=若P 在右支上,由双曲线定义知,112222PA PF PA PF AF +=+-≥-==则根据选项的数值大小关系知,CD 满足条件; 故选:CD10.已知动点P 在左、右焦点分别为1F 、2F 的双曲线C 22:13y x -=上,下列结论正确的是( )A .双曲线C 的离心率为2B .当P 在双曲线左支时,122PF PF 的最大值为14C .点P 到两渐近线距离之积为定值D .双曲线C的渐近线方程为y x = 【解析】在双曲线C 22:13y x -=中,实半轴长1a =,虚半轴长b =2c =.对于AD ,双曲线的离心率2ce a==,渐近线方程为y =,故A 正确,D 错误; 对于B ,当P 在双曲线的左支上时,12111,22PF c a PF a PF PF ≥-==+=+,故()11122221111111484424PF PF PF PF PF PF PFPF PF ===≤=+++++,当且仅当114PF PF =时,即12=PF 时等号成立,故122PF PF 的最大值为18,故B 错误; 对于C ,设00(,)P x y ,则220013y x -=,即220033x y -=,0y +=0y -=,故00(,)P x y22003344x y -==为定值,故C 正确. 故选:AC.11.已知双曲线()22*1x y n n n-=∈N ,不与x 轴垂直的直线l 与双曲线右支交于点B ,C ,(B在x 轴上方,C 在x 轴下方),与双曲线渐近线交于点A ,D (A 在x 轴上方),O 为坐标原点,下列选项中正确的为( ) A .AC BD =恒成立B .若13BOC AOD S S =△△,则AB BC CD ==C .AOD △面积的最小值为1D .对每一个确定的n ,若AB BC CD ==,则AOD △的面积为定值【解析】设:l y kx b =+,代入22x y n -=得()222120k x bkx b n ----=,① 显然1k ≠±,()()22224410b k k b n ∆=+-+>,即()2210b n k +->,设()11,B x y ,()22,C x y ,则1x ,2x 是方程①的两个根,有12221kb x x k +=-,()21221b n x x k -+=-,设()33,A x y ,()44,D x y ,由y kx b y x =+⎧⎨=⎩得31bx k =-, 由y kx b y x =+⎧⎨=-⎩,得41b x k -=+;所以34221kbx x k +=-,所以AD 和BC 的中点重合, 所以AB CD =,所以AC BD =恒成立.故A 正确.因为AD 和BC 的中点重合为P ,所以AB CD =,又13BOC AOD S S =△△,所以13BC AD =,所以AB BC CD ==,故B 正确.设直线l 方程为x ty m =+,(1,0)(0,1),1t m ∈->,由x ty m y x =+⎧⎨=⎩得31m y t =-,由x ty m y x =+⎧⎨=-⎩得41my t -=+,OA =OD =90AOD ∠=︒,2221||||121AODm S OA OD m t==>>-△,故C 错误. 因为AB BC CD ==,所以13BC AD =,得1234x x -=-,即()229108nb k =->,所以0n >,21k >,又OA =,OD =,90AOD ∠=︒,所以2219218AODb nS OA OD k ===-△是定值.故D 正确. 故选:ABD.12.已知1l ,2l 是双曲线T :()222210,0x y a b a b-=>>的两条渐近线,直线l 经过T 的右焦点F ,且1//l l ,l 交T 于点M ,交2l 于点Q ,交y 轴于点N ,则下列说法正确的是( ) A .FOQ △与OQN △的面积相等B .若T 的焦距为4,则点M 到两条渐近线的距离之积的最大值为14C .若FM MQ =,则T 的渐近线方程为y x =±D .若12,23FM FQ ⎡⎤∈⎢⎥⎣⎦,则T 的离心率[]2,3e ∈ 【解析】,A 由题可知,(c,0)F ,不妨记1l :b y x a =,2l :by x a=-.由1//l l 可得l 的方程为()b y x c a =-,与2l 的方程联立可解得2Q c x =,2Q bc y a =-,即点,22c bc Q a ⎛⎫- ⎪⎝⎭.对于()b y x c a =-,令0x =,可得bc y a =-,即点0,bc N a ⎛⎫- ⎪⎝⎭,所以21224FOQ bc bcS c a a=⨯⨯=△,21224OQNc bc bc S a a=⨯⨯=△,所以FOQ OQN S S =△△,所以选项A 正确; ,B 设点M 的坐标为00,x y ,则2200221x y a b-=,即22222200b x a y a b -=,所以M 到两条渐近线的222222002222b x a y a b a b a b-==++,因为T 的焦距为4,所以2c =,所以2222224a b a b a b =+,因为2242a b ab =+≥,所以2ab ≤,224a b ≤,所以22222214a b a b a b =≤+,所以点M 到两条渐近线的距离之积的最大值为1,所以选项B 错误;,C 由FM MQ =得M 为QF 的中点,则03224cc c x +==,0224bc bc a y a=-=-,即点3,44c bc M a ⎛⎫- ⎪⎝⎭,代入双曲线T 的方程得22223441c bc a a b⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭-=,即222c a =,又222c a b =+,所以22a b =,所以a b =,所以双曲线T 的渐近线方程为y x =±,所以选项C 正确;,D 由()b y x c a =-与22221x y a b-=,得222M c a x c +=,所以MF QF =22211221,232F M F Q c a c x x c c x x e c +--⎡⎤==-∈⎢⎥-⎣⎦-,得[]22,3e ∈,所以e ∈,所以选项D 错误. 故选:AC . 三、填空题13.已知()00,M x y 是双曲线2222:1x y C a b-=上的一点,半焦距为c ,若MO c ≤(其中O 为坐标原点),则20y 的取值范围是___________.【解析】因为MO c ≤,所以MO ≤222200x y a b +≤+,又2200221x y a b -=,可得2222002a y x a b=+, 所以,22222222222000022a y c y x y a y a a b b b +=++=+≤+,所以,42020b y c≤≤.14.已知双曲线C :22221x y a b-=(0a >,0b >)的渐近线方程为y =,若动点P 在C的右支上,1F ,2F 分别为C 的左,右焦点,2OP OF ⋅的最小值是2a (其中O 为坐标原点),则212||||PF PF 的最小值为___________ 【解析】设(),P x y ,且x a ≥,()2,0F c ,则(),OP x y =,()2,0OF c =,因此2OP OF cx ⋅=,当x a =时,2OP OF ⋅取得最小值,且最小值为2ac a =,即2c =,所以2222ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩,解得1a =,b =2PF t =(1t ≥),则12PF t =+,所以()221224448PF t t PF tt +==++≥=,(当4t t =即2t =时取等号),即212||||PF PF 的最小值为8.15.过点()1,1P 作直线l 与双曲线222y x λ-=交于A ,B 两点,若点P 恰为线段AB 的中点,则实数λ的取值范围是______.【解析】因为双曲线方程为222y x λ-=,则0λ≠,设()11,A x y ,()22,B x y ,因为点P 恰为线段AB 的中点,则12122,2x x y y +=+=,则2211222222y x y x λλ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减并化简可得1212121222y y x x x x y y -+=⨯=-+ ,即直线l 的斜率为2,,所以直线l 的方程为21y x =- , 22212y x y x λ=-⎧⎪⎨-=⎪⎩,化简可得224210x x λ-++=, 因为直线l 与双曲线有两个不同的交点,所以()1642210λ∆=-⨯⨯+>, 解得12λ<且0λ≠,所以λ的取值范围为()1,00,2⎛⎫-∞⋃ ⎪⎝⎭16.已知双曲线的方程为221916x y -=,点12,F F 是其左右焦点,A 是圆22(5)1x y +-=上的一点,点M 在双曲线的右支上,则1||||MF MA +的最小值是__________. 【解析】如图∵双曲线的方程为221916x y -=,右焦点坐标为()25,0F ,连接22,AF MF .由双曲线的定义,得1226MF MF a -==.∴12266MF MA MF MA AF +=++≥+. 因为点A 是圆()2251x y +-=上的点,此时圆心为(0),5,半径为1,∴2211AF CF ≥-=,∴1265MF MA AF +≥+≥,当点M ,A 在线段2CF 上时上式取等号,即1MF MA +的最小值为5. 四、解答题17.已知双曲线2212y x -=,斜率为k (0)k ≠的直线l 与双曲线的左、右两支分别交于A ,B两点.(1)若直线l 过(0,1)P ,且3PB AP =,求直线l 的斜率k .(2)若线段AB 的垂直平分线与两坐标轴围成的三角形的面积为92,求k 的取值范围.【解析】(1)设11()A x y ,,22()B x y ,,因为3BP AP =,所以3PB AP →→=,即2211(,1)3(,1)x y x y -=--,所以2121343x x y y =-⎧⎨=-⎩,所以2211221112(43)(3)12y x y x ⎧-=⎪⎪⎨-⎪--=⎪⎩,所以11x =-,10y =,即(10)A -,, 所以1011AP k k -===. (2)设直线l 的方程为y kx m =+(0k ≠).由2212y kx my x =+⎧⎪⎨-=⎪⎩,整理得222(2)220k x kmx m ----=.则12222km x x k +=-,212222m x x k --=-, 因为直线l 与双曲线的左、右两支分别交于A ,B 两点,于是22k -≠0,且222(2)4(2)(2)0km k m ∆=-+-+>.,整理得2220m k +->.设线段AB 的中点坐标00(,)x y ,则120222x x km x k +==-,00222my kx m k =+=-. 所以AB 的垂直平分线方程为2221()22m km y x k k k -=----. 此直线与x 轴,y 轴的交点坐标分别为23(,0)2km k -,23(0,)2mk -. 由题可得221339||||2222km m k k ⋅=--.整理得222(2)||k m k -=,0k ≠. 所以可得222(2)20||k k k -+->,整理得22(2)(||2)0k k k --->,0k ≠.解得0||k <<或||2k >. 所以k 的取值范围是,2)(,0)(0,(22)(2,)-∞--+∞. 18.在平面直角坐标系xOy 内,已知双曲线Γ:2221y x b-=(0b >),(1)若Γ的一条渐近线方程为2y x =,求Γ的方程;(2)设1F 、2F 是Γ的两个焦点,P 为Γ上一点,且12PF PF ⊥,△12PF F 的面积为9,求b 的值;(3)若直线:21l y x =+与Γ交于A 、B 两点,且坐标原点O 始终在以AB 为直径的圆内,求b 的取值范围.【解析】(1)由双曲线Γ:2221y x b-=(0b >)可得其渐近线方程为y bx ±=,而Γ的一条渐近线方程为2y x =,故2b =即Γ的方程为:2214y x -=.(2)不妨设P 在第一象限,1F 、2F 分别为左右焦点,则122PF PF -=,()1F ,)2F而22221212=44PF PF F F b +=+,所以21224PF PF b =,所以2122PF PF b =,故12PF F △的面积为2b ,所以29b =,因为0b >,故3b =.(3)设()()1122,,,A x y B x y ,因为坐标原点O 始终在以AB 为直径的圆内, 故AOB ∠为钝角,所以0OA OB ⋅<即12120x x y y +<, 故()()121221210x x x x +++<即()12125210x x x x +++<.由222221y x b x y b =+⎧⎨-=⎩可得()2224410b x x b ----=,所以212122241,44b x x x x b b ++==---,又2040b ∆>⎧⎨-≠⎩,故()()221644102b b b ⎧+-+>⎪⎨≠±⎪⎩,故b >2b ≠.又22214521044b b b ⎛⎫+⋅-+⋅+< ⎪--⎝⎭可化简为2255840b b --++-<,该不等式对任意的b >2b ≠恒成立.故b >2b ≠.19.如图,在平面直角坐标系xOy 中,已知等轴双曲线()2222:10,0x y E a b a b-=>>的左顶点A,过右焦点F 且垂直于x 轴的直线与E 交于B ,C 两点,若ABC 1.(1)求双曲线E 的方程;(2)若直线:1l y kx =-与双曲线E 的左,右两支分别交于M ,N 两点,与双曲线E 的两条渐近线分别交于P ,Q 两点,求MNPQ的取值范围. 【解析】(1)因为双曲线()2222:10,0x y E a b a b-=>>为等轴双曲线,所以a b =,设双曲线的焦距为2c ,0c >,故2222c a b a =+=,即c =. 因为BC 过右焦点F ,且垂直于x 轴,将B x c =代入22221x y a b-=,可得B y a =,故2BC a =.将ABC 1,所以112BC AF ⨯⨯=,即()1212a a c ⨯⨯+=,所以21a =,1a =,故双曲线E 的方程为221x y -=.(2)依题意,直线:1l y kx =-与双曲线E 的左,右两支分别交于M ,N 两点,联立方程组221,1,x y y kx ⎧-=⎨=-⎩消去y 可得,()221220k x kx -+-=,所以()()()222210,24120,20,1M Nk k k x x k ⎧⎪-≠⎪⎪∆=--⨯->⎨⎪-⎪=<⎪-⎩解得11k -<<,且222,12.1M N M N k x x k x x k -⎧+=⎪⎪-⎨-⎪=⎪-⎩ 所以M N MN x =-== 联立方程组,1,y x y kx =⎧⎨=-⎩得11P x k =-,同理11Q x k =+,所以11P Q PQ x k =-=+.所以MN PQ =11k -<<,所以(MN PQ ∈. 20.已知双曲线2222:1x y C a b-=的离心率为32(1)求双曲线C 的标准方程;(2)若以(0)k k ≠为斜率的直线l 与双曲线C 相交于两个不同的点M ,N ,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为8116,求实数k 的取值范围. 【解析】(1)焦点(),0c ±到渐近线0bx ay ±=b ==,又32c a =,∴22222954c a a b a ==+=+,∴24a =,∴双曲线C 的标准方程为22145x y -=. (2)设直线l 的方程为()0y kx m k =+≠,()11,M x y ,()22,N x y , 则由22145x y y kx m ⎧-=⎪⎨⎪=+⎩消去y ,可得()2225484200k x kmx m ----=,根据题意可知2540k -≠,且()()()22284544200km k m ∆=----->,即22540m k +->①,设线段MN 的中点坐标为()00,x y ,则12024254x x km x k +==-,002554my kx m k =+=-, ∴线段MN 的垂直平分线方程为225145454m km y x k k k ⎛⎫-=-- ⎪--⎝⎭,此直线与x 轴,y 轴的交点坐标分别为29,054km k ⎛⎫ ⎪-⎝⎭,290,54m k ⎛⎫ ⎪-⎝⎭,∴22199812545416km m k k ⋅⋅=--,化简可得()222548k m k -=②,将②代入①得()222545408k k k-+->,即()()22454850k k k --->,解得0k <<52k >,∴实数k 的取值范围是5555,,00,,2222⎛⎫⎛⎫⎛⎫⎛⎫-∞--+∞ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 21.已知椭圆1C 的方程为2214xy +=,双曲线2C 的左、右焦点分别是1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点. (1)求双曲线2C 的方程;(2)若直线:=l y kx 2C 恒有两个不同的交点A 和B ,且2OA OB >(其中O 为原点),求k 的取值范围.【解析】(1)设双曲线2C 的方程为()222210,0x ya b a b-=>>,则2234a c =,=,再由222a b c +=,得21.b=故2C 的方程为2213xy -=(2)将y kx =代入2213x y -=,得22(13)90k x -=--由直线l 与双曲线2C 交于不同的两点,得()()()22221306236133610k k k k ⎧-≠⎪⎨=-+-=->⎪⎩22113k k ∴≠<且①,设1122()()A x y B x y,,,,则1212229,1313x x x x k k =---+= (12121212(x x y y x x kx kx ∴+=+()2212122371()231k k x x x x k +++=-=+又2OA OB >,得12122x x y y +>,2237231k k +∴>-,即2239031k k -+>-,解得2133k <<②,由①②得13<k 2<1,故k的取值范围31,,13⎛⎛⎫- ⎪ ⎪⎝⎭⎝⎭22.己知等轴双曲线N 的顶点分别是椭圆22:162x y C +=的左、右焦点1F 、2F .(1)求等轴双曲线N 的方程;(2)Q 为该双曲线N 上异于顶点的任意一点,直线1QF 和2QF 与椭圆C 的交点分别为E ,F 和G ,H ,求4EF GH +的最小值.【解析】(1)由椭圆22:162x y C +=可得2c =,所以等轴双曲线N 的顶点为(20),设等轴双曲线N 为22221x ya b-=,所以2a b ==,所以等轴双曲线N 的方程为22144x y -=;(2)设11(,)E x y ,22(,)F x y ,33(,)G x y ,44(,)H x y ,设直线1QF 的方程为2x my =-,直线2QF 的方程为2x ny =+, 由222162x my x y =-⎧⎪⎨+=⎪⎩得:22(3)420m y my +--=,所以0∆>显然成立,所以12122242,33m y y y y m m +==-++, 同理可得34342242,33n y y y y nn +=-=-++, 所以EFGH ==,联立直线1QF 和2QF :22x my x ny =-⎧⎨=+⎩,解得224m n x m ny m n +⎧=⎪⎪-⎨⎪=⎪-⎩,所以224(,)m n Q m n m n +--, 因为Q 在双曲线上,所以222(22)1614()4()m n m n m n +-=--,解得1mn =, 所以222222221111146(4)6(4)13333m n m m EF GH m n m m +++++=+⨯=+⨯++++ 222222222222*********(4)(4)()313431311m m m m m m m m m m m m ++++++=+⨯=⨯+⨯+++++++,22221334)313m m m m ++=++⨯≥+=++.当且仅当22221334313m m m m ++=⨯++,即25m =。
考点08 二次函数在闭区间上的最值(值域)问题的解法(解析版)

专题二函数考点8 二次函数在闭区间上的最值(值域)问题的解法【方法点拨】一、知识梳理二、二次函数在闭区间上的最值(值域)问题的解法【高考模拟】1.已知函数()bf x ax x=+,若存在两相异实数,m n 使()()f m f n c ==,且40a b c ++=,则||m n -的最小值为( )A .22B 3C 2D 3【答案】B 【分析】由题设可得20(0)ax cx b x -+=≠,又()()f m f n c ==即,m n 为方程两个不等的实根,即有,c bm n mn a a+==,结合2||()4m n m n mn -=+-40a b c ++=得2||16()41b bm n a a-=⋅+⋅+.【解析】由题意知:当()bf x ax c x=+=有20(0)ax cx b x -+=≠, ∵()()f m f n c ==知:,m n 是20(0,0,0)ax cx b x a b -+=≠≠≠两个不等的实根.∴,c b m n mn a a +==,而2224||()4c ab m n m n mn a--=+-= ∵40a b c ++=,即4c b a =--,∴||m n -=b t a =,则||m n -==∴当18t =-时,||m n -故选:B 【点睛】关键点点睛:由已知条件将函数转化为一元二次方程的两个不同实根为,m n ,结合韦达定理以及||m n -=.2.已知函数2()f x ax bx c =++,满足(3)(3)f x f x +=-,且(4)(5)f f <,则不等式(1)(1) f x f -<的解集为( )A .(0,)+∞B .(2,)-+∞C .(4,0)-D .(2,4)【答案】C 【分析】由题设知()f x 关于3x =对称且开口向上,根据二次函数的对称性(1)(1)f x f -<有115x <-<,求解集. 【解析】依题意,有二次函数关于3x =对称且开口向上,∴根据二次函数的对称性:若(1)(1)f x f -<,即有115x <-<, ∴40x -<<. 故选:C 【点睛】关键点点睛:由题设可得()f x 关于3x =对称且开口向上,根据对称性求函数不等式的解集即可. 3.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为( ) A .1-B .0C .1D .2【答案】A 【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈ 使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥, 利用导数判断()g x 的单调性求最小值即可. 【解析】由()sin f x x x =+可得()1cos 0f x x '=+≥, 所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-, 所以sin cos m x x x ≥+对于[0,]x π∈有解, 令()sin cos g x x x x =+,只需()min m g x ≥, 则()sin cos sin cos g x x x x x x x '=+-=, 当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增, 当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减, ()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-, 所以1m ≥-,整数m 的最小值为1-, 故选:A. 【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.4.已知函数2()26f x x ax =+--,若存在a R ∈,使得()f x 在[2,]b 上恰有两个零点,则实数b的最小值为( )A .B .4C .2+D .2+【答案】C 【分析】由函数在[2,]b 上恰好有2个零点可得,可得零点必在区间的端点,讨论零点为2和b 时,解得a 的值,将a 的值代入使得函数值f (b )0=求出b 的值即可. 【解析】因为函数2())|2|6f x x ax =+--在[2,]b 上恰有两个零点,所以在2x =与x b =时恰好取到零点的最小值和最大值时,实数b 取最小值, 若2x =,()f x 的零点满足f (2)2|222|60a =+--=,解得2a =,或4a =-,当2a =,2()|22|6f x x x =+--,满足()f x 在[2,]b 上恰好有2个零点,则f (b )2|22|60b b =+--=,且2b >,解得2b =(舍)或4b =-(舍),当4a =-时,2()|42|6f x x x =---且2b >,满足()f x 在[2,]b 上恰好有2个零点, 则f (b )2|42|60b b =---=,2b >,所以2|42|6b b --=,即2426b b --=-整理2440b b -+=,解得2b =(舍),或2480b b --=解得:2b =-(舍)或2b =+综上所述,当2b =+()f x 在[2,]b 上恰好有2个零点.故答案为:2+ 【点睛】本题考查函数的零点和方程根的关系,考查了计算能力,同时考查了转化思想与分类讨论思想的应用,属于难题.5.已知数列{}n a 的前n 项和为n S ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则19m n+的最小值为( ) A .145B .114C .83D .103【答案】B【分析】运用数列的递推式和等比数列的定义、通项公式可得2nn a =.求得6m n +=,()19119191066m m n m n n n m n m ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭,运用基本不等式,检验等号成立的条件,根据单调性即可得出结果. 【解析】解:22n n S a =-,可得11122a S a ==-,即12a =,2n ≥时,1122n n S a --=-,又22n n S a =-,相减可得1122n n n n n a S S a a =-=-﹣﹣,即12n n a a -=,{}n a 是首项为2,公比为2的等比数列.所以2nn a =.64m n a a =,即2264m n ⋅=,得6m n +=,所以()191191911010666m m n m n m n m n n ⎛⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝ 181663=⨯=, 当且仅当9n m m n=时取等号,即为32m =,92n =.因为m ,n 取整数,所以均值不等式等号条件取不到,则1983m n +>, 因为19196m n y m m +=+=-,在30,2⎛⎫⎪⎝⎭上单调递减,在3(,)2+∞上单调递增,所以当2m =,4n =时,19m n+取得最小值为114.故选:B. 【点睛】本题考查数列的通项公式的求法,运用数列的递推式和等比数列的定义、通项公式,考查基本不等式的运用,考查化简运算能力,属于中档题.6.已知函数()11,021,232x x x f x x -⎧-≤≤⎪=⎨⎛⎫<≤⎪ ⎪⎝⎭⎩,若存在实数123,,x x x ,当12303x x x ≤<<≤时,()()()123f x f x f x ==,则()2312x f x x x +的最小值是( ).A .58B .516C .532D .564【答案】C 【分析】作出分段函数的图像,结合图像确定123,,x x x 的范围及等量关系,再将所求式子转化为关于3x 的函数,利用函数的单调性求解最小值. 【解析】 如图:122x x += ,312112x x -⎛⎫-= ⎪⎝⎭即312112x x -⎛⎫=+ ⎪⎝⎭,()33112312111222x x x f x x x --⎡⎤⎛⎫⎛⎫+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=+ 令311,2x t t -⎛⎫=∈ ⎪⎝⎭1142⎡⎫⎪⎢⎣⎭,,则()()2321212x f x t t x x =++ 当14t =时取得最小值532. 故选C【点睛】本题主要考查分段函数图像、函数零点、函数最小值的应用,解题中主要应用了数形结合的思想、换元思想、函数思想,属于中档题;解题的关键有两个:一是准确作出分段函数图像,利用已知条件确定出123,,x x x 范围以及122x x +=;二是将所求式子转化为关于3x 的函数,利用函数的性质求最小值.7.已知实数x 、y 满足{24 2y xx y y ≤+≤≥-,若存在x 、y 满足()()22211(0)x y r r ++-=>,则r 的最小值为( )A .1B .2C .423D .523【答案】B【解析】试题分析:可行域为直线,24,2y x x y y =+==-围成的三角形区域, (),x y 到点()1,1-的距离最小值为2,所以r 的最小值为2考点:线性规划问题8.若实数a 、b 、c +∈R ,且2256ab ac bc a +++=-,则2a b c ++的最小值为( ) A .51- B .51+C .252+D .252-【答案】D 【解析】因为2256ab ac bc a +++=-,所以2ab a ac bc +++()()a a b c a b =+++()()a c a b =++()262551=-=- ,所以()()()()22a b c a c a b a c a b ++=+++≥++=252-,当且仅当()()a c a b +=+时,等号成立. 故选D.点睛:本题主要考查均值不等式的灵活应用,关键是对已知等式分解为()()()2=51a c a b ++-.9.已知圆和两点,若圆上存在点,使得,则的最小值为( )A .B .C .D . 【答案】D 【解析】试题分析:由题意以为直径的圆与圆有公共点,则,解得.所以的最小值为1,故选D .考点:两圆的位置关系.【名师点睛】1.两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到. 10.已知函数()1ln ax f x xe x ax -=--,21,a e ⎛⎤∈-∞- ⎥⎝⎦,函数()f x 的最小值M ,则实数M 的最小值是() A .1- B .1e-C .0D .31e-【答案】C 【分析】求得()()11'1ax f x ax e x -⎛⎫=+- ⎪⎝⎭,先证明110ax e x --≤,可得当10,x a ⎛⎫∈- ⎪⎝⎭时,()f x 单调递减,当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,(),f x 单调递增,则()2min 1111ln f x f e a a a -⎛⎫⎛⎫=-=-+-- ⎪ ⎪⎝⎭⎝⎭,设(2210,,1ln t e M t e t a -⎤-=∈=-+⎦,()()22ln 10,t h t t t e e=-+<≤可证明()h t 在(20,e ⎤⎦上单调递减,()()20h t h e ≥=,从而可得结果.【解析】 求得()()()1111111'11ax ax ax ax ax f x eaxe a e ax ax e x x x ----+⎛⎫=+--=+-=+- ⎪⎝⎭ 考察11ax y ex -=-是否有零点,令0y =, 可得1ln x a x -=,记()1ln xx xϕ-=,()2ln 2'x x xϕ-=,()x ϕ在()20,e 上递减,在()2,e +∞上递增, 所以()min x ϕ= ()2e ϕ 21e =-,即21ln 1x x e-≥-, 因为21a e ≤-,所以11ln 10ax x a e x x--≤⇔-≤, 故可知,当10,x a ⎛⎫∈-⎪⎝⎭时,()()10,'0,ax f x f x +>≤单调递减, 当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()()10,'0,ax f x f x +<≥单调递增,从而由上知()2min 1111ln f x f e a a a -⎛⎫⎛⎫=-=-+-- ⎪ ⎪⎝⎭⎝⎭, 设(()222210,,1ln 10t t e M t e t lnt t e a e -⎤-=∈=-+=-+<≤⎦, 记()()()22211ln 10,'0,t h t t t e h t e e t=-+<≤=-≤()h t 在(20,e ⎤⎦上单调递减,()()20h t h e ∴≥=,M ∴的最小值为0.故选C.【点睛】本题主要考查利用导数判断函数的单调性以及函数的最值,属于难题.求函数()f x 最值步骤:(1) 求导数()f x ';(2)判断函数的单调性;(3)若函数单调递增函数或单调递减,利用单调性求最值;(4) 如果只有一个极值点,则在该处即是极值也是最值;(5)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小. 11.已知函数()1f x x a =+,若存在,42ππϕ⎛⎫∈ ⎪⎝⎭,使()()sin cos 0f f ϕϕ+=,则实数a 的取值范围是( )A .1,22⎛⎝⎭B .122⎛⎫-- ⎪ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,02⎛⎫-⎪⎝⎭【答案】B【解析】 由题意,110sin cos aaφφ+=++ 有解∴sinφ+a+cosφ+a=0∴-(φ+4π) ∵φ∈(4π,2π), ∴φ+4π∈(2π,34π),∴sin (φ+4π)∈(2,1)(φ+4π)∈(1∴-2a ∈(1∴a ∈12⎛⎫- ⎪ ⎪⎝⎭。
专题08 隐零点问题(解析版)

知函数
函 t ln函 函 函tln函,
函
函
记 知函数 函 函 t ln函,
因为 知函数 函 函 t 函 函 t h t 在 函 知 t t 数恒成立,
函
所以 知函数在知 t t 数上单调递增,
且 知h数 知h数 h h
h , 知h数 t ,
所以存在函 h th 使得 函
,
且 函 t函 时, 知函数 , 知函数 ,函数 知函数单调递减;
g(x) , g '(x)
x 2 ln x (x 1)2
,
令 h(x) x 2 ln x ,有 h '(x) 1 1 0 ,那么 h(x) h(1) 1 . x
不妨设 h(x0 ) 0 ,由 h(3) 0 , h(4) 0 ,则可知 x0 (3, 4) ,且 ln x0 x0 2 .
专题 08 隐零点问题
有一种零点客观存在,但不可解,然而通过研究其取值范围、利用其满足的等量关系实现消元、换元 以及降次达到解题的目的.这类问题就是隐零点问题.
类型一 根据隐零点化简求范围
典例 1. 已知函数 f (x) ax x ln x 的图像在点 x e (其中 e 为自然对数的底数)处的切线斜率为 3.
【答案】(1)当
时,无极值点;当 t 时,有且仅有 1 个极值点;(2)知 t h
【解析】
(1) 知函数的定义域为知 t t 数,
知函数 知函 t h数 函
h 函
t
h
函th 函
函
函
,
因为函数 知函 函数 函 t 函 函 t 在知 t t 数上恒成立,
所以函数 函 函在区间知 t t 数上单调递增,且值域为知 t t 数,
专题08 二次函数中特殊四边形存在性问题的四种考法(解析版)-2024年常考压轴题攻略(9上人教版)

专题08二次函数中特殊四边形存在性问题的四种考法类型一、平行四边形存在性问题(1)求抛物线的表达式;(2)如图1,连接BC ,PB ,PC ,设PBC 的面积为①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点(3)如图2,设抛物线的对称轴为l ,l 与x 轴的交点为边形CDPM 是平行四边形?若存在,直接写出点【答案】(1)22y x=-(2)①23922S t t =-+;②点P 到直线BC 的距离的最大值为(3)存在,()1,6M 【分析】(1)待定系数法求解析式即可求解;(2)①在图1中,过点P 作PF y ∥轴,交BC 于点P 的坐标为()2,23t t t -++,则点F 的坐标为(t 2139222S PF OB t t =⋅=-+;②根据二次函数的性质得出当32t =时,S 取最大值,最大值为面积法求得点P 到直线BC 的距离,进而得出P (3)如图2,连接PC ,交抛物线对称轴l 于点设直线BC 的解析式为将()3,0B 、()0,3C 代入30,3m n n +=⎧⎨=⎩,解得:∴直线BC 的解析式为∵点P 的坐标为(,t t -∴点F 的坐标为(,t -∴(223PF t t =-++-∴1322S PF OB =⋅=-②12S PF OB =⋅=-∵302-<,∴当32t =时,S 取最大值,最大值为抛物线2y x bx =-++∴抛物线的对称轴为直线 1D C x x -=,∴1P M x x -=,∴2P x =,()2,3P ∴,在223y x x =-++中,当()0,3C ∴,∴3C D y y -=,∴3M P y y -=,∴6M y =,∴点M 的坐标为()1,6;当2P x ¹时,不存在,理由如下,若四边形CDPM 是平行四边形,则 点C 的横坐标为0,点∴点P 的横坐标12t =⨯又 2P x ¹,(1)求点C 的坐标;(2)点P 为直线AC 下方抛物线上一点,过点此时点P 的坐标;(3)抛物线顶点为M ,在平面内是否存在点若存在请求出N 点坐标并在备用图中画出图形;若不存在,请说明理由.【答案】(1)()4,5C (2)315,24P ⎛⎫- ⎪⎝⎭(3)存在,点N 的坐标为:()154N -,,【详解】(1)解:在2=23y x x --中,令解得:11x =-,23x =,()()1,0,3,0A B ∴-,直线y x m =+经过点()1,0A -,∴01m =-+,解得:1m =,∴直线AC 的解析式为1y x =+,联立方程组,得2123y x y x x =+⎧⎨=--⎩,解得:1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩()4,5C ∴;(2)如图1,设点2(,23)P n n n --,则点∴2212334()PE n n n n n =+---=-++ 10-<,∴当32n =时,PE 取得最大值254,此时,(3) 2223(1)4y x x x =--=--,∴抛物线顶点为()14M -,,如图2,点,,,A B M N 为顶点的四边形是平行四边形时,设①BM 为对角线时,AN 的中点与BM ∴(1)3122m +-+=,04022n +-+=,解得:∴()154N -,,②AM 为对角线时,BN 的中点与AM ∴31122m +-+=,04022n +-+=,解得:(1)求此拋物线的解析式;(2)在抛物线的对称轴上有一点P ,使得PA PC +值最小,求最小值;(3)点M 为x 轴上一动点,在拋物线上是否存在一点N ,使以边形为平行四边形?若存在,直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)215222y x x =--(2)552(3)54,2⎛⎫- ⎪⎝⎭,5214,2⎛⎫+ ⎪⎝⎭,5214,2⎛⎫- ⎪⎝⎭【分析】(1)把()1,0A -,()5,0B 两点代入求出a 、b 的值即可;(2)因为点A 关于对称轴对称的点B 的坐标为()5,0,连接BC 点坐标即可;(3)分点N 在x 轴下方或上方两种情况进行讨论.拋物线的解析式为212y x =-∴其对称轴为直线2b x a =-=-当0x =时,52y =-,50,2C ⎛⎫∴- ⎪⎝⎭,又()5,0B ,∴设BC 的解析式为(y kx b =+5052k b b +=⎧⎪∴⎨=-⎪⎩,解得:12k =,52b =-,∴BC 的解析式为1522y x =-,当2x =时,1532222y =⨯-=-,①当点N 在x 轴下方时,抛物线的对称轴为2x =,0,C ⎛- ⎝154,2N ⎛⎫∴- ⎪⎝⎭,②当点N 在x 轴上方时,如图,过点在2AN D △和2M CO △中,22N AD AN N DA ∠⎧⎪⎨⎪∠⎩252N D OC ∴==,即2N 点的纵坐标为21552222x x ∴--=,解得:2x =+25214,2N ⎛⎫∴+ ⎪⎝⎭,35214,2N ⎛⎫- ⎪⎝⎭综上所述符合条件的N 的坐标有⎛ ⎝【点睛】本题考查的是二次函数综合题,式、平行四边的判定与性质、全等三角形等知识,两点间距离的求解,在解答(意进行分类讨论.(1)求抛物线的解析式:(2)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)点E 在x 轴上运动,点F 在抛物线上运动,当以点B ,C ,E ,F 为顶点的四边形是平行四边形,直接写出点E 的坐标.【答案】(1)213222y x x =-++(2)存在,3,42⎛⎫ ⎪⎝⎭或35,22⎛⎫ ⎪⎝⎭或35,22⎛⎫- ⎪⎝⎭(3)541,02⎛⎫-+ ⎪ ⎪⎝⎭或541,02⎛⎫-- ⎪ ⎪⎝⎭或(7,0)或(1,0)【分析】(1)用待定系数法即可求解;(2)分两种情况:以C 为顶点,即CP CD =;以D 为顶点,即CD =等腰三角形的定义建立方程即可完成;(3)分三种情况:当BC 是对角线时;当BE 是对角线时;当BF 是对角线时;分别设点与F 的坐标,利用中点坐标公式即可求解.【详解】(1)解:∵点B 的坐标是(40),,点C 的坐标是(02),,∴16602a c c ++=⎧⎨=⎩,解得:122a c ⎧=-⎪⎨⎪=⎩,∴所求抛物线解析式为213222y x x =-++;(2)解:存在(1)求抛物线的表达式;(2)若点E 在第一象限内对称右侧的抛物线上,四边形ODEB 的面积为(3)在(2)的条件下,若点F 是对称轴上一点,点H 是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G ,使以E ,F ,G ,H 为顶点的四边形是菱形,且存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)232333y x x =-++(2)()2,33E 2039⎫⎪⎭或532,339⎛⎫⎪⎝⎭)根据待定系数法求解即可;∵232333y x x =-++()23143x =--+,∴()1,43D .令232333y x x =-++中0y =,则解得=1x -或3x =,抛物线的对称轴与x轴交于点M,过点∵四边形EFGH 是菱形,EFG ∠∴EF FG GH EG ===,∵60EFG ∠=︒,∴EFG 是等边三角形.∴60FEG EF FG ∠=︒=,,∵()2,33E ,()0,33C ,(1,4D ∴2CE CD ==,()24333-+同理可证: EFG 是等边三角形,∵CF FE =,=GE FE ,∴DG ∴CDG CEG ∆∆≌.∴DCG ∠=∴直线CG 的表达式为:33y =与抛物线表达式联立得33y y ⎧=⎪⎨⎪=-(1)求抛物线的表达式;(2)若点D 是直线AC 上方拋物线上一动点,连接BC ,AD ADM △的面积为1S ,BCM 的面积为2S ,当121S S -=时,求点(3)如图2,若点P 是抛物线上一动点,过点P 作PQ x ⊥轴交直线上是否存在点E ,使以P ,Q ,E ,C 为顶点的四边形是菱形,若存在,请直接写出点坐标;若不存在,请说明理由【答案】(1)223y x x =-++(2)271,22⎛⎫+ ⎪ ⎪⎝⎭或271,22⎛⎫- ⎪ ⎪⎝⎭.(3)符合条件的点E 有三个,坐标为:()0,1E ,(10,132E -【分析】(1)把点()30A ,和()10B -,代入解析式求解即可;(2)由121S S -=得121S S =+从而121ABM ABM S S S S +=++ 程求解即可;(3)分类当CQ 为对角线和菱形边时,利用直线AC 与x 轴成标的方程,进而求出点的坐标.【详解】(1)把点()3,0A 和()1,0B -代入得:93330a b a b ++=⎧⎨-+=⎩解得:12a b =-⎧⎨=⎩,∴抛物线的解析式为223y x x =-++;(2)设(),D x y ,对于抛物线223y x x =-++,令0x =,则()0,3C ∴.121S S -= ,121S S ∴=+.∵()30A ,,()0,3C ,∴3OA OB ==,45OCA ∴∠=︒,此时四边形CEQP 是正方形.PQ EQ ∴=.设()2,23P m m m -++,则23PQ m m =-+,23m m m ∴-+=,解得m =此时32OE OC m =-=-=②当CQ 为菱形的边时,如图设()2,23P m m m -++,则∴HQ m =,2PQ m =-+作QH OC ⊥于点H ,45OCA ∠︒= ,∴22CQ HQ m ==.∴23CE PQ m m ==-+=解得:132m =-,23m =()323213OE =+-=+()10,132E ∴-,(20,1E +综上所述,符合条件的点【点睛】本题考查待定系数法求函数的解析式,二次函数的性质,二次函数与几何综合,数形结合是解题的关键.【变式训练2】如图1,在平面直角坐标系中,点(点A 在点B 左侧),与(1)求ABC 的面积;(3)解:∵抛物线212y x x =--∴()211942212y x x x =--+=-2++∵将抛物线2142y x x =--+沿着水平方向向右平移∴新抛物线为:()112y x =--2+∴原抛物线与新抛物线的交点,∴()()1111992222x x -=--22+++,∴解得:0x =,【点睛】本题考查了二次函数的图象及性质,二次函数与特殊图形,二次函数的平移规律,掌握二次函数与特殊图形的位置关系是解题的关键.类型三、矩形存在性问题(1)求抛物线的解析式;(2)如图,点P 是抛物线上位于直线直线AC 于点D ,交x 轴于点E ,(3)在抛物线上是否存在点M ,对于平面内任意点一条边的四边形为矩形,若存在,请直接写出【答案】(1)2142y x x =--(2)335,28P ⎛⎫- ⎪⎝⎭;254(3)()4,8M -、()8,4N -【分析】(1)把点()4,0A 和点B a 、b 的值;(2)先用待定系数法求出直线2211,422D t t t t ⎛⎫--- ⎪⎝⎭,然后求出最大值时t 的值,即可求出点P (3)假设抛物线上是存在点M ,一条边的四边形为矩形,过点O 点A 且与OH 平行的直线解析式,经计算验证可得过点立方程可求得M 的坐标,通过平移即可求得点【详解】(1)解:把点()4,0A 和点∵()4,0A ,()0,4C -,∴OAC 为等腰直角三角形,∴点H 为AC 的中点,即(H 则OH 所在的直线方程为y =∵四边形AMNC 为矩形,∴过A 与直线AC 相垂直的直线函数解析式中的∴设AM 所在的直线解析式为∵点A 在直线AM 上,(1)求点A 、B 、C 的坐标;(2)将抛物线L 向右平移1个单位,得到新抛物线对称轴l 上是否存在点D ,使得以点D 的坐标;若不存在,请说明理由.【答案】(1)()1,0A -,()3,0B (2)存在,点D 的坐标为()2,1或【分析】(1)分别令0y =和x (2)先求得平移后的抛物线L 角线时,根据矩形的性质求解即可.【详解】(1)解:令0y =,则解得11x =-,23x =,当AD 为对角线时,连接AC ,过点 ()1,0A -,()0,1C -,∴1OA OC ==,∴45OCA ∠=︒∴45OCG ∠=︒∴1OG OC ==,∴()1,0G .设CG 所在直线解析式为y kx =+将()0,1C -,()1,0G 代入得,⎧⎨⎩解得11k b =⎧⎨=-⎩,∴CG 所在直线解析式为1y x =-当2x =时,1211y x =-=-=.∴()2,1D .当AD 为边时,同理过点A 作AC 易得AH 所在直线解析式为y =当AC 为对角线时,DE 也为对角线,∴此种情况不存在.(1)求抛物线的表达式;(2)若点P 为第一象限内抛物线上的一点,设PBC 的面积为S ,求S 坐标;(3)已知M 是抛物线对称轴上一点,在平面内是否存在点N ,使以B 的四边形是矩形?若存在,直接写出N 点坐标;若不存在,请说明理由.【答案】(1)22+3y x x =-+(2)S 最大值为278,315(,)24P (3)存在,点1(2,(317))2N +或1(2,(317))2-或(2,1)-或(4,1).【分析】(1)运用抛物线交点式解析式求解,设抛物线(1)(y a x x =+解;(2)如图,过点P 作PD AC ⊥,垂足为点D ,交BC 于点E ,设(,P m 的解析式3y x =-+,于是23PE m m =-+,从而13(22S PE OC m ==- 时,S 最大值为278,进而求得315(,)24P ;设2(,23)P m m m -++设直线BC 的解析式为y kx =033k hh =+⎧⎨=⎩,解得13k h =-⎧⎨=⎩∴3y x =-+则点(,3)E m m -+,2PE m =-∴2113(22S PE OC m ==´-+ ∴当32m =时,S 最大值为2782915233344m m -++=-++=∴315(,)24P ;(3)存在.设(1,)M p ,如图,223BC =222(13)(0)CM p p =-+-=如图,当BM 为对角线时,∠222BM CM BC =+,即26p p -+01330n p q +=+⎧⎨+=+⎩解得21n q =-⎧⎨=⎩∴点(2,1)N -如图,当CM 为对角线时,MBC ∠222BM BC CM +=,即26p p -+(1)求抛物线的对称轴方程;(2)若点P 满足PAB PBA ∠=∠,求点P 的坐标;(3)设M 是抛物线的对称轴上一点,N 是坐标平面内一点,正方形的面积.【答案】(1)32x =-(2)()51,51P --+(3)正方形AMPN 的面积为172或372【分析】(1)由4y x =+可知()4,0A -,()0,4B ,进而求得抛物线解析式为即可得抛物线的对称轴方程;(2)由题意可知PAB PBA ∠=∠,可知PA PB =,进而值OP 其与AB 交于点Q ,可得()2,2Q -,可求得OP 的解析式为则90PDM ACM ∠=∠=︒∴DPM PMD PMD ∠+∠=∠∴(AAS PDM MCA △≌△∴PD MC =,MD AC =,∵()4,0A -,3,02C ⎛⎫- ⎪⎝⎭,∴35422MD AC ==-=,则90PEM ACM ∠=∠=︒∴EPM PME PME ∠+∠=∠∴(AAS PEM MCA △≌△∴PE MC =,ME AC =,∵()4,0A -,3,02C ⎛⎫- ⎪⎝⎭,∴35422ME AC ==-=,则P y CE MC ME ==+=即:32P x m =-,P y m =-(1)求A ,B ,C 三点的坐标,并直接写出直线(2)在点P 的运动过程中,求使四边形(3)点N 为平面内任意一点,在(2N 为顶点的四边形是正方形?若存在,请直接写出点【答案】(1)()1,0A -,()3,0B ,C (2)32m =-(3)()1221,2Q +,2252,2Q ⎛+ ⎝【分析】(1)分别令0y =,0x =,可求出点∵()3,0B ,()0,3C ,∴3OB OC ==,∴BOC 是等腰直角三角形,∴点()221,2Q +,∴()22132322EQ =+--=-∴PE EQ =,此时点()221,2Q +使得以P ,E 如图,过点E 作EQ PM ⊥于点Q ,过点由(2)得:45BED ∠=︒,∵PM BC ∥,∴45BED DPQ ∠=∠=︒,∴PEQ ,PSQ 是等腰直角三角形,∴此时点Q 使得以P ,E ,Q ,N 为顶点的四边形是正方形;∴132222PS SE PE -===,∴点5232,12S ⎛⎫-- ⎪ ⎪⎝⎭,对于321y x =-++,当5212y =-时,222x =+,(1)求抛物线的解析式;(2)点E 在第一象限内,过点E 作EF y ∥轴,交BC 于点F ,作EH 点H 在点E 的左侧,以线段,EF EH 为邻边作矩形EFGH ,当矩形求线段EH 的长;(3)点M 在直线AC 上,点N 在平面内,当四边形OENM 是正方形时,请直接写出点标.【答案】(1)抛物线的解析式为2142y x x =-++;(2)4EH =;(3)点N 的坐标为()44,或7322⎛⎫- ⎪⎝⎭,.【分析】(1)利用待定系数法即可求解;(2)先求得直线BC 的解析式为4y x =-+,设2142x E x x ⎛ ⎝-++,对称性质求得21422H x x x ⎛⎫- ⎪+⎝-+⎭,,推出2122GH EF x -=-+矩形周长公式列一元二次方程计算即可求解;(3)先求得直线AC 的解析式为24y x =+,分别过点M 、E 作90OPE MQO ∠=∠=︒,90OEP ∠=︒∴OEP MOQ ≌△△,∴PE OQ =,PO MQ =,设2142m E m m ⎛⎫ ⎪⎝-++⎭,,∴PE OQ m ==-,12P m O M Q ==-∵点M 在直线AC 上,∴244212m m m -⎛⎫=+ ⎪⎝⎭-,解得m =当4m =时,()04M ,,()40E ,,即点M 与点C 重合,点E 与点B 重合时,四边形当1m =-时,512M ⎛⎫-- ⎪⎝⎭,,512E ⎛- ⎝,点O 向左平移52个单位,再向下平移则点E 向左平移52个单位,再向下平移∴551122N ⎛⎫--- ⎪⎝⎭,,即7322N ⎛⎫- ⎪⎝⎭,.课后训练(1)求抛物线的解析式;(2)如图2,点P 、Q 为直线BC 下方抛物线上的两点,点Q 的横坐标比点过点P 作PM y ∥轴交BC 于点M ,过点Q 作QN y ∥轴交BC 于点N ,求值及此时点Q 的坐标;(3)如图3,将抛物线()230y ax bx a =+-≠先向右平移1个单位长度,再向下平移长度得到新的抛物线y ',在y '的对称轴上有一点D ,坐标平面内有一点E D 、E 为顶点的四边形是矩形,请直接写出所有满足条件的点E 的坐标.【答案】(1)抛物线的解析式为2=23y x x --(2)当1a =时,max ()4PM QN +=,()2,3Q -(3)()1,2E --或()5,2-或3171,2⎛⎫-- ⎪ ⎪⎝⎭或3171,2⎛⎫-+ ⎪ ⎪⎝⎭【分析】(1)直接运用待定系数法即可解答;(2)设()2,23P a a a --,则()21,4Q a a +-,进而得到(),3M a a -,(N 出222422(1)4PM QN a a a +=-++=--+,最后根据二次函数的性质即可解答;(3)分以BC 为矩形一边和对角线两种情况,分别根据等腰直角三角形的性质、平移和矩形的判定定理解答即可.【详解】(1)解:把()1,0A -和()3,0B 代入()230y ax bx a =+-≠,得309330a b a b --=⎧⎨+-=⎩,解得1a =,2b =-∴222422(1)4PM QN a a a +=-++=--+∴当1a =时,max ()4PM QN +=∴()2,3Q -.(3)解:由题意可得:()()()222=1213152x y x x x x --'---=---=-,∴y '的对称轴为2x =∵抛物线()230y ax bx a =+-≠与y 轴交于点C .∴()0,3C -,∵()3,0B ,∴3OC OB ==,45BCO CBO ∠=∠=︒;如图:当BC 为矩形一边时,且点D 在x 轴的下方,过D 作DF y ⊥轴,∵D 在y '的对称轴为2x =,∴2FD =,∴2CF FD ==,325OF =+=,即点()2,5D -,∴点C 向右平移2个单位、向下平移3个单位可得到点D ,则点B 向右平移2个单位、向下平移3个单位可得到()5,3E -;如图:当BC 为矩形一边时,且点D 在x 轴的上方,y '的对称轴为2x =与x 轴交于F ,∵D 在y '的对称轴为2x =,∴2FO =,∴321BF =-=,∵45CBO ∠=︒,即45DBO ∠=︒,∴321BF FD ==-=,即点()2,1D ,∴点B 向左平移1个单位、向上平移1个单位可得到点D ,则点C 向左平移1个单位、向上平移1个单位可得到点()1,2E --;如图:当BC 为矩形对角线时,设∴BC 的中点F 的坐标为32⎛ ⎝∴2322322m d n +⎧=⎪⎪⎨+⎪=⎪⎩,解得:m d =⎧⎨+⎩又∵DE BC =,∴()()22222133d n -+-=+联立173d n d n ⎧-=±⎪⎨+=⎪⎩,解得:∴点E 的坐标为3171,2⎛-- ⎝综上,存在()1,2E --或(5,的四边形是矩形.【点睛】本题主要考查了运用待定系数法求解析式、与几何的综合等知识点,掌握二次函数的性质和矩形的判定定理是解答本题的关键.2.如图,在平面直角坐标系中,抛物线与y 轴交于点C ,点P 为抛物线上的动点.(1)求该抛物线的函数表达式;(2)点D 为直线y x =上的动点,当点P 在第四象限时,求四边形PBDC 面积的最大值及此时点P 的坐标;(3)已知点E 为x 轴上一动点,点Q 为平面内任意一点,是否存在以点P ,C ,E ,Q 为顶点的四边形是以PC 为对角线的正方形,若存在,请直接写出点Q 的坐标,若不存在,请说明理由.【答案】(1)2=23y x x --(2)278,315,24P ⎛⎫- ⎪⎝⎭(3)3333,2⎛⎫+- ⎪ ⎪⎝⎭;3333,2⎛⎫-- ⎪ ⎪⎝⎭;(3,3)-;(3,2)【分析】(1)用待定系数法求函数的解析式即可;(2)作直线BC ,过P 作PH x ⊥轴于点G ,交BC 于点H .设()2,23P m m m --,则(,3)H m m -,23PH m m =-+,则2139()228BPC S t ∆=--+,当32t =时,BPC △的面积最大值为从而求出此时四边形PBDC 面积的最大值,P 点坐标;(3)设()2,23P m m m --,(,0)E n ,分四种情况画出图形,利用正方形性质求解即可.【详解】(1)解:将(1,0)A -,(3,0)B 代入23y ax bx =+-中,得309330a b a b --=⎧⎨+--⎩,解得12a b =⎧⎨=-⎩.∴该抛物线的函数表达式为2=23y x x --.(2)解:作直线BC ,过P 作PH x ⊥轴于点G ,交BC 于点H .设直线BC 的表达式为:y kx =+得303k n n +=⎧⎨=-⎩,解得13k n =⎧⎨=-⎩,3y x ∴=-.设()2,23P m m m --,则(,H m m ∵BPC CPH BPHS S S =+△△△∴1122BPC S PH OG PH BG =⋅+⋅△∴(21322BPC S PH OB m =⨯=-+△∴28323272BPC S m ⎛⎫=-+ ⎪⎝-⎭△,∴当32m =时,BPC △面积的最大值为BC 与直线y x =平行,1122DBC OBC S S OB OC ∴==⋅=△△∴四边形PBDC 面积的最大值为当32m =时,2332322y ⎛⎫-⨯- ⎪⎝⎭=315,24P ⎛⎫∴- ⎪⎝⎭(3)解:设()2,23P m m m --,I.如图,当点E 在原点时,即点∵四边形PECQ 为正方形,∴点3(3,)Q -,II.如解图3-2,当四边形PECQ 作PI x ⊥轴,垂足为I ,作QH ⊥又∵90CEO OCE ∠+∠=︒,∴OCE PEO ∠=∠,∴(ASA)OCE PEI ≅ △∴3CO IE ==,22EO IP m ==-同理可得:3QH CO IE ===,∴3OE OI IE m =+=+,HO IO=∴2323m m m +=--,解得:m ∴3332HO IO +==,∴点)33(3,32Q +-,同理可得:PI OE CH ==,IE QH =∴3OE IE IO m =-=+,∴2233m m m =---,解得:m =∴3332HO IO -+==,∴点3,(Q -IV.如解图3-4,当四边形PECQ 为正方形时,同理可得:PI OE CH ==,EI HQ =∴2323m m m -=--,解得:m =∴2HO IO ==,∴点(3,2)Q ,综上所述:点Q 坐标为3333,2⎛+- ⎝【点睛】此题重点考查二次函数的图象与性质、数解析式、正方形性质、全等三角形的判定与性质、一元二次方程的解法、数形结合与分类讨论数学思想的运用等知识与方法,此题综合性强,难度较大,属于考试压轴题.3.如图,抛物线212y x bx c =++与物线交于A 、D 两点,与y 轴交于点综上所述,341,22N ⎛⎫+ ⎪ ⎪⎝⎭或341,22N ⎛- ⎝【点睛】本题考查了待定系数法求解析式,面积问题,平行四边形的性质,熟练掌握是二次函数的性质解题的关键.4.在平面直角坐标系中,抛物线2y ax =(1)求抛物线的表达式;(2)若直线x m =与x 轴交于点求出抛物线上点M 的坐标;(3)若点P 为抛物线y ax =位长度后,Q 为平移后抛物线上一动点,在(构成平行四边形?若能构成,求出【答案】(1)223y x x =-++(2)315,24⎛⎫ ⎪⎝⎭(3)1(2-,15)4或3(2-,7)4或【分析】(1)利用待定系数法,即可求出抛物线的表达式;(2)由“直线x m =与x 轴交于点的坐标,进而可得出AN 再利用二次函数的性质,即可求出(3)利用平移的性质,可得出平移后抛物线的表达式为点的坐标特征,可求出点点P 的坐标为(1,)m ,点Q 线三种情况考虑,由平行四边形的对角线互相平分,可得出关于得出n 值,再将其代入点【详解】(1)解:将(1,0)-09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:∴抛物线的表达式为y =-(2) 直线x m =与x 轴交于点∴点M 的坐标为2(,m m -。
导数与函数的极值、最值-重难点题型精讲 高考数学(新高考地区专用)(解析版)

专题3.5 导数与函数的极值、最值1.函数的极值与导数条件f ′(x 0)=0x 0附近的左侧f ′(x )>0,右侧f ′(x )<0x 0附近的左侧f ′(x )<0,右侧f ′(x )>0图象极值 f (x 0)为极大值 f (x 0)为极小值 极值点x 0为极大值点x 0为极小值点2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【题型1 根据函数图象判断极值】【方法点拨】由图象判断函数y=f(x)的极值,要抓住两点:(1)由y=f′(x)的图象与x轴的交点,可得函数y=f(x)的可能极值点;(2)由导函数y=f′(x)的图象可以看出y=f′(x)的值的正负,从而可得函数y=f(x)的单调性.两者结合可得极值点.【例1】(2022春•杨浦区校级期末)已知函数y=f(x)(a<x<b)的导函数是y=f'(x)(a<x<b),导函数y=f'(x)的图象如图所示,则函数y=f(x)在(a,b)内有()A.3个驻点B.4个极值点C.1个极小值点D.1个极大值点【解题思路】由题意结合导函数图像即可确定函数的性质.【解答过程】解:由导函数的图象可知,原函数存在4个驻点,函数有3个极值点,其中2个极大值点,1个极小值点.故选:C.【变式1-1】(2022春•纳雍县期末)已知函数f(x)的导函数的图像如图所示,则下列结论正确的是()A.﹣1是f(x)的极小值点B.曲线y=f(x)在x=2处的切线斜率小于零C.f(x)在区间(﹣∞,3)上单调递减D.﹣3是f(x)的极小值点【解题思路】根据题意,由函数导数与单调性的关系依次分析选项,即可得答案.【解答过程】解:根据题意,依次分析选项:对于A,在x=﹣1左右都有f′(x)<0,﹣1不是f(x)的极值,A错误;对于B,f′(x)的图象在(﹣3,3)上,f′(x)<0,f(x)为减函数,则曲线y=f(x)在x=2处的切线斜率即f′(2)小于零,B正确;对于C,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,f(x)为增函数,C错误;对于D,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,在(﹣3,3)上,f′(x)<0,则﹣3是f (x)的极大值点,D错误;故选:B.【变式1-2】(2022春•朝阳区校级月考)如图,可导函数y=f(x)在点P(x0,f(x0))处的切线方程为y=g(x),设h(x)=g(x)﹣f(x),h'(x)为h(x)的导函数,则下列结论中正确的是()A.h'(x0)=0,x0是h(x)的极大值点B.h'(x0)=0,x0是h(x)的极小值点C.h'(x0)≠0,x0不是h(x)的极大值点D.h'(x0)≠0,x0是h(x)的极值点【解题思路】由图判断函数h(x)的单调性,结合y=g(x)为y=f(x)在点P处的切线方程,则有h'(x0)=0,由此可判断极值情况.【解答过程】解:由题得,当x∈(﹣∞,x0)时,h(x)单调递减,当x∈(x0,+∞)时,h(x)单调递增,又h'(x0)=g'(x0)﹣f'(x0)=0,则有x0是h(x)的极小值点,故选:B.【变式1-3】(2022春•南阳期末)函数f(x)的导函数是f'(x),下图所示的是函数y=(x+1)•f'(x)(x∈R)的图像,下列说法正确的是()A.x=﹣1是f(x)的零点B.x=2是f(x)的极大值点C.f(x)在区间(﹣2,﹣1)上单调递增D.f(x)在区间[﹣2,2]上不存在极小值【解题思路】根据函数y=(x+1)•f'(x)(x∈R)的图像判断f′(x)的符号,进而判断f(x)的单调性和极值即可.【解答过程】解:由函数y=(x+1)•f'(x)(x∈R)的图像知,当﹣2<x<﹣1时,x+1<0,y>0,∴f'(x)<0,f(x)在(﹣2,﹣1)上减函数,当﹣1<x<2时,x+1>0,y>0,∴f'(x)>0,f(x)在(﹣1,2)上增函数,当x>2时,x+1>0,y<0,f'(x)<0,f(x)在(2,+∞)上减函数,∴x=﹣1、x=2分别是f(x)的极小值点、极大值点.∴选项A、C、D错误,选项B正确,故选:B.【题型2 求已知函数的极值(点)】【方法点拨】求函数f(x)极值的一般解题步骤:①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.【例2】(2022•扬中市校级开学)已知函数f(x)=12x−sinx在[0,π2]上的极小值为()A .π12−√32B .π12−12C .π6−12D .π6−√32【解题思路】根据极小值的定义,结合导数的性质进行求解即可. 【解答过程】解:由f(x)=12x −sinx ⇒f′(x)=12−cosx , 当x ∈(0,π3)时,f ′(x )<0,f (x )单调递减,当x ∈(π3,π2)时,f ′(x )>0,f (x )单调递增,所以π3是函数的极小值点,极小值为:f(π3)=π6−√32, 故选:D .【变式2-1】(2022春•资阳期末)函数f (x )=x 3﹣3x 的极大值为( ) A .﹣4B .﹣2C .1D .2【解题思路】求导,利用导数确定f (x )的单调区间,从而即可求极大值. 【解答过程】解:因为f (x )=x 3﹣3x ,x ∈R , 所以f ′(x )=3x 2﹣3=3(x +1)(x ﹣1), 令f ′(x )=0,得x =﹣1或x =1,所以当x <﹣1时,f ′(x )>0,f (x )单调递增;当﹣1<x <1时,f ′(x )<0,f (x )单调递减;当x >1时,f ′(x )>0,f (x )单调递增;所以f (x )的单调递增区间为:(﹣∞,﹣1),(1,∞);单调递减区间为(﹣1,1). 所以f (x )极大值=f (﹣1)=2. 故选:D .【变式2-2】(2022春•平谷区期末)函数f (x )=x +2cos x 在[0,π]上的极小值点为( ) A .π3B .π6C .5π6D .2π3【解题思路】分析函数导数的符号变化,由此可得函数的单调性,由单调性得出结论即可. 【解答过程】解:对于函数f (x )=x +2cos x ,f ′(x )=1﹣2sin x , 因为x ∈[0,π],当0<x <π6时,f ′(x )>0, 当π6<x <5π6时,f ′(x )<0,当5π6<x <π时,f ′(x )>0,所以f (x )在区间[0,π6]上是增函数,在区间[π6,5π6]上是减函数,在[5π6,π]是增函数. 因此,函数f (x )=x +2cos x 在[0,π]上的极小值点为5π6.故选:C .【变式2-3】(2022春•新乡期末)已知函数f (x )=(x ﹣1)2(2﹣x )3,则f (x )的极大值点为( ) A .1B .75C .﹣1D .2【解题思路】解:因为f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ),所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【解答过程】解:f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ), 令f ′(x )=0得x =1或x =75,所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【题型3 由函数的极值(点)求参数】 【方法点拨】根据函数极值情况求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. ②验证:求出参数后,验证所求结果是否满足题意.【例3】(2022春•龙海市校级期末)函数f (x )=4x 3﹣ax 2﹣2bx +2在x =1处有极大值﹣3,则a ﹣b 的值等于( ) A .0B .6C .3D .2【解题思路】对函数求导,利用f (1)=﹣3以及f ′(1)=0解出a ,b ,进而得出答案. 【解答过程】解:由题意得f ′(x )=12x 2﹣2ax ﹣2b ,因为f (x )在x =1处有极大值﹣3, 所以f ′(1)=12﹣2a ﹣2b =0,f (1)=4﹣a ﹣2b +2=﹣3,解得a =3,b =3, 所以a ﹣b =0. 故选:A .【变式3-1】(2022春•哈尔滨期末)若函数f(x)=6alnx +12x 2−(a +6)x 有2个极值点,则实数a 的取值范围是()A.(﹣∞,6)∪(6,+∞)B.(0,6)∪(6,+∞)C.{6}D.(0,+∞)【解题思路】根据条件函数f(x)有两个极值点,转化为方程f′(x)=0有两个不等正实数根,得到求解.【解答过程】解:函数f(x)的定义域(0,+∞),f′(x)=6ax+x−(a+6)=(x−6)(x−a)x,令f′(x)=0得,x=6或x=a,∵函数f(x)有2个极值点,∴f'(x)=0有2个不同的正实数根,∴a>0且a≠6,故选:B.【变式3-2】(2022春•淄博期末)已知x=2是函数f(x)=ax3﹣3x2+a的极小值点,则f(x)的极大值为()A.﹣3B.0C.1D.2【解题思路】先对函数求导,然后结合极值存在条件可求a,进而可求函数的极大值.【解答过程】解:因为f′(x)=3ax2﹣6x,由题意可得,f′(2)=12a﹣12=0,故a=1,f′(x)=3x2﹣6x,当x>2或x<0时,f′(x)>0,函数单调递增,当0<x<2时,f′(x)<0,函数单调递减,故当x=0时,函数取得极大值f(0)=1.故选:C.【变式3-3】(2022春•赣州期末)已知函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)在x=1处取得极值,则a+b的最大值为()A.1B.√2C.2D.2√2【解题思路】根据题意,对函数求导,令f′(1)=0可求得a2+b2=2,利用基本不等式可求a+b的最大值.【解答过程】解:函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)的导数为f′(x)=3x2+2a2x+2b2﹣7,因为函数在x=1处取得极值,所以f′(1)=3+2a2+2b2﹣7=0,即a2+b2=2,因为a 2+b 2=(a +b )2﹣2ab =2,即(a +b )2﹣2=2ab , 因为ab ≤(a+b 2)2,所以(a +b)2−2≤2(a+b 2)2, 整理得(a +b )2≤4,所以a +b ≤2,当且仅当a =b =1时等号成立,此时f ′(x )=3x 2+2x ﹣5=(3x +5)(x ﹣1),满足函数在x =1处取得极值, 所以a +b 的最大值为2, 故选:C .【题型4 利用导数求函数的最值】 【方法点拨】(1)若函数f (x )在闭区间[a ,b ]上单调递增或单调递减,f (a )与f (b )一个为最大值,一个为最小值. (2)若函数f (x )在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值, 最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极大(或极小)值点,这个极值点就是最大(或最小)值点,此结论在导 数的实际应用中经常用到.【例4】(2022•河南开学)函数f(x)=x 2−2x +8x 在(0,+∞)上的最小值为( ) A .2B .3C .4D .5【解题思路】由题意求导,从而确定函数的单调性,从而求函数的最值.【解答过程】解:因为f ′(x)=2x −2−8x 2=(x 3−2x 2)+(x 3−8)x 2=(x−2)(2x 2+2x+4)x 2,所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 故f (x )min =f (2)=4. 故选:C .【变式4-1】(2022春•中山市校级月考)函数y =x ﹣2sin x 在区间[0,2]上的最小值是( ) A .π6−√3B .−π3−√3C .−π6−√3D .π3−√3【解题思路】利用导数研究函数区间单调性,进而求其最小值即可. 【解答过程】解:由y ′=1﹣2cos x , 当0≤x <π3时,y ′<0,即y 递减; 当π3<x ≤2时,y ′>0,即y 递增;所以y min =π3−2sin π3=π3−√3.【变式4-2】(2022春•乐山期末)已知函数f (x )=x 2﹣lnx ,则函数f (x )在[1,2]上的最小值为( ) A .1B .√22C .18+12ln2 D .12+12ln2【解题思路】求导确定函数在[1,2]上的单调性,求出最小值即可.【解答过程】解:因为f (x )=x 2﹣lnx (x >0),所以f ′(x )=2x −1x =2x 2−1x ,所以当x ∈[1,2]时,f ′(x )=2x 2−1x >0,则f (x )在[1,2]上单调递增,则f (x )在[1,2]上的最小值为f (1)=1. 故选:A .【变式4-3】(2022•绿园区校级开学)函数f (x )=lnx +1x −12与g (x )=xe x ﹣lnx ﹣x 的最小值分别为a ,b ,则( ) A .a =b B .a >bC .a <bD .a ,b 的大小不能确定【解题思路】根据函数的单调性分别求出函数f (x ),g (x )的最小值,比较a ,b 即可. 【解答过程】解:f (x )的定义域是(0,+∞), f ′(x)=1−1x =x−1x, 令f ′(x )<0,解得:0<x <1,令f ′(x )>0,解得:x >1, f (x )在(0,1)递减,在(1,+∞)递增, f (x )的最小值是f (1)=1,故a =1, g (x )=xe x ﹣lnx ﹣x ,定义域(0,+∞), g ′(x)=(x +1)e x −1x −1=x+1x (xe x −1),令h (x )=xe x ﹣1,则h ′(x )=(x +1)e x >0,x ∈(0,+∞),则可得h (x )在(0,+∞)上单调递增,且h (0)=﹣1<0,h (1)=e ﹣1>0, 故存在x 0∈(0,1)使得h (x )=0即x 0e x 0=1,即x 0+lnx 0=0, 当x ∈(0,x 0)时,h (x )<0,g ′(x )<0,函数g (x )单调递减, 当x ∈(x 0,+∞)时,g ′(x )>0,函数g (x )单调递增,故当x =x 0时,函数取得最小值g(x 0)=x 0e x 0−lnx 0−x 0=1−lnx 0−x 0=1,即b =1, 所以a =b ,【题型5 由函数的最值求参数】【例5】(2022春•烟台期末)若函数f(x)=x 3−3a 2x 2+4在区间[1,2]上的最小值为0,则实数a 的值为( ) A .﹣2B .﹣1C .2D .103【解题思路】对函数求导后,分a ≤0和a >0两种情况求出函数的单调区间,从而可求出函数的最小值,使最小值等于零,从而可出实数a 的值. 【解答过程】解:由f(x)=x 3−3a 2x 2+4,得f '(x )=3x 2﹣3ax =3x (x ﹣a ), 当a ≤0时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增,所以f(x)min =f(1)=1−3a2+4=0,解得a =103(舍去), 当a >0时,由f '(x )=0,得x =0或x =a , 当0<a ≤1时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增, 所以f(x)min =f(1)=1−3a 2+4=0,解得a =103(舍去), 当1<a <2时,当1<x <a 时,f '(x )<0,当a <x <2时,f '(x )>0, 所以f (x )在(1,a )上递减,在(a ,2)上递增,所以当x =a 时,f (x )取得最小值,所以f(a)=a 3−3a2a 2+4=0,解得a =2(舍去), 当a ≥2时,当1≤x ≤2时,f '(x )<0,所以f (x )在[1,2]上递减, 所以f(x)min =f(2)=23−3a2×4+4=0,解得a =2, 综上,a =2, 故选:C .【变式5-1】(2022春•贵阳期末)若函数f(x)=e x +lnx +x √x −1+a 在x ≤20222021上的最小值为e +1,则a 的值为( ) A .0B .1C .20202021D .20212020【解题思路】判断函数f (x )的定义域,可知函数f (x )在定义域上单调递增,由此可建立关于a 的方程,解出即可得到答案.【解答过程】解:函数的定义域为[1,20222021],而函数y =e x ,y =lnx ,y =x √x −1在[1,+∞)上均为增函数,∴函数f(x)=e x +lnx +x √x −1+a 在[1,20222021]单调递增, ∴f (x )min =f (1)=e +a =e +1,解得a =1. 故选:B .【变式5-2】(2022春•江北区校级期末)若函数f (x )=x 3﹣3x 在区间(2a ,a +3)上有最小值,则实数a 的取值范围是( ) A .(−2,12)B .(﹣2,1)C .[−1,12)D .(﹣2,﹣1]【解题思路】由导数性质得f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1),x =1时,f (x )min =﹣2.由此利用函数性质列不等式即可求解a 的范围. 【解答过程】解:∵f (x )=x 3﹣3x ,∴f ′(x )=3x 2﹣3, 由f ′(x )=0,得x =±1,x ∈(﹣∞,﹣1)时,f ′(x )>0;x ∈(﹣1,1)时,f ′(x )<0;x ∈(1,+∞)时,f ′(x )>0, ∴f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1), ∴x =1时,f (x )min =﹣2. f (x )=x 3﹣3x =﹣2时, x 3﹣3x +2=0,x 3﹣x ﹣2x +2=0, x (x 2﹣1)﹣2x +2=0,x (x +1)(x ﹣1)﹣2(x ﹣1)=0, (x 2+x )(x ﹣1)﹣2(x ﹣1)=0, (x ﹣1)(x 2+x ﹣2)=0, (x ﹣1)(x +2)(x ﹣1)=0, (x ﹣1)2(x +2)=0, 解得x =1,x =﹣2,∴﹣2≤2a <1<a +3,∴﹣1≤a <12. 即实数a 的取值范围是[﹣1,12),故选:C.【变式5-3】(2022春•公安县校级月考)已知函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,若f(x)的最小值为0对任意x>0恒成立,则实数a的最小值为()A.2√eB.−2e C.1√eD.√e【解题思路】把f(x)转化为f(x)=e2lnx+ax+1﹣(2lnx+ax+1)﹣1,证明e x﹣1≥x恒成立,得到f(x)≥0恒成立,从而得到a=−2lnx−1x,令g(x)=−2lnx−1x,利用导数求出函数g(x)的最小值即可求出结果.【解答过程】解:∵函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1,令t=lnx2+ax+1,则h(t)=e t﹣t﹣1,f′(t)=e t﹣1,当t∈(﹣∞,0)时h′(t)<0,h(t)单调递减,当t∈(0,+∞)时,h′(t)>0,h(t)单调递增,∴h(t)≥h(0)=0,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1≥0,等号成立的条件是lnx2+ax+1=0,即a=−1−2lnxx在(0,+∞)上有解,设g(x)=−2lnx+1x,则g′(x)=−2−(2lnx+1)x2=2lnx−1x2,令g′(x)=0,解得x=√e,∴当x∈(0,√e)时,g′(x)<0,g(x)单调递减,当x∈(√e,+∞)时,g′(x)>0,g(x)单调递增,∴g(x)min=g(√e)=2√e,即a的最小值为2√e.故选:A.【题型6 极值和最值的综合问题】【方法点拨】解决函数极值、最值综合问题的策略:(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论.(3)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.【例6】(2022春•城厢区校级期末)已知函数f(x)=x3−32(k+1)x2+3kx+1,其中k∈R.(1)当k=3时,求函数f(x)在(0,3)内的极值点;(2)若函数f(x)在[1,2]上的最小值为3,求实数k的取值范围.【解题思路】(1)首先求得导函数,然后利用导函数研究函数的单调性,据此可求得函数的值域;(2)求得函数的解析式,然后结合导函数的符号确定函数的单调性,分类讨论即可求得实数k的取值范围.【解答过程】解:(1)k=3时,f(x)=x3﹣6x2+9x+1,则f'(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),令f'(x)=0得x1=1,x2=3,当x<1时,f′(x)>0,f(x)单调递增;当1<x<3时,f′(x)<0,f(x)单调递减;当x>3时,f′(x)>0,f(x)单调递增;所以f(x)的单调递增区间为(﹣∞,1),(3,+∞),单调递减区间为(1,3);所以f(x)在(0,1)上单调递增,在(1,3)上单调递减.故f(x)在(0,3)内的极大值点为x=1,无极小值点;(2)方法一:f'(x)=3x2﹣3(k+1)x+3k=3(x﹣1)(x﹣k),①当k≤1时,∀x∈[1,2],f'(x)≥0,函数f(x)在区间[1,2]单调递增,所以f(x)min=f(1)=1−32(k+1)+3k+1=3,即k=53(舍);②当k≥2时,∀x∈[1,2],f'(x)≤0,函数f(x)在区间[1,2]单调递减,所以f(x)min=f(2)=8﹣6(k+1)+3k⋅2+1=3,符合题意;③当1<k<2时,当x∈[1,k)时,f'(x)≤0,f(x)区间在[1,k)单调递减,当x∈(k,2]时,f'(x)>0,f(x)区间在(k,2]单调递减,所以f(x)min=f(k)=k3−32(k+1)k2+3k2+1=3,化简得:k3﹣3k2+4=0,即(k+1)(k﹣2)2=0,所以k=﹣1或k=2(都舍);综上所述:实数k取值范围为k≥2.【变式6-1】(2022春•德州期末)已知函数f(x)=x3−3ax+1(a>12 ).(1)若函数f(x)在x=﹣1处取得极值,求实数a的值;(2)当x∈[﹣2,1]时.求函数f(x)的最大值.【解题思路】(1)利用导数求得函数极值,代入计算即可得到a的值;(2)f'(x)=0的根分类讨论,然后列表表示f'(x)的正负,极值点,同时注意比较端点处函数值,从而得最大值.【解答过程】解:(1)由题意可知f'(x)=3x2﹣3a,因为函数f(x)在x=﹣1处取得极值,所以f'(﹣1)=0,即3﹣3a=0,解得a=1,经检验a=1,符合题意,所以a=1;(2)由(1)知f'(x)=3x2﹣3a,令f'(x)=0,x=±√a,当0<√a<1,即0<a<1时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,√a)√a(√a,1)1 f'(x)+0﹣0+f(x)﹣7+6a单调递增单调递减单调调增2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当1≤√a<2,即1≤a<4时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,1)1f'(x)+0﹣f(x)﹣7+6a单调递增单调递减2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当√a≥2即a≥4时,f'(x)=3x2﹣3a≤0恒成立,即f(x)在[﹣2,1]上单调递减,所以f(x)的最大值为f (﹣2)=﹣7+6a ,综上所述,当12<a <4时,f (x )的最大值为2a √a +1;当a ≥4时,f (x )的最大值为﹣7+6a .【变式6-2】(2022春•漳州期末)已知函数f(x)=(x −1)e x −t2x 2−2x ,f '(x )为f (x )的导函数,函数g (x )=f '(x ).(1)当t =1时,求函数g (x )的最小值;(2)已知f (x )有两个极值点x 1,x 2(x 1<x 2)且f(x 1)+52e −1<0,求实数t 的取值范围. 【解题思路】(1)当t =1时,根据题意可得g (x )=xe x ﹣tx ﹣2,求导得g '(x )=(x +1)e x ﹣1,分析g (x )的单调性,进而可得g (x )min .(2)问题可化为t =e x −2x,有两个根x 1,x 2,令ℎ(x)=e x −2x,则ℎ′(x)=e x +2x 2>0,求导分析单调性,又x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0,推出t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2),分析f (x 1)的单调性,又φ(−1)=−52e +1,推出﹣1<x 1<0,即可得出答案.【解答过程】解:g (x )=f '(x )=xe x ﹣tx ﹣2,(1)当t =1时,g (x )=xe x ﹣x ﹣2,g '(x )=(x +1)e x ﹣1, 当x ≤﹣1时,x +1≤0,e x >0, 所以g '(x )=(x +1)e x ﹣1≤0﹣1<0, 当﹣1<x <0时,0<x +1<1,0<e x <1, 所以g '(x )=(x +1)e x ﹣1<1×1﹣1=0, 当x >0时,x +1>1,e x >1,所以g '(x )=(x +1)e x ﹣1>1×1﹣1=0.综上g (x )在(﹣∞,0)上为减函数,在(0,+∞)上为增函数, 所以g (x )min =g (0)=﹣2.(2)依题有:方程g (x )=0有两个不同的根x 1,x 2, 方程g (x )=0可化为t =e x −2x , 令ℎ(x)=e x −2x ,则ℎ′(x)=e x +2x 2>0, 所以h (x )在(﹣∞,0)和(0,+∞)都是增函数,因为x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0, 所以t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2), 所以f(x 1)=(x 1−1)e x 1−t2x 12−2x 1 =(x 1−1)e x 1−12(e x 1−2x 1)x 12−2x 1=(−x 122+x 1−1)e x 1−x 1<−52e +1,令φ(x)=(−x 22+x −1)e x −x(x <0),则φ′(x)=−12x 2e x −1<0,所以φ(x )在(﹣∞,0)上为减函数,又因为φ(−1)=−52e +1, 所以﹣1<x 1<0, 所以t =e x 1−2x 1>1e+2. 【变式6-3】(2022春•潞州区校级期末)有三个条件: ①函数f (x )在x =1处取得极小值2; ②f (x )在x =﹣1处取得极大值6; ③函数f (x )的极大值为6,极小值为2.这三个条件中,请任意选择一个填在下面的横线上(只要填写序号),并解答本题. 题目:已知函数f (x )=x 3﹣3ax +b (a >0),并且 _____. (1)求f (x )的解析式;(2)当x ∈[﹣3,1]时,求函数f (x )的最值.【解题思路】(1)求出函数f (x )的导数f ′(x ),选择条件①,②,利用给定的极值点及对应的极值列式求解并验证作答;选择条件③,判断极大值与极小值列式求解并验证作答. (2)利用(1)的结论,利用导数求出给定区间上的最值作答. 【解答过程】解:(1)选条件①:求导得f ′(x )=3x 2﹣3a ,由{f ′(1)=0f(1)=2,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当﹣1<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, 则f (x )在x =1处取得极小值2, 所以f (x )=x 3﹣3x +4;选条件②:求导得f ′(x )=3x 2﹣3a ,由{f ′(−1)=0f(−1)=6,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当x <﹣1时,f ′(x )>0,当﹣1<x <1时,f ′(x )=<0,则f(x)在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4.选条件③:求导得f′(x)=3x2﹣3a,令f′(x)=3x2﹣3a=0,得x=±√a,当x<−√a或x>√a时,f′(x)>0,当−√a<x<√a时时,f′(x)<0,因此,当x=−√a时,f(x)取得极大值f(−√a),当x=√a时,f(x)取得极小值f(√a),于是得{(−√a)3−3a(−√a)+b=6(√a)3−3a√a+b=2,解得{a=1b=4,此时f′(x)=3(x+1)(x﹣1),当x<﹣1或x>1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在x=1处取得极小值2,在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4;(2)由(1)知,f(x)=x3﹣3x+4,当x∈[﹣3,1]时,f′(x)=3(x+1)(x﹣1),当﹣3<x<﹣1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在[﹣3,﹣1)上递增,在(﹣1,1]上递减,而f(﹣3)=﹣14,f(1)=2,所以f(x)max=f(﹣1)=6,f(x)min=f(﹣3)=﹣14.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题08函数的极值1.函数的极小值:函数y=f(x)在点x=x0的函数值f(x0)比它在点x=x0附近其他点的函数值都小,f′(x0)=0;而且在点x=x0附近的左侧f′(x)<0,右侧f′(x)>0.则x0叫做函数y=f(x)的极小值点,f(x0)叫做函数y=f(x)的极小值.如图1.图1图22.函数的极大值:函数y=f(x)在点x=x0的函数值f(x0)比它在点x=x0附近其他点的函数值都大,f′(x0)=0;而且在点x=x0附近的左侧f′(x)>0,右侧f′(x)<0.则x0叫做函数y=f(x)的极大值点,f(x0)叫做函数y=f(x)的极大值.如图2.3.极小值点、极大值点统称为极值点,极小值和极大值统称为极值.对极值的深层理解:(1)极值点不是点;(2)极值是函数的局部性质;(2)按定义,极值点x i是区间[a,b]内部的点(如图),不会是端点a,b;(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)根据函数的极值可知函数的极大值f(x0)比在点x0附近的点的函数值都大,在函数的图象上表现为极大值对应的点是局部的“高峰”;函数的极小值f(x0)比在点x0附近的点的函数值都小,在函数的图象上表现为极小值对应的点是局部的“低谷”.一个函数在其定义域内可以有许多极小值和极大值,在某一点处的极小值也可能大于另一个点处的极大值,极大值与极小值没有必然的联系,即极小值不一定比极大值小,极大值不一定比极小值大;(5)使f′(x)=0的点称为函数f(x)的驻点,可导函数的极值点一定是它的驻点.驻点可能是极值点,也可能不是极值点.例如f(x)=x3的导数f′(x)=3x2在点x=0处有f′(0)=0,即x=0是f(x)=x3的驻点,但从f(x)在(-∞,+∞)上为增函数可知,x=0不是f(x)的极值点.因此若f′(x0)=0,则x0不一定是极值点,即f′(x0)=0是f(x)在x=x0处取到极值的必要不充分条件,函数y=f′(x)的变号零点,才是函数的极值点;(6)函数f(x)在[a,b]上有极值,极值也不一定不唯一.它的极值点的分布是有规律的,如上图,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点.一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的.考点一根据函数图象判断极值【方法总结】由图象判断函数y =f (x )的极值(1)y =f ′(x )的图象与x 轴的交点的横坐标为x 0,可得函数y =f (x )的可能极值点x 0;(2)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;如果在x 0附近的左侧f ′(x )≤0,右侧f ′(x )≥0,那么f (x 0)是极小值.【例题选讲】[例1](1)函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点答案 C 解析 设f ′(x )的图象与x 轴的4个交点从左至右依次为x 1,x 2,x 3,x 4.当x <x 1时,f ′(x )>0,f (x )为增函数,当x 1<x <x 2时,f ′(x )<0,f (x )为减函数,则x =x 1为极大值点,同理,x =x 3为极大值点,x =x 2,x =x 4为极小值点,故选C .(2)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)答案 D 解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.故选D .(3)函数f (x )=x 3+bx 2+cx +d 的大致图象如图所示,x 1,x 2是函数y =f (x )的两个极值点,则x 21+x 22等于( )A .89B .109C .169D .289答案 C 解析 因为函数f (x )的图象过原点,所以d =0.又f (-1)=0且f (2)=0,即-1+b -c =0且8+4b +2c =0,解得b =-1,c =-2,所以函数f (x )=x 3-x 2-2x ,所以f ′(x )=3x 2-2x -2.由题意知x 1,x 2是函数f (x )的极值点,所以x 1,x 2是f ′(x )=0的两个根,所以x 1+x 2=23,x 1x 2=-23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=49+43=169,故选C (4)已知函数y =f ′(x )x的图象如图所示(其中f ′(x )是定义域为R 的函数f (x )的导函数),则以下说法错误的是( )A .f ′(1)=f ′(-1)=0B .当x =-1时,函数f (x )取得极大值C .方程xf ′(x )=0与f (x )=0均有三个实数根D .当x =1时,函数f (x )取得极小值答案 C 解析 由图象可知f ′(1)=f ′(-1)=0,A 说法正确.当x <-1时,f ′(x )x<0,此时f ′(x )>0;当-1<x <0时,f ′(x )x >0,此时f ′(x )<0,故当x =-1时,函数f (x )取得极大值,B 说法正确.当0<x <1时,f ′(x )x<0,此时f ′(x )<0;当x >1时,f ′(x )x>0,此时f ′(x )>0,故当x =1时,函数f (x )取得极小值,D 说法正确.故选C . (5)(多选)函数y =f (x )导函数的图象如图所示,则下列选项正确的有( )A .(-1,3)为函数y =f (x )的递增区间B .(3,5)为函数y =f (x )的递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值答案 ABD 解析 由函数y =f (x )导函数的图象可知,f (x )的单调递减区间是(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞),所以f (x )在x =-1,5取得极小值,在x =3取得极大值,C 错误.故选A 、B 、D .(6) (2018·全国Ⅲ)函数y =-x 4+x 2+2的图象大致为( )答案D解析当x=0时,y=2,排除A,B.由y′=-4x3+2x=0,得x=0或x=±22,结合三次函数的图象特征,知原函数在(-1,1)上有三个极值点,所以排除C,故选D.【对点训练】1.如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为()A.1B.2C.3D.41.答案A解析由题意知在x=-1处f′(-1)=0,且其左右两侧导数符号为左负右正.2.设函数f(x)在R上可导,其导函数为f′(x),且函数g(x)=xf′(x)的图象如图所示,则下列结论中一定成立的是()A.f(x)有两个极值点B.f(0)为函数的极大值C.f(x)有两个极小值D.f(-1)为f(x)的极小值2.答案BC解析由题图知,当x∈(-∞,-2)时,g(x)>0,∴f′(x)<0,当x∈(-2,0)时,g(x)<0,∴f′(x) >0,当x∈(0,1)时,g(x)<0,∴f′(x)<0,当x∈(1,+∞)时,g(x)>0,∴f′(x)>0.∴f(x)在(-∞,-2),(0,1)上单调递减,在(-2,0),(1,+∞)上单调递增.故AD错误,BC正确.3.已知函数f(x)=x3+bx2+cx的图象如图所示,则x21+x22等于()A .23B .43C .83D .1633.答案 C 解析 由题中图象可知f (x )的图象经过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,所以1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2,x 1,x 2是方程3x 2-6x +2=0的两根,所以x 1+x 2=2,x 1·x 2=23,∴x 21+x 22=(x 1+x 2)2-2x 1x 2=4-2×23=83. 4.已知三次函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则f ′(0)f ′(1)=________.4.答案 1 解析 f ′(x )=3ax 2+2bx +c ,由图象知,方程f ′(x )=0的两根为-1和2,则有⎩⎨⎧ -2b 3a =-1+2,c 3a =-1×2,即⎩⎪⎨⎪⎧3a +2b =0,6a +c =0,∴f ′(0)f ′(1)=c 3a +2b +c =c c =1. 5.(多选)函数y =f (x )的导函数f ′(x )的图象如图所示,则以下命题错误的是( )A .-3是函数y =f (x )的极值点B .-1是函数y =f (x )的最小值点C .y =f (x )在区间(-3,1)上单调递增D .y =f (x )在x =0处切线的斜率小于零5.答案 BD 解析 根据导函数的图象可知当x ∈(-∞,-3)时,f ′(x )<0,当x ∈(-3,+∞)时,f ′(x )≥0,∴函数y =f (x )在(-∞,-3)上单调递减,在(-3,+∞)上单调递增,则-3是函数y =f (x )的极值点,∵函数y =f (x )在(-3,+∞)上单调递增,∴-1不是函数y =f (x )的最小值点,∵函数y =f (x )在x =0处的导数大于0,∴y =f (x )在x =0处切线的斜率大于零.故错误的命题为BD .考点二 求已知函数的极值【方法总结】求函数的极值或极值点的步骤(1)确定函数的定义域;(2)求导数f ′(x );(3)解方程f ′(x )=0,求出函数定义域内的所有根;④检查f ′(x )在方程f ′(x )=0的根的左右两侧的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.【例题选讲】[例1](1)函数f (x )=x 2e -x 的极大值为__________,极小值为________.答案 4e -2 0 解析 f (x )的定义域为(-∞,+∞),f ′(x )=-e -x x (x -2).当x ∈(-∞,0)或x ∈(2,+∞)时,f ′(x )<0;当x ∈(0,2)时,f ′(x )>0.所以f (x )在(-∞,0),(2,+∞)上单调递减,在(0,2)上单调递增.故当x =0时,f (x )取得极小值,极小值为f (0)=0;当x =2时,f (x )取得极大值,极大值为f (2)=4e -2.(2)设函数f (x )=2x+ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点答案 D 解析 f ′(x )=-2x 2+1x =x -2x2(x >0),当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,所以x =2为f (x )的极小值点.(3)已知函数f (x )=2e f ′(e)ln x -x e,则f (x )的极大值点为( ) A .1eB .1C .eD .2e 答案 D 解析 f ′(x )=2e f ′(e)x -1e ,故f ′(e)=1e ,故f (x )=2ln x -x e ,令f ′(x )=2x -1e >0,解得0<x <2e ,令f ′(x )<0,解得x >2e ,故f (x )在(0,2e)上递增,在(2e ,+∞)上递减,∴x =2e 时,f (x )取得极大值2ln 2,则f (x )的极大值点为2e .(4)已知e 为自然对数的底数,设函数f (x )=(e x -1)·(x -1)k (k =1,2),则( )A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值答案 C 解析 因为f ′(x )=(x -1)k -1[e x (x -1+k )-k ],当k =1时,f ′(1)>0,故1不是函数f (x )的极值点.当k =2时,当x 0<x <1(x 0为f (x )的极大值点)时,f ′(x )<0,函数f (x )单调递减;当x >1时,f ′(x )>0,函数f (x )单调递增.故f (x )在x =1处取到极小值.故选C .(5)若x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3 C .5e -3 D .1答案 A 解析 f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]e x -1.∵x =-2是f (x )的极值点,∴f ′(-2)=0,即(4-2a -4+a -1)e -3=0,得a =-1.∴f (x )=(x 2-x -1)e x -1,f ′(x )=(x 2+x -2)e x -1.由f ′(x )>0,得x <-2或x >1;由f ′(x )<0,得-2<x <1.∴f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,∴f (x )的极小值点为1,∴f (x )的极小值为f (1)=-1.(6)设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (1)=12,则下列结论不正确的是( ) A .xf (x )在(0,+∞)上单调递增 B .xf (x )在(0,+∞)上单调递减C .xf (x )在(0,+∞)上有极大值12D .xf (x )在(0,+∞)上有极小值12答案 ABC 解析 由x 2f ′(x )+xf (x )=ln x 得x >0,则xf ′(x )+f (x )=ln x x ,即[xf (x )]′=ln x x,设g (x )=xf (x ),即g ′(x )=ln x x,由g ′(x )>0得x >1,由g ′(x )<0得0<x <1,即xf (x )在(1,+∞)上单调递增,在(0,1)上单调递减,即当x =1时,函数g (x )=xf (x )取得极小值g (1)=f (1)=12.故选ABC . [例2] 给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的拐点.已知f (x )=ax +3sin x -cos x .(1)求证:函数y =f (x )的拐点M (x 0,f (x 0))在直线y =ax 上;(2)x ∈(0,2π)时,讨论f (x )的极值点的个数.解析 (1)∵f (x )=ax +3sin x -cos x ,∴f ′(x )=a +3cos x +sin x ,∴f ″(x )=-3sin x +cos x ,∵f ″(x 0)=0,∴-3sin x 0+cos x 0=0.而f (x 0)=ax 0+3sin x 0-cos x 0=ax 0.∴点M (x 0,f (x 0))在直线y =ax 上.(2)令f ′(x )=0,得a =-2sin ⎝⎛⎭⎫x +π3, 作出函数y =-2sin ⎝⎛⎭⎫x +π3,x ∈(0,2π)与函数y =a 的草图如下所示:由图可知,当a ≥2或a ≤-2时,f (x )无极值点;当a =-3时,f (x )有一个极值点;当-2<a <-3或-3<a <2时,f (x )有两个极值点.[例3] (2021·天津高考节选)已知a >0,函数f (x )=ax -x ·e x .(1)求函数y =f (x )在点(0,f (0))处的切点的方程;(2)证明f (x )存在唯一极值点.解析 (1)因为f (0)=0,f ′(x )=a -(x +1)e x ,所以f ′(0)=a -1,所以函数在(0,f (0))处的切线方程为(a -1)·x -y =0.(2)若证明f (x )仅有一个极值点,即证f ′(x )=a -(x +1)e x =0,只有一个解,即证a =(x +1)e x 只有一个解,令g (x )=(x +1)e x ,只需证g (x )=(x +1)e x 的图象与直线y =a (a >0)仅有一个交点,g ′(x )=(x +2)e x , 当x =-2时,g ′(x )=0,当x <-2时,g ′(x )<0,g (x )单调递减,当x >-2时,g ′(x )>0,g (x )单调递增,当x =-2时,g (-2)=-e -2<0.当x →+∞时,g (x )→+∞,当x →-∞时,g (x )→0-,画出函数g (x )=(x +1)e x 的图象大致如下,因为a >0,所以g (x )=(x +1)e x 的图象与直线y =a (a >0)仅有一个交点.即f (x )存在唯一极值点.【对点训练】1.函数f (x )=2x -x ln x 的极值是( )A .1eB .2eC .eD .e 2 1.答案 C 解析 因为f ′(x )=2-(ln x +1)=1-ln x ,当f ′(x )>0时,解得0<x <e ;当f ′(x )<0时,解得x >e ,所以x =e 时,f (x )取到极大值,f (x )极大值=f (e)=e .故选C .2.函数f (x )=(x 2-1)2+2的极值点是( )A .x =1B .x =-1C .x =1或-1或0D .x =02.答案 C 解析 f ′(x )=2(x 2-1)·2x =4x (x +1)(x -1),令f ′(x )=0,解得x =0或x =-1或x =1.3.函数f (x )=12x 2+ln x -2x 的极值点的个数是( ) A .0 B .1 C .2 D .无数3.答案 A 解析 函数定义域为(0,+∞),且f ′(x )=x +1x -2=x 2-2x +1x =(x -1)2x≥0,即f (x )在定义 域上单调递增,无极值点.4.函数f (x )=(x 2-x -1)e x (其e =2.718…是自然对数的底数)的极值点是 ;极大值为 .4.答案 1或-2 5e 2解析 由已知得f ′(x )=(x 2-x -1+2x -1)e x =(x 2+x -2)e x =(x +2)(x -1)e x ,因为e x >0,令f ′(x )=0,可得x =-2或x =1,当x <-2时,f ′(x )>0,即函数f (x )在(-∞,-2)上单调递增;当-2<x <1时,f ′(x )<0,即函数f (x )在区间(-2,1)上单调递减;当x >1时,f ′(x )>0,即函数f (x )在区间(1,+∞)上单调递增.故f (x )的极值点为-2或1,且极大值为f (-2)=5e2. 5.已知函数f (x )=ax 3-bx +2的极大值和极小值分别为M ,m ,则M +m =( )A .0B .1C .2D .45.答案 D 解析 f ′(x )=3ax 2-b =0,由题意,知该方程有两个根,设该方程的两个根分别为x 1,x 2,故f (x )在x 1,x 2处取到极值,M +m =ax 31-bx 1+2+ax 32-bx 2+2=-b (x 1+x 2)+a (x 1+x 2)[(x 1+x 2)2-3x 1x 2]+4,又x 1+x 2=0,x 1x 2=-b 3a,所以M +m =4,故选D .6.若x =-2是函数f (x )=13x 3-ax 2-2x +1的一个极值点,则函数f (x )的极小值为( ) A .-113 B .-16 C .16 D .1736.答案 B 解析 由题意,得f ′(x )=x 2-2ax -2.又x =-2是函数f (x )的一个极值点,所以f ′(-2)=2+4a =0,解得a =-12.所以f (x )=13x 3+12x 2-2x +1,所以f ′(x )=x 2+x -2=(x +2)(x -1).当x <-2或x >1时,f ′(x )>0;当-2<x <1时,f ′(x )<0.所以函数y =f (x )的单调递增区间为(-∞,-2),(1,+∞),单调递减区间为(-2,1).当x =1时,函数y =f (x )取得极小值,为f (1)=13+12-2+1=-16.故选B . 7.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 2 7.答案 B 解析 由题意得,f ′(x )=2x+2ax -3,∵f (x )在x =2处取得极小值,∴f ′(2)=4a -2=0,解得 a =12,∴f (x )=2ln x +12x 2-3x ,f ′(x )=2x +x -3=(x -1)(x -2)x,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减,∴f (x )的极大值为f (1)=12-3=-52. 8.已知函数f (x )=x ln x ,则( )A .f (x )的单调递增区间为(e ,+∞)B .f (x )在⎝⎛⎭⎫0,1e 上是减函数C .当x ∈(0,1]时,f (x )有最小值-1eD .f (x )在定义域内无极值 8.答案 BC 解析 因为f ′(x )=ln x +1(x >0),令f ′(x )=0,所以x =1e,当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,所以f (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,x =1e是极小值点,所以A 错误,B 正确;当x ∈(0,1]时,根据单调性可知,f (x )min =f ⎝⎛⎭⎫1e =-1e,故C 正确;显然f (x )有极小值f ⎝⎛⎭⎫1e ,故D 错误.故选BC .9.(多选)已知函数f (x )=x 2+x -1e x,则下列结论正确的是( ) A .函数f (x )存在两个不同的零点B .函数f (x )既存在极大值又存在极小值C .当-e<k ≤0时,方程f (x )=k 有且只有两个实根D .若x ∈[t ,+∞)时,f (x )max =5e2,则t 的最小值为2 9.答案 ABC 解析 由f (x )=0,得x 2+x -1=0,∴x =-1±52,故A 正确.f ′(x )=-x 2-x -2e x=-(x +1)(x -2)e x,当x ∈(-∞,-1)∪(2,+∞)时,f ′(x )<0,当x ∈(-1,2)时,f ′(x )>0,∴f (x )在(-∞,-1),(2,+∞)上单调递减,在(-1,2)上单调递增,∴f (-1)是函数的极小值,f (2)是函数的极大值,故B正确.又f (-1)=-e ,f (2)=5e2,且当x →-∞时,f (x )→+∞,x →+∞时,f (x )→0,∴f (x )的图象如图所示,由图知C 正确,D 不正确.10.若函数f (x )=(1-x )(x 2+ax +b )的图象关于点(-2,0)对称,x 1,x 2分别是f (x )的极大值点与极小值点,则x 2-x 1=________.10.答案 -23 解析 因为函数f (x )=(1-x )(x 2+ax +b )的图象关于点(-2,0)对称,且f (1)=0,所以f (-5)=0,f (-2)=0,所以x =-2,x =-5是方程x 2+ax +b =0的两个根.由根与系数的关系可得,a =7,b =10,所以f (x )=(1-x )(x 2+7x +10),所以f ′(x )=-(x 2+7x +10)+(1-x )(2x +7)=-3(x 2+4x +1).又因为x 1,x 2分别是f (x )的极大值点与极小值点,所以x 1,x 2是x 2+4x +1=0的两个根,且x 1>x 2.解方程可得,x 1=-2+3,x 2=-2-3,所以x 2-x 1=-23.11.已知函数f (x )=e x (x -1)-12e a x 2,a <0. (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )的极小值.11.解析 (1)因为f (x )=e x (x -1)-12e a x 2,所以f ′(x )=x e x -x e a .所以f (0)=-1,f ′(0)=0. 所以曲线y =f (x )在点(0,f (0))处的切线方程为y =-1.(2)f ′(x )=x e x -x e a =x (e x -e a ),令f ′(x )=0,得x =0或x =a (a <0).f (x )与f ′(x )在R 上的变化情况如表: x(-∞,a ) a (a ,0) 0 (0,+∞) f ′(x )+ 0 - 0 +f (x )由表可知,当x =0时,f (x )有极小值f (0)=-1.12.已知函数f (x )=e x +2x. (1)求函数f (x )的图象在(1,f (1))处的切线方程;(2)证明:函数f (x )仅有唯一的极小值点.12.解析 (1)因为f ′(x )=e x (x -1)-2x 2,所以切线斜率k =f ′(1)=-2. 又因为f (1)=e +2,所以切线方程为y -(e +2)=-2(x -1),即2x +y -e -4=0.(2)证明:令h (x )=e x (x -1)-2,则h ′(x )=e x ·x ,所以x ∈(-∞,0)时,h ′(x )<0, x ∈(0,+∞)时,h ′(x )>0.当x ∈(-∞,0)时,易知h (x )<0, 所以f ′(x )<0,f (x )在(-∞,0)上没有极值点.当x ∈(0,+∞)时,因为h (1)=-2<0,h (2)=e 2-2>0, 所以f ′(1)<0,f ′(2)>0,f (x )在(1,2)上有极小值点.又因为h (x )在(0,+∞)上单调递增,所以函数f (x )仅有唯一的极小值点. 考点三 已知函数的极值(点)求参数的值(范围) 【方法总结】由函数极值求参数的值或范围讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验导数为0的点两侧导数是否异号.【例题选讲】[例1](1)若函数f (x )=x (x -m )2在x =1处取得极小值,则m =________.答案 1 解析 由f ′(1)=0可得m =1或m =3.当m =3时,f ′(x )=3(x -1)(x -3),当1<x <3时,f ′(x )<0;当x <1或x >3时,f ′(x )>0,此时f (x )在x =1处取得极大值,不合题意,当m =1时,f ′(x )=(x -1)(3x -1).当13<x <1时,f ′(x )<0;当x <13或x >1时,f ′(x )>0,此时f (x )在x =1处取得极小值,符合题意,所以m=1.(2)已知f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a +b =________. 答案 11 解析f ′(x )=3x 2+6ax +b ,由题意得⎩⎪⎨⎪⎧f ′(-1)=0,f (-1)=0,解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9,当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,∴f (x )在R 上单调递增,∴f (x )无极值,所以a =1,b =3不符合题意,当a =2,b =9时,经检验满足题意.∴a +b =11.(3)若函数f (x )的导数f ′(x )=⎝⎛⎭⎫x -52(x -k )k (k ≥1,k ∈Z ),已知x =k 是函数f (x )的极大值点,则k = . 答案 1 解析 因为函数的导数为f ′(x )=⎝⎛⎭⎫x -52(x -k )k ,k ≥1,k ∈Z ,所以若k 是偶数,则x =k ,不是极值点,则k 是奇数,若k <52,由f ′(x )>0,解得x >52或x <k ;由f ′(x )<0,解得k <x <52,即当x =k 时,函数f (x )取得极大值.因为k ∈Z ,所以k =1.若k >52,由f ′(x )>0,解得x >k 或x <52;由f ′(x )<0,解得52<x <k ,即当x=k 时,函数f (x )取得极小值,不满足条件.(4)设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围为________.答案 a >-1 解析 f (x )的定义域为(0,+∞),f ′(x )=1x -ax -b ,由f ′(1)=0,得b =1-a ,所以f ′(x )=1x-ax +a -1=-ax 2+1+ax -x x =-(ax +1)(x -1)x .①若a ≥0,当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减,所以x =1是f (x )的极大值点.②若a <0,由f ′(x )=0,得x =1或x =-1a .因为x =1是f (x )的极大值点,所以-1a>1,解得-1<a <0.综合①②得a 的取值范围是a >-1.(5)若函数f (x )=ax 22-(1+2a )x +2ln x (a >0)在区间⎝⎛⎭⎫12,1内有极大值,则a 的取值范围是( ) A .⎝⎛⎭⎫1e ,+∞ B .(1,+∞) C .(1,2) D .(2,+∞) 答案 C 解析f ′(x )=ax -(1+2a )+2x =ax 2-(2a +1)x +2x (a >0,x >0),若f (x )在区间⎝⎛⎭⎫12,1内有极大值,即f ′(x )=0在⎝⎛⎭⎫12,1内有解,且f ′(x )在区间⎝⎛⎭⎫12,1内先大于0,后小于0,则⎩⎪⎨⎪⎧f ′⎝⎛⎭⎫12>0,f ′(1)<0,即⎩⎪⎨⎪⎧14a -12(2a +1)+212>0,a -(2a +1)+2<0,解得1<a <2,故选C .(6)若函数f (x )=x 2-x +a ln x 在[1,+∞)上有极值点,则实数a 的取值范围为 ;答案 (-∞,-1] 解析 函数f (x )的定义域为(0,+∞),f ′(x )=2x -1+a x =2x 2-x +ax ,由题意知2x 2-x +a =0在R 上有两个不同的实数解,且在[1,+∞)上有解,所以Δ=1-8a >0,且2×12-1+a ≤0,所以a ∈(-∞,-1].(7)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是________.答案 ⎝⎛⎭⎫0,12 解析 f (x )=x (ln x -ax ),定义域为(0,+∞),f ′(x )=1+ln x -2ax .由题意知,当x >0时,1+ln x -2ax =0有两个不相等的实数根,即2a =1+ln x x 有两个不相等的实数根,令φ(x )=1+ln xx (x >0),∴φ′(x )=-ln xx 2.当0<x <1时,φ′(x )>0;当x >1时,φ′(x )<0,∴φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,且φ(1)=1,当x →0时,φ(x )→-∞,当x →+∞时,φ(x )→0,则0<2a <1,即0<a <12.(8) (2021·全国乙)设a ≠0,若x =a 为函数f (x )=a (x -a )2(x -b )的极大值点,则( ) A .a <b B .a >b C .ab <a 2 D .ab >a 2答案 D 解析 法一 (特殊值法)当a =1,b =2时,函数f (x )=(x -1)2(x -2),画出该函数的图象如图1所示,可知x =1为函数f (x )的极大值点,满足题意.从而,根据a =1,b =2可判断选项B ,C 错误;当a =-1,b =-2时,函数f (x )=-(x +1)2(x +2),画出该函数的图象如图2所示,可知x =-1为函数f (x )的极大值点,满足题意.从而,根据a =-1,b =-2可判断选项A 错误.法二(数形结合法)当a>0时,根据题意作出函数f(x)的大致图象,如图3所示,观察可知b>a.图3当a<0时,根据题意作出函数f(x)的大致图象,如图4所示,观察可知a>b.图4综上,可知必有ab>a2成立.故选D.[例2]已知曲线f(x)=x e x-23ax3-ax2,a∈R.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数y=f(x)有三个极值点,求实数a的取值范围.解析(1)当a=0时,f(x)=x e x⇒f′(x)=e x+x e x⇒f′(1)=2e,又f(1)=e,故曲线y=f(x)在x=1处的切线方程为y-e=2e(x-1),化简得y=2e x-e.(2)因为f′(x)=e x(x+1)-2ax(x+1)=(x+1)(e x-2ax),所以令f′(x)=0⇒(x+1)(e x-2ax)=0⇒x+1=0或e x-2ax=0,由于函数y=f(x)有三个极值点,所以方程e x-2ax=0必有两个不同的实根,设g(x)=e x-2ax,则g′(x)=e x-2a,易知a≤0时,g′(x)>0,g(x)在R上单调递增,不合题意,故a>0,所以g(x)的两个零点必为正数.令g′(x)=0⇒e x-2a=0⇒x=ln(2a),所以在x∈(-∞,ln(2a))时,g′(x)<0,g(x)单调递减;在x∈(ln(2a),+∞)时,g′(x)>0,g(x)单调递增.依题意,要使得函数g(x)=e x-2ax有两个不同的零点x1,x2(x1<x2),则g(x)min=g(ln(2a))<0,于是e ln(2a)-2a ln(2a)<0⇒2a-2a ln(2a)<0⇒1-ln(2a)<0⇒a>e2.所以当a >e2时,在x ∈(-∞,-1)时,f ′(x )<0,f (x )单调递减,在x ∈(-1,x 1)时,f ′(x )>0,f (x )单调递增,在x ∈(x 1,x 2)时,f ′(x )<0,f (x )单调递减,在x ∈(x 2,+∞)时,f ′(x )>0,f (x )单调递增. 故实数a 的取值范围是⎝⎛⎭⎫e2,+∞. 【对点训练】1.若函数f (x )=(x +a )e x 的极值点为1,则a =( )A .-2B .-1C .0D .11.答案 A 解析 f ′(x )=e x +(x +a )e x =(x +a +1)e x .由题意知f ′(1)=e(2+a )=0,∴a =-2.故选A . 2.已知函数f (x )=x (x -c )2在x =2处有极小值,则实数c 的值为( )A .6B .2C .2或6D .02.答案 B 解析 由f ′(2)=0可得c =2或6.当c =2时,结合图象(图略)可知函数先增后减再增,在x =2处取得极小值;当c =6时,结合图象(图略)可知,函数在x =2处取得极大值.故选B .3.已知函数f (x )=ax 3+bx 2+cx -17(a ,b ,c ∈R )的导函数为f ′(x ),f ′(x )≤0的解集为{x |-2≤x ≤3},若f (x )的 极小值等于-98,则a 的值是( )A .-8122B .13C .2D .53.答案 C 解析 由题意,f ′(x )=3ax 2+2bx +c ,因为f ′(x )≤0的解集为{x |-2≤x ≤3},所以a >0,且-2+ 3=-2b 3a ,-2×3=c3a ,则3a =-2b ,c =-18a ,f (x )的极小值为f (3)=27a +9b +3c -17=-98,解得a=2,b =-3,c =-36,故选C .4.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 .4.答案 ⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞ 解析 若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1=0有两个不等实根,故Δ=(-4c )2-12>0,解得c >32或c <-32.所以实数c 的取值范围为⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞.5.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则实数a 的取值范围是________.5.答案 (-∞,-1) 解析 由y ′=e x +a =0得x =ln (-a )(a <0),显然x =ln (-a )为函数的极小值点, 又ln (-a )>0,∴-a >1,即a <-1.6.若函数f (x )=(2-a )⎣⎡⎦⎤(x -2)e x -12ax 2+ax 在⎝⎛⎭⎫12,1上有极大值,则实数a 的取值范围为( ) A .(e ,e) B .(e ,2) C .(2,e) D .(e ,+∞) 6.答案 B 解析 令f ′(x )=(2-a )(x -1)(e x -a )=0,得x =ln a ∈⎝⎛⎭⎫12,1,解得a ∈(e ,e),由题意知, 当x ∈⎝⎛⎭⎫12,ln a 时,f ′(x )>0,当x ∈(ln a ,1)时,f ′(x )<0,所以2-a >0,得a <2.综上,a ∈(e ,2).故选B .7.已知函数f (x )=xln x -ax 在(1,+∞)上有极值,则实数a 的取值范围为( )A .⎝⎛⎦⎤-∞,14B .⎝⎛⎭⎫-∞,14C .⎝⎛⎦⎤0,14D .0,147.答案 B 解析 f ′(x )=ln x -1(ln x )2-a ,设g (x )=ln x -1(ln x )2=1ln x -1(ln x )2,因为函数f (x )在(1,+∞)上有极值,所以f ′(x )=g (x )-a 有正有负.令1ln x =t ,由x >1可得ln x >0,即t >0,得到y =t -t 2=-⎝⎛⎭⎫t -122+14≤14.所以a <14,故选B .8.若函数f (x )=x 2-x +a ln x 有极值,则实数a 的取值范围是________.8.答案 ⎝⎛⎭⎫-∞,18 解析 f (x )的定义域为(0,+∞),f ′(x )=2x -1+a x =2x 2-x +a x ,由题意知y =f ′(x )有 变号零点,令2x 2-x +a =0,即a =-2x 2+x (x >0),令φ(x )=-2x 2+x =-2⎝⎛⎭⎫x -142+18(x >0),其图象如图所示,故a <18.9.若函数f (x )=12x 2+(a -1)x -a ln x 存在唯一的极值,且此极值不小于1,则实数a 的取值范围为________.9.答案 ⎣⎡⎭⎫32,+∞ 解析 对函数求导得f ′(x )=x -1+a ⎝⎛⎭⎫1-1x =(x +a )(x -1)x ,x >0,因为函数存在唯 一的极值,所以导函数存在唯一的零点,且零点大于0,故x =1是唯一的极值点,此时-a ≤0,且f (1)=-12+a ≥1,所以a ≥32.10.已知函数f (x )=x ln x +m e x (e 为自然对数的底数)有两个极值点,则实数m 的取值范围是__________. 10.答案 ⎝⎛⎭⎫-1e ,0 解析 f (x )=x ln x +m e x (x >0),∴f ′(x )=ln x +1+m e x(x >0),令f ′(x )=0,得-m =ln x +1e x, 设g (x )=ln x +1e x ,则g ′(x )=1x -ln x -1e x(x >0),令h (x )=1x -ln x -1,则h ′(x )=-1x 2-1x <0(x >0),∴h (x )在(0,+∞)上单调递减且h (1)=0,∴当x ∈(0,1]时,h (x )≥0,即g ′(x )≥0,g (x )在(0,1]上单调递增;当x ∈(1,+∞)时,h (x )<0,即g ′(x )<0,g (x )在(1,+∞)上单调递减,故g (x )max =g (1)=1e ,而当x →0时,g (x )→-∞,当x →+∞时,g (x )→0,若f (x )有两极值点,只要y =-m 和g (x )的图象在(0,+∞)上有两个交点,只需0<-m <1e ,故-1e<m <0.11.已知函数f (x )=x ln x -12ax 2-2x 有两个极值点,则实数a 的取值范围是________.11.答案 ⎝⎛⎭⎫0,1e 2 解析f (x )的定义域为(0,+∞),且f ′(x )=ln x -ax -1.根据题意可得f ′(x )在(0,+∞) 上有两个不同的零点,则ln x -ax -1=0有两个不同的正根,从而转化为a =ln x -1x 有两个不同的正根,所以y =a 与y =ln x -1x 的图象有两个不同的交点,令h (x )=ln x -1x ,则h ′(x )=2-ln xx 2,令h ′(x )>0得0<x <e 2,令h ′(x )<0得x >e 2,所以函数h (x )在(0,e 2)为增函数,在(e 2,+∞)为减函数,又h (e 2)=1e 2,x →0时,h (x )→-∞,x →+∞时,h (x )→0,所以0<a <1e2.12.已知函数f (x )=xex -a .若f (x )有两个零点,则实数a 的取值范围是( )A .[0,1)B .(0,1)C .⎝⎛⎭⎫0,1eD .⎣⎡⎭⎫0,1e 12.答案 C 解析 f ′(x )=1-xe x ,所以f ′(x ),f (x )的变化如下表: x (-∞,1) 1 (1,+∞) f ′(x ) + 0 -f (x )极大值若a =0,x >0时,f (x )>0,f (x )最多只有一个零点,所以a ≠0.若f (x )有两个零点,则1e -a >0,即a <1e ,结合a =0时f (x )的符号知0<a <1e .故选C .。