2020年高考数学专题讲解:立体几何(一)
2020年高考数学专题+一+第一关+以圆锥曲线的几何性质为背景的选择题 (2)

2020年高考数学专题一 压轴选择题第三关 以棱柱、棱锥与球的组合体为背景的选择题【名师综述】球作为立体几何中重要的旋转体之一,成为考查的重点.要熟练掌握基本的解题技巧.还有球的截面的性质的运用,特别是其它几何体的内切球与外接球类组合体问题,以及与球有关的最值问题,更应特别加以关注的.试题一般以小题的形式出现,有一定难度.解决问题的关键是画出正确的截面,把空间“切接”问题转化为平面“问题”处理.类型一 四面体的外接球问题典例1.【2018河南漯河中学三模】已知三棱锥的底面是以为斜边的等腰直角三角形, ,则三棱锥的外接球的球心到平面的距离为( ) A.B.C.D.【答案】A【解析】由图可知, ,得,解得, ,故选A。
S ABC -AB 4,4AB SA SB SC ====ABC32222OB OD DB =+()224r r=+3r =d ∴=【方法指导】本题属于三棱锥的外接球问题,当三棱锥的某一顶点的三条棱两两垂直,可将其补全为长方体或长方体,三棱锥与长方体的外接球是同一外接球,而长方体的外接球的在球心就是对角线的交点,那么对角线就是外接球的直径2222c b a R ++=,c b a ,,分别指两两垂直的三条棱,进而确定外接球表面积.【举一反三】【2018南宁摸底联考】三棱锥 中, 为等边三角形, , ,三棱锥 的外接球的体积为( ) A.B.C. D.【答案】B【解析】由题意可得PA,PB ,PC 两两相等,底面是正三角形,所以三棱锥P-ABC 是正棱锥,P 在底面的身影是底面正三角形的中心O ,由 面PAO ,再由 ,可知 面PBC,所以可知 ,即PA,PB,PC 两两垂直,由于是球外接球,所以正三棱锥P-ABC 可以看成正方体切下来的一个角,与原正方体共外接球,所以。
类型二 三棱柱的外接球问题典例2.已知三棱柱111ABC A B C -的侧棱垂直于底面,各项点都在同一球面上,若该棱柱,2AB =,1AC =,60BAC ∠=,则此球的表面积等于( ) A.2π B.4π C.6π D.8π 【答案】D.【解析】由已知条件得:1121sin 602AA ⨯⨯⨯⨯=12AA =,∵2222cos60BC AB AC AB AC =+-⨯⨯,∴BC =,设ABC ∆的外接圆的半径为R ,则2sin 60BCR =,∴1R ==,∴球的表面积等于248ππ=.【名师指导】确定球心位置是解决相关问题的关键,确定一个点到多面体各顶点相等的策略是将问题分解,即先确定到顶点A B C 、、距离相等的点在过ABC ∆的外心且垂直于平面ABC 的直线上,再确定到顶点111A B C 、、距离相等的点过111A B C ∆的外心且垂直于平面111A B C 的直线上,故直三棱柱111ABC A B C -的外接球球心为连接上下底面外心的线段的中点,进而可确定外接球半径.【举一反三】【陕西省榆林市2018届高考模拟第一次测试】已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若13,4,,12AB AC AB AC AA ==⊥=,则球O 的直径为( ) A. 13B.C.D. 2【答案】A【解析】因为三棱柱ABC ﹣A 1B 1C 1的6个顶点都在球O 的球面上,若AB=3,AC=4,AB ⊥AC ,AA 1=12,所以三棱柱的底面是直角三角形,侧棱与底面垂直,△ABC 的外心是斜边的中点,上下底面的中心连线垂直底面ABC ,其中点是球心, 即侧面B 1BCC 1,经过球的球心,球的直径是侧面B 1BCC 1的对角线的长, 因为AB=3,AC=4,BC=5,BC 1=13, 所以球的直径为:13. 故答案为:A 。
湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

专题五立体几何第1讲空间几何体的三视图、表面积及体积真题试做1.(2020·湖南高考,文4)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( ).图12.(2020·天津高考,文10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为__________ m3.3.(2020·湖北高考,文15)已知某几何体的三视图如图所示,则该几何体的体积为______.4.(2020·湖北高考,文19)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCDA2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理.已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?考向分析通过对近几年高考试题的分析可看出,空间几何体的命题形式比较稳定,多为选择题或填空题,有时也出现在解答题的某一问中,题目常为中、低档题.考查的重点是直观图、三视图、面积与体积等知识,此类问题多为考查三视图的还原问题,且常与空间几何体的表面积、体积等问题交会,是每年的必考内容.预计在2020年高考中:对空间几何体的三视图的考查有难度加大的趋势,通过此类题考查考生的空间想象能力;对表面积和体积的考查,常见形式为蕴涵在两几何体的“切”或“接”形态中,或以三视图为载体进行交会考查,此块内容还要注意强化几何体的核心——截面以及补形、切割等数学思想方法的训练.热点例析热点一空间几何体的三视图与直观图【例1】(1)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的侧(左)视图为( ).(2)若某几何体的三视图如下图所示,则这个几何体的直观图可以是( ).规律方法 (1)三视图的正(主)视图、侧(左)视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,反映了一个几何体各个侧面的特点.正(主)视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图要和正(主)视图对正,画在正(主)视图的正下方;侧(左)视图要画在正(主)视图的正右方,高度要与正(主)视图平齐;(2)要注意到在画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线; (3)A .32B .16+16 2C .48 D.16+32 2(2)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是( ).A.12+22 B .1+22 C .1+ 2 D .2+ 2 热点二 空间几何体的表面积与体积【例2】(2020·福建高考,文20)如图,在四棱锥P ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P ABCD 的体积.规律方法 (1)求几何体的体积问题,可以多角度、多方位地考虑.对于规则的几何体的体积,如求三棱锥的体积,采用等体积转化是常用的方法,转化的原则是其高与底面积易求;对于不规则几何体的体积常用割补法求解,即将不规则几何体转化为规则几何体,以易于求解.(2)求解几何体的表面积时要注意S 表=S 侧+S 底.(3)对于给出几何体的三视图,求其体积或表面积的题目关键在于要还原出空间几何体,并能根据三视图的有关数据和形状推断出空间几何体的线面关系及相关数据,至于体积或表面积的求解套用对应公式即可.变式训练2 已知某几何体的三视图如下图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为( ).A .24-32πB .24-13πC .24-πD .24-12π热点三 多面体与球【例3】已知正四棱锥的底面边长为a ,侧棱长为2a . (1)求它的外接球的体积; (2)求它的内切球的表面积.规律方法 (1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.(2)若球面四点P ,A ,B ,C 构成的线段PA ,PB ,PC 两两垂直,且PA =a ,PB =b ,PC =c ,则4R 2=a 2+b 2+c 2,把有关元素“补形”成为一个球内接正方体(或其他图形),从而显示出球的数量特征,这种方法是一种常用的好方法.变式训练3 如图所示,在四棱锥P ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a .若在这个四棱锥内放一球,则此球的最大半径是__________.思想渗透立体几何中的转化与化归思想求空间几何体的体积时,常常需要对图形进行适当的构造和处理,使复杂图形简单化,非标准图形标准化,此时转化与化归思想就起到了至关重要的作用.利用转化与化归思想求空间几何体的体积主要包括割补法和等体积法,具体运用如下:(1)补法是指把不规则的(不熟悉或复杂的)几何体延伸或补成规则(熟悉的或简单的)的几何体,把不完整的图形补成完整的图形;(2)割法是指把复杂的(不规则的)几何体切割成简单的(规则的)几何体;(3)等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件转化为易求的面积(体积)问题.【典型例题】如图,在直三棱柱ABC A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ; (2)求三棱锥E BCD 的体积.(1)证明:取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1BB 1.而D 是AA 1的中点,所以EG AD ,所以四边形EGAD 是平行四边形,所以ED ∥AG . 又DE 平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解:因为AD ∥BB 1,所以AD ∥平面BCE , 所以V E BCD =V D BCE =V A BCE =V E ABC .由(1)知,DE ∥平面ABC ,所以V E ABC =V D ABC =13AD ·12BC ·AG =16×3×6×4=12.1.(2020·山东济南三月模拟,4)如图,正三棱柱ABC A 1B 1C 1的各棱长均为2,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为( ).A .2 2B .4 C. 3 D .2 32.(2020·安徽安庆二模,7)一空间几何体的三视图如图所示(正(主)、侧(左)视图是两全等图形,俯视图是圆及圆的内接正方形),则该几何体的表面积是( ).A .7π cm 2B .(5π+43)cm 2C .(5π+23)cm 2D .(6π+27-2)cm 23.(2020·北京丰台区三月月考,4)若某空间几何体的三视图如图所示,则该几何体的体积是( ).A .20-2πB .20-23πC .40-23πD .40-43π4.(2020·湖南株洲下学期质检,14)一个三棱锥的正(主)视图、侧(左)视图、俯视图如下,则这个三棱锥的体积为__________,其外接球的表面积为__________.5.已知正四面体的外接球半径为1,则此正四面体的体积为__________.6.正六棱锥P ABCDEF 中,G 为PB 的中点,则三棱锥D GAC 与三棱锥P GAC 体积之比为__________.7.如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED ,EC 向上折起,使A ,B 重合,求形成三棱锥的外接球的体积.参考答案命题调研·明晰考向真题试做1.C 解析:若为C 选项,则主视图为:故不可能是C 选项.2.30 解析:由几何体的三视图可知:该几何体的上部为平放的直四棱柱,底部为长、宽、高分别为4 m,3 m,2 m 的长方体.∴几何体的体积V =V 直四棱柱+V 长方体=(1+2)×12×4+4×3×2=6+24=30(m 3).3.12π 解析:该几何体是由3个圆柱构成的几何体,故体积V =2×π×22×1+π×12×4=12π.4.解:(1)因为四棱柱ABCD A 2B 2C 2D 2的侧面是全等的矩形,所以AA 2⊥AB ,AA 2⊥AD .又因为AB ∩AD =A ,所以AA 2⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以AA 2⊥BD . 因为底面ABCD 是正方形,所以AC ⊥BD .又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥BD .于是由AA 2⊥BD ,AC ⊥BD ,B 1D 1∥BD ,可得AA 2⊥B 1D 1,AC ⊥B 1D 1. 又因为AA 2∩AC =A ,所以B 1D 1⊥平面ACC 2A 2.(2)因为四棱柱ABCD A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形,所以S 1=S 四棱柱上底面+S四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1 300(cm 2).又因为四棱台A 1B 1C 1D 1ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形(其高为h ),所以S 2=S 四棱台下底面+S 四棱台侧面=(A 1B 1)2+4×12(AB +A 1B 1)h=202+4×12×(10+20)132-⎣⎢⎡⎦⎥⎤12×(20-10)2=1 120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1 300+1 120=2 420(cm 2), 故所需加工处理费为0.2S =0.2×2 420=484(元). 精要例析·聚焦热点热点例析【例1】 (1)D (2)B 解析:(1)被截去的四棱锥的三条可见侧棱中有两条为正方体的面对角线,它们在右侧面上的投影与右侧面(正方形)的两条边重合,另一条为正方体的对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图及对角线方向,只有选项D 符合.(2)由正(主)视图可排除A ,C ;由侧(左)视图可判断该几何体的直观图是B.【变式训练1】 (1)B (2)D 解析:(1)由三视图知原几何体是一个底面边长为4,高是2的正四棱锥.如图:∵AO =2,OB =2,∴AB =2 2.又∵S 侧=4×12×4×22=162,S 底=4×4=16,∴S 表=S 侧+S 底=16+16 2.(2)如图,设直观图为O ′A ′B ′C ′,建立如图所示的坐标系,按照斜二测画法的规则,在原来的平面图形中,OC ⊥OA ,且OC =2,BC =1,OA =1+2×22=1+2,故其面积为12×(1+1+2)×2=2+ 2.【例2】 (1)证明:因为PA ⊥平面ABCD ,CE ⊂平面ABCD ,所以PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD . 又PA ∩AD =A ,所以CE ⊥平面PAD . (2)解:由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 又因为AB =CE =1,AB ∥CE , 所以四边形ABCE 为矩形.所以S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE =1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,所以V 四棱锥P ABCD =13S 四边形ABCD ·PA =13×52×1=56.【变式训练2】 A 解析:由三视图可知该几何体为一个长、宽、高分别为4,3,2的长方体,剖去一个半圆柱而得到的几何体,其体积为2×3×4-12π×1×3,即24-32π.【例3】 解:如图所示,△SAC 的外接圆是外接球的一个大圆,∴只要求出这个外接圆的半径即可,而内切球的球心到棱锥的各个面的距离相等,∴可由正四棱锥的体积求出其半径.(1)设外接球的半径为R ,球心为O ,则OA =OC =OS ,∴O 为△SAC 的外心,即△SAC 的外接圆半径就是球的半径. ∵AB =BC =a ,∴AC =2a .∵SA =SC =AC =2a ,∴△SAC 为正三角形.由正弦定理得2R =AC sin∠ASC =2a sin 60°=263a ,因此R =63a ,V 外接球=43πR 3=8627πa 3. (2)如图,设内切球的半径为r ,作SE ⊥底面于E ,作SF ⊥BC 于F ,连接EF , 则有SF =SB 2-BF 2=(2a )2-⎝ ⎛⎭⎪⎫a 22=72a ,S △SBC =12BC ·SF =12a ×72a =74a 2, S 棱锥全=4S △SBC +S 底=(7+1)a 2.又SE =SF 2-EF 2=⎝ ⎛⎭⎪⎫72a 2-⎝ ⎛⎭⎪⎫a 22=62a ,∴V 棱锥=13S 底·SE =13a 2×62a =66a 3,∴r =3V 棱锥S 棱锥全=3×66a 3(7+1)a 2=42-612a ,S 内切球=4πr 2=4-73πa 2. 【变式训练3】 12(2-2)a 解析:当且仅当球与四棱锥的各个面都相切时,球的半径最大.设放入的球的半径为r ,球心为O ,连接OP ,OA ,OB ,OC ,OD ,则把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面分别为原四棱锥的侧面和底面,则V P ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意知PD ⊥底面ABCD ,∴V P ABCD =13S 正方形ABCD ·PD =13a 3.由体积相等,得13r (2+2)a 2=13a 3,解得r =12(2-2)a .创新模拟·预测演练1.D2.D 解析:据三视图可判断该几何体是由一个圆柱和一个正四棱锥组合而成的,直观图如图所示:易求得表面积为(6π+27-2)cm 2.3.B 解析:由三视图可知该几何体的直观图为一个正四棱柱,从上表面扣除半个内切球.易求出正四棱柱的底面边长为2,内切球的半径为1,故体积为2×2×5-23π=20-2π3.4.4 29π 5.827 3 解析:首先将正四面体补形为一个正方体,设正四面体棱长为a ,则其对应正方体的棱长为22a ,且由球与正方体的组合关系易知3⎝ ⎛⎭⎪⎫22a 2=(1×2)2,解得a 2=83, ∴正四面体的体积为V =⎝ ⎛⎭⎪⎫22a 3-4×13×12×⎝ ⎛⎭⎪⎫22a 3=13⎝ ⎛⎭⎪⎫22a 3=827 3.6.2∶1 解析:由正六棱锥的性质知,点P 在底面内的射影是底面的中心,也是线段AD的中点.又G 为PB 的中点,设P 点在底面内的射影为O ,则G 点在底面内的射影为OB 的中点M ,且GM ∥PO .又M 为AC 的中点,则GM ⊂平面GAC ,所以点P 到平面GAC 的距离等于点O 到平面GAC 的距离.又因为OM ⊥平面GAC ,DC ⊥平面GAC ,且DC =2OM ,则V D GAC V P GAC =13S △GAC ×DC13S △GAC ×OM =2.7.解:由已知条件知,平面图形中AE =EB =BC =CD =DA =DE =EC =1,∴折叠后得到一个棱长为1的正三棱锥(如图). 方法一:作AF ⊥平面DEC ,垂足为F , F 即为△DEC 的中心,取EC 中点G ,连接DG ,AG , 过球心O 作OH ⊥平面AEC , 则垂足H 为△AEC 的中心,∴外接球半径可利用△OHA ∽△AFG 求得. ∵AG =32,AF =1-⎝⎛⎭⎪⎫332=63,AH =33, ∴OA =AG ·AHAF =32×3363=64,∴外接球体积为43π×OA 3=43·π·6643=68π.方法二:如图,把棱长为1的正三棱锥放在正方体中,显然,棱长为1的正三棱锥的外接球就是正方体的外接球.∵正方体棱长为22, ∴外接球直径2R =3·22, ∴R =64,∴体积为43π·⎝ ⎛⎭⎪⎫643=68π.。
2020年高考全国Ⅰ卷立体几何试题解析及备考建议

2020年高考全国Ⅰ卷立体几何试题解析及备考建议广州市执信中学(510080)朱清波2020年高考全国Ⅰ卷对立体几何知识点的考查延续了近几年较为稳定的命题特点,依然分为客观题和主观题两部分,其中理科客观题有3道,主观题1道;而对应文科试卷中相关知识点的考查为客观题2道,主观题1道,其中2道客观题与理科同题,只是个别题序有所不同.该特征表明全国卷继续朝新高考文理同卷模式在平稳过渡,试题重点考查考生空间想象能力、推理论证能力以及运算求解能力.但从本次考试评卷反馈结果来看,客观题依旧暴露出考生空间想象能力不足的问题,而主观题求解过程中因为需要涉及大量带根号结构的边长运算,考生运算能力弱导致出现题平均得分比往年降低较多的现象,这一事实需要我们在下一年备考中引起足够的重视和针对性复习.以下就2020年高考试题中立体几何部分试题分析其特点,明确下阶段备考复习方向并提出相关建议.一、2020年高考Ⅰ卷文理卷立体几何试题解答与评析题目1(文理科第3题)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.√5−14B.√5−12C.√5+14D.√5+12解答如图1,设E 为CD 中点,连接P E .不妨设CD =a,P E =b ,则P O =√P E 2−OE 2=√b 2−a 42,由题意P O 2=12ab ,化简得b 2−a 24=12ab ,即4(ba )2−2(ba )−1=0,解得b a =1+√54(负根不符题意,舍去),故选C.图1图2评析本题既渗透了数学文化,又融入了美育教育,题干中的关键词“形状可视为”揭示金字塔的真实形态和数学抽象后的细微差别.题目主要考查正四棱锥相关的概念及其数学运算能力,如棱锥的高以及侧面三角形等基本概念,总体难度不高.题目2(文科第12题、理科第10题)已知A,B,C 为球O 的球面上的三个点,⊙O 1为∆ABC 的外接圆,若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为A.64πB.48πC.36πD.32π解答如图2,设圆O 1半径为r ,球O 的半径为R ,依题意,πr 2=4π,解得r =2.又∆ABC 为等边三角形,由正弦定理有AB =2r sin 60◦=2√3,故OO 1=AB =2√3,又OO 1⊥平面ABC ,则OO 1⊥O 1A,R =OA =√OO 12+O 1A 2=√OO 12+r 2=4,所以球O 的表面积S =4πR 2=64π,故选A.评析本题考查球体的表面积公式,需要学生有一定空间想象能力,能根据所给条件粗略画出满足条件的空间图形,当然应用球的截面性质和平面几何中的一些常规结论是正确解出本道题的关键,总体难度中等.题目3(理科第16题)如图3,在三棱锥P –ABC 的平面展开图中,AC =1,AB =AD =√3,AB ⊥AC ,AB ⊥AD ,∠CAE =30◦,则cos ∠F CB =.解答由题意AB ⊥AC ,AB =√3,AC =1,由勾股定理得BC =√AB 2+AC 2=2,图3同理得BD =√6,所以BF =BD =√6.在∆ACE 中,AC =1,AE =AD =√3,∠CAE =30◦,由余弦定理得CE 2=AC 2+AE 2−2AC ×AE cos 30◦=1+3−2×1×√3×√32=1,则CF =CE =1,在∆BCF 中,BC =2,BF =√6,CF =1,再由余弦定理得cos ∠F CB =CF 2+BC 2−BF 22CF ·BC =1+4−62×1×2=−14.故答案为−14.评析本题充分体现了高考试题灵活多变的特点,命题形式并没有遵循众多模拟题中空间翻折问题平面化后求值或求最值的套路,而是通过翻折平面化后的结构反向推测原几何体的结构特征,以此考查学生的空间想象能力.这需要考生会利用平面图形翻折回到空间结构过程中的不变量来架设桥梁,再利用各种已知数据解三角形,考查学生计算和数据处理的能力,本题综合性较强,考生有思路但未必能计算准确,从难度上来分析属于中档题.题目4(文科第19题)如图4,D为圆锥的顶点,O是圆锥底面的圆心,∆ABC是底面的内接正三角形,P为DO上一点,∠AP C=90◦.(1)证明:平面P AB⊥平面P AC;(2)设DO=√2,圆锥的图4侧面积为√3π,求三棱锥P−ABC的体积.解答第(1)问的证法1.由题设可知,P A=P B= P C.由于∆ABC是正三角形,故可得∆P AC =∆P AB,∆P AC =∆P BC.又∠AP C=90◦,故∠AP B=90◦,∠BP C=90◦.从而P B⊥P A,P B⊥P C,P A∩P C=P,故P B⊥平面P AC,P B⊂平面P AB,所以平面P AB⊥平面P AC.评析该思路即为本题预设的最常规的处理方式,考生经过分析将要证明“面面垂直”的方向调整到先证明“线面垂直”,继而反向去寻找线面垂直中的那条“线”,最后去探究两组线线垂直的思路,而学生利用平面几何的全等条件很容易构建上述思路,当然利用结构的对称性重点证明其中一组就可以了,同理本题通过证明“P C⊥平面P AB”来得到“平面P AC⊥平面P AB”这一结论也是可行的.这也体现了高考立体几何综合题“低起点入口宽”的基本特点.第(1)问的证法2.如图5,由题设可知,P O⊥平面ABC.所以P O⊥AB,连接CO,延长CO交AB于点E,则CO⊥AB,从而AB⊥面P OC,所以AB⊥P C,由于∠AP C= 90◦,则P C⊥P A,所以P C⊥面图5P AB,而P C⊂平面P AC,则有面P AC⊥面P AB.评析该思路另辟蹊径,运用该方式处理的考生很大一个可能是头脑中有一个基本模型所形成的结论:直角四面体的对棱异面垂直(AB⊥P C),有了该结论后再围绕这个点去寻找本题需证结论的其它条件,最后进行思路整合,因此该方法能体现出部分学生的立体几何知识储备和学科基本素养.第(2)问的证法1.设圆锥的底面半径为r,母线长为l.由题设可得rl=√3,l2−r2=2.解得r=1, l=√3.从而AB=√3.由(1)可得P A2+P B2=AB2,故P A=P B=P C=√62,所以三棱锥P−ABC的体积为V=13×12×P A×P B×P C=13×12×(√62)3=√68.评析本题第(2)问主要考查锥体体积公式和侧面积公式,根据所给条件假设并解出几个基本量,再结合第一问的相关结论来计算出对应几何体体积,难点在于侧面积公式和体积公式的记忆是否准确,另一个就是考生临场选择三棱锥底面和对应高的灵活性,因此本题得分的特点是极差较大.第(2)问的证法2.设⊙O的半径为r,由S侧面积= 12·2πr·√2+r2=√3π,得r=1,从而AB=√3,注意到S∆ABC=√34×3=3√34,在∆AP O中AP=√62, OP=√22,所以V P−ABC=13×3√34×√22=√68.评析该思路与第一种方法比较而言,主要是选择几何体的底面和高相对更常规,但运算量更大,同时依旧在考查锥体侧面积公式和体积公式的结构,其难点还是在两个公式的记忆是否准确以及考生是否具备较强的计算能力.题目5(理科第18题)如图6,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD,∆ABC是底面内接正三角形,P为DO上一点,P O=√66DO.(1)证明:P A⊥平面P BC;(2)求二面角B−P C−E图6的余弦值.解答第(1)问证法1(几何法1).设DO=a,由题设可得P O=√66a,AO=√33a,AB=a, P A=P B=P C=√22a.因此P A2+P B2=AB2,从而P A⊥P B.又P A2+P C2=AC2,故P A⊥P C.而P B∩P C=P,所以P A⊥平面P BC.评析本小问考查目标指向较为明确,考生只需要找到两组线线垂直的关系即可,而垂直关系的证明指向很容易将思路转换到求各种长度再利用勾股逆定理检验是否成立,因此对基础边长的设定和相关长度的运算就显得尤为重要,本题的第一问主要是考查逻辑推理,难点在于边长计算的准确性.从评卷反馈来看,无论怎样设定单位长度,部分线段的长度始终带有根号结构,导致运算出错率非常高,而相当多的考生明知计算出来的边长不能形成直角三角形也不作修改,抱着侥幸的心理去书写后续过程,也说明其对运算的信心是严重不足的.第(1)问证法2(几何法2).如图7,由题意,O 是∆ABC 的外心,故BC ⊥AO ,又P O ⊥面ABC ,BC ⊂面ABC ,则P O ⊥BC ,又P O ∩AO =O ,故BC ⊥面P AO ,P A ⊂面P AO ,故BC ⊥P A ,设AO 的延长线交BC 于M ,则M 为BC 中点,连接P M ,不妨设OA =OB =OC =1,则AD =2,DO =√DA 2−AO 2=√3,P O =√66×√3=√22,P A =√62,AM =32,P M =√32,由P A 2+P M 2=AM 2,则P A ⊥P M ,而BC ∩P M =M ,则P A ⊥面P BC .评析与第一种方法思路不同的是,部分理科考生受到惯性思维的影响,通过日常积累的小结论,容易先发现“利用BC ⊥面P AO 得到BC ⊥P A ”这一基本事实,然后找不到其它方向后思路再转换到勾股逆定理方向去证明剩余一组垂直关系,但证明完垂直关系后才发现会有更多的线线垂直方法,总的来说考生用这种思路来处理表明其欠缺一些整体思考,没有梳理好方向就开始答题导致其证明过程走了一些弯路.图7图8第(1)问证法3(向量法).如图8,以O 为坐标原点,以−→OA 方向为x 轴正方向,以−−→OD 方向为z 轴正方向,建立直角坐标系.设AE =AD =a ,依题意得P(0,0,√24a ),E (−a 2,0,0),A (a 2,0,0),B (−a 4,√34a,0),C (−a 4,−√34a,0),所以−→P A =(a 2,0,−√24a ),−−→P B =(−a 4,√34a,−√24a ),−−→P C =(−a 4,−√34a,−√24a ),由−→P A ·−−→P B =0,所以−→P A ⊥−−→P B ,同理−→P A ·−−→P C =0,所以−→P A ⊥−−→P C ,而P B ∩P C =P ,又P A ⊂面P BC ,所以P A ⊥面P BC .评析该思路也很自然,因为本题的两问都是研究一个相对较为规则结构的性质,考生自然会想到用建系设坐标来处理整道题,但难点在于基础边长的设定和对应点的坐标需准确无误的写出来,否则后续计算毫无意义;而实际评卷反馈中有大量考生建系方式出错或建系方式与对应坐标数据不一致,用错误的坐标数据得出了部分正确的结论,因此得分并不理想.第(1)问证法4(基底法).设DO =1,则P O =√66,OA =OB =√33,−→P A ·−−→P B =(−−→P O +−→OA )·(−−→P O +−−→OB )=−−→P O 2+−→OA ·−−→OB=16+√33·√33cos 120◦=16−16=0.所以,P A ⊥P B .同理得P A ⊥P C ,而P B ∩P C =P ,所以P A ⊥面P BC .评析用该方法处理的考生敏锐的捕捉到了该几何体中存在共点的三条棱,夹角明确且棱长均可求,体现了向量作为运算工具的优越性.第(2)问解法 1.如图9,以O 为坐标原点,−−→OE 的方向为y 轴的正方向,不妨|−−→OE |为单位长,建立如图所示的空间直角坐标系O −xyz .由题设可得E (0,1,0),图9A (0,−1,0),C (−√32,12,0),P (0,0,√22),所以−−→EC =(−√32,−12,0),−−→EP =(0,−1,√22),−−→CP =(√32,−12,√22).设m =(x,y,z )是平面P CE 的法向量,则m ·−−→EP =0,m ·−−→EC =0,即 −y +√22z =0,−√32x −12y =0.1⃝可取m =(−√33,1,√2)2⃝由(1)知−→AP =(0,1,√22)是平面P CB 的一个法向量,记n =−→AP ,则cos ⟨n ,m ⟩=n ·m |n |·|m |=2√55.由图可知,二面角B −P C −E 的余弦值为2√55.评析本小问较为常规,首先是建系可以选择不同的方位,边长的设定也比较灵活,但部分考生缺乏整体意识,忽略了第一问对第二问的帮助,导致重新去求面的法向量,当然因为坐标中根号结构较多,对学生计算能力有较高的要求,另外考生需明晰法向量的夹角和二面角的平面角的区别,下结论需要严谨.第(2)问解法2(等体积法).如图10,过B 作面P CE 的垂线BM ,垂足为M ,设OA =1,则OP =√22,P B =P C =√62,BC =√3由P B 2+P C 2=BC 2,所以BP ⊥P C ,故∠BP M为二面角B −P C −E 的平面角,又S ∆P CE =√54,S ∆BCE =√34,图10利用等体积法BM =S ∆BCE ·P O S ∆P CE=√3010,sin ∠BP M =BM BP =√3010·2√6=√55,则cos ∠BP M =2√55.评析利用等体积法求二面角的平面角,基本模式是“设—证—求”三步骤的模式,对几何体的结构是否方正要求不高,算法结构也比较清晰,但对考生的空间想象能力要求较高,运算量也比较大,与建系运算的方式相比各有优势,因此两种方法都需要灵活掌握.二、备考复习建议1重视立体几何中的基本概念,加强对立体几何中公式和定理的理解近几年高考关于立体几何的考查都突出了基础性,教材在编写上实际上已经充分考虑到了学生的认知规律,内容安排上体现了由具体到一般,而考点要求从合情推理过渡到逻辑推理.但教师在教学时往往在概念形成上用时较短,把教学重心放在了后续的公理和定理的应用上,而考生在答题时对基本概念认知不清晰和运算所需公式记忆出错是得分不理想的一个重要原因,如本次高考试题中出现的正四棱锥概念、球体的表面积公式以及圆锥的侧面积公式等,均需要考生在备考复习过程中熟练掌握;在评卷过程中,也发现部分学生不确定圆锥顶点在底面上的投影是否为底面内接正三角形的重心,花了较长篇幅去论证这一基本的结论;也有学生在处理理科18题第一问时用向量的思路去证明线面垂直,但方向却是去证明−→P A ·n =0,这表明学生并没有弄清相关原理;还有学生直接通过面面垂直得到线面垂直或线线垂直等错误的推理来论证答题等,上述众多因素导致大题基础得分不乐观,因此在备考复习中一定要重视立体几何章节中各类概念、公式、定理的再回顾.2重视立体几何中基本模型和简单基本结论通过查阅近几年高考对本章内容的考点,不难发现其对基本模型的考查频率是较高的,如正棱柱和正棱锥、球体,圆锥等,而相关几何体结构中的基本结论需要学生在日常复习中要做到了然于胸,如柱体、锥体外接球球心的位置规律、正方体的内嵌正四面体中点与线的位置关系、平面几何中圆的垂径定理类比到空间的相关性质等,通过平时的积累,让考生在临场发挥时能快速准确的找到解题方向.3重视运算求解能力的培养,改善“会而不全”的现象数学运算是学科核心素养之一,也是众多考生在面对立体几何问题最大的挑战,2020年高考理科18题从评卷反馈来看,因为该几何体结构的基础性和对称性,考生出现了近6种建系方案,加上对基础边长的不同设定,约有12种不同的坐标数据出现,但其中近半数方案中能正确写出点的坐标难度较大,特别是根号结构的出现频率高,导致考生运算结果大量出错,许多考生答题思路清晰但往往从坐标数据那里出错,会而不全,导致最后只能拿到较低的步骤分,这也是本题得分率低的最主要原因.教师在日常的备考中,要重视示范一些运算常规技巧,如出现了等分点时可以把基础长度设大一些(变成几个量的最小公倍数),法向量的坐标形式尽量回避分数或分式,坐标数据中负号尽量出现的少一些等,另外不要在关键步骤上尝试心算,书写过程的草稿要尽量集中以便于随时检查等,同时提高相关训练的运算强度,做到限时训练,同时教师要改变课堂上重思维不重运算的教学习惯.4重视书写表达,做到条理清晰论证严谨,提升学生的数学素养立体几何的解答题往往分为证明和求解两个部分,前者主要考查学生的逻辑推理,部分学生在论证过程中字迹书写潦草不易辨认,或者书写过程词不达意,符号和定理乱用;没有思考成熟一边写一边改动,卷面欠缺整洁;当然也有学生答题没有信心,对论证缺乏一个整体的解决方案,写到哪里算哪里.这些现象导致严谨性不够而失分,因此教师需要在平常的教学中做到示范引领,如设定一个基本长度时要用“不妨设”或“不失一般性设”等字眼,明确推理过程是否可以“同理”,书写中慎用“易证”、“易得”等字眼,在新一届的备考训练中,需让学生明确该类问题的证明重心或求解关键点在哪里,明确几种常规的处理手段,通过实践来改进我们的教学策略和提高教学效率.参考文献[1]刘峰.2017年高考立体几何试题分析及备考建议[J].中学数学研究(华南师范大学版),2017(9):49-50.[2]周奇.2019年高考全国Ⅰ卷立体几何试题解析与备考建议[J].中学数学研究(华南师范大学版),2019(9):17-22.。
2020届高考数学专题:立体几何计算问题(答案不全)

立体几何中的计算问题1.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;2.直观图——是观察着站在某一点观察一个空间几何体而画出的图形。
直观图通常是在平行投影下画出的空间图形。
3斜二测法:1.画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y o r ∠=︒︒,它们确定的平面表示水平平面;2.在坐标系'''x o y 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的4倍. 例1.下列命题:①如果一个几何体的三视图是完全相同的,那么这个几何体是正方体;②如果一个几何体的主视图和俯视图都是矩形,那么这个几何体是长方体; ③如果一个几何体的三视图都是矩形,那么这个几何体是长方体;④如果一个几何体的主视图和左视图都是等腰梯形,那么这个几何体是圆台.其中正确的是( )A .①②B .③C .②③D .④ 2、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小.例2.在长方体1111ABCD A B C D -中,11BC CC ==,13AD B π∠=,则直线1AB 与1BC 所成角的余弦值为( )ABCD【答案】D例3.直三棱柱ABC ﹣A 1B 1C 1中,若∠BAC=90°,AB=AC=AA 1,则异面直线 BA 1与AC 1所成的角为( ) A .60°B .90°C .120°D .150°例4.在四面体ABCD 中,AC 与BD 的夹角为30°,2AC =,BD =M ,N 分别是AB ,CD 的中点,则线段MN 的长度为________. 【答案】13.二面角 找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法 (iii)三垂线法(Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.例5.已知正三棱锥底面边长为2,侧棱长为3,则它的侧面与底面所成二面角的余弦值为________.【答案】12例6.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,E .F 分别为1A B ,1A C 的中点,D 为11B C 上的点,且11A D B C ⊥.(1)求证://EF 平面ABC . (2)求证:平面1A FD ⊥平面11BCC B .(3)若三棱柱所有棱长都为a ,求二面角111A B C C --的平面角的余弦值.【答案】(1)见解析;(2)见解析;(3)74.空间几何体的表面积、体积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2S rl r ππ=+圆台的表面积:22Srl r Rl Rππππ=+++扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积 :V S h =⨯底,锥体的体积 :13V S h =⨯底台体的体积 :1)3V S S h =+⨯下上( ,球体的体积:343V R π= 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段; ②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.例8.在长、宽、高分别为a b c ,,的长方体中,以它的各面的中心为顶点可得到一个八面体,则该八面体的体积为________.【答案】16abc例9.如图,在上、下底面对应边的比为1:2的三棱台中,过上底面的一边作一个平行于棱的平面11A B EF ,则这个平面分三棱台成两部分的体积之比为( ).A .1:2B .2:3C .3:4D .4:5【答案】C例10.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA=AD=4,AB=2,以BD 的中点O 为球心、BD 为直径的球面交PD 于点M.⑴求证:平面ABM ⊥平面PCD ; (2)求点O 到平面ABM 的距离.【答案】(1)见解析(2)3例11.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,//FD EA,且112FD EA==.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.【答案】(1)103V=多面体;(2)见解析.5.与球有关的组合体7-2 球的结构特征⑴球心与截面圆心的连线垂直于截面;⑵截面半径等于球半径与截面和球心的距离的平方差:r2 = R2– d2★7-3 球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:⑴根据题意,确定是内接还是外切,画出立体图形;⑵找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;⑶将立体问题转化为平面几何中圆与多边形的问题;例11.已知棱长为a的正四面体,其内切球的半径为r,外接球的半径为R,则:r R= ________.【答案】1:3例12.已知棱长为a的正方体,甲球是正方体的内切球,乙球是正方体的外接球,丙球与正方体的各棱都相切,则甲、乙、丙三球的表面积之比为().A.91:3:4B.1:3:2C.D.31:2【答案】B例13.已知,,,S A B C是球O表面上的点,SA⊥平面,,1,ABC AB BC SA AB BC⊥===则球O的体积为__________.例14.已知一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求:圆锥内切球的体积.(2)2563Vπ=立体几何中的计算问题一、三视图1.将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.【答案】B2.如图所示,A O B '''∆表示水平放置的AOB ∆的直观图,B '在x '轴上,A O ''与x '轴垂直,且2A O ''=,则AOB ∆的OB 边上的高为______.【答案】二、线线角3.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( ) A.3B.3C.4D.4【答案】D4.如图所示为一个正方体的展开图.对于原正方体,给出下列结论: ①AB 与EF 所在直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成60︒角;④MN 与CD 所在直线互相垂直. 其中正确结论的序号是________. 【答案】②④5.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AA AB AC ==,AB AC ⊥,M 是1CC 的中点,Q 是BC 的中点,点P 在11A B 上,则直线PQ 与直线AM 所成的角为( ). A .30° B .45︒C .60︒D .90︒【答案】D 三、二面角问题二面角:关键是找出二面角的平面角。
20届高考数学(理)二轮复习 第2部分 专题3 第2讲 立体几何(1)

第2讲 立体几何(大题)热点一 平行、垂直关系的证明用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.例1 如图,在直三棱柱ADE -BCF 中,平面ABFE 和平面ABCD 都是正方形且互相垂直,点M 为AB 的中点,点O 为DF 的中点.运用向量方法证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .证明 方法一 (1)由题意,得AB ,AD ,AE 两两垂直,以点A 为原点建立如图所示的空间直角坐标系A -xyz .设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝⎛⎭⎫12,0,0,O ⎝⎛⎭⎫12,12,12. OM →=⎝⎛⎭⎫0,-12,-12,BA →=(-1,0,0), ∴OM →·BA →=0,∴OM →⊥BA →. ∵棱柱ADE -BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF . (2)设平面MDF 与平面EFCD 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝⎛⎭⎫12,-1,0,DC →=(1,0,0),CF →=(0,-1,1), 由⎩⎪⎨⎪⎧ n 1·DF →=0,n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,令x 1=1,则n 1=⎝⎛⎭⎫1,12,-12. 同理可得n 2=(0,1,1).∵n 1·n 2=0,∴平面MDF ⊥平面EFCD . 方法二 (1)OM →=OF →+FB →+BM →=12DF →-BF →+12BA →=12(DB →+BF →)-BF →+12BA → =-12BD →-12BF →+12BA →=-12(BC →+BA →)-12BF →+12BA →=-12BC →-12BF →.∴向量OM →与向量BF →,BC →共面, 又BF ,BC ⊂平面BCF ,OM ⊄平面BCF , ∴OM ∥平面BCF .(2)由题意及(1)知,BF ,BC ,BA 两两垂直, ∵CD →=BA →,FC →=BC →-BF →, ∴OM →·CD →=⎝⎛⎭⎫-12BC →-12BF →·BA →=0, OM →·FC →=⎝⎛⎭⎫-12BC →-12BF →·(BC →-BF →) =-12BC →2+12BF →2=0,∴OM →⊥CD →,OM →⊥FC →, 即OM ⊥CD ,OM ⊥FC ,又CD ∩FC =C ,CD ,FC ⊂平面EFCD , ∴OM ⊥平面EFCD .又OM ⊂平面MDF ,∴平面MDF ⊥平面EFCD .跟踪演练1 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AD ⊥CD ,BC =2,AD =CD =1,M 是PB 的中点.(1)求证:AM ∥平面PCD ; (2)求证:平面ACM ⊥平面P AB .证明 (1)如图,以C 为坐标原点建立空间直角坐标系C -xyz ,则A (1,1,0),B (0,2,0),C (0,0,0),D (1,0,0),P (1,1,a )(a >0),M ⎝⎛⎭⎫12,32,a 2,CP →=(1,1,a ),CD →=(1,0,0),AM →=⎝⎛⎭⎫-12,12,a 2, 设平面PCD 的法向量为n 1=(x 0,y 0,z 0),则⎩⎪⎨⎪⎧x 0+y 0+az 0=0,x 0=0,令y 0=a ,则n 1=(0,a ,-1), 所以AM →·n 1=a 2-a 2=0,又AM ⊄平面PCD , 所以AM ∥平面PCD .(2)由(1)得,CA →=(1,1,0),CM →=⎝⎛⎭⎫12,32,a 2, 设平面ACM 的法向量为n 2=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧x 1+y 1=0,12x 1+32y 1+a2z 1=0, 令x 1=1,则n 2=⎝⎛⎭⎫1,-1,2a , AP →=(0,0,a ),AB →=(-1,1,0),设平面P AB 的法向量为n 3=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧-x 2+y 2=0,az 2=0,令x 2=1,则n 3=(1,1,0), 所以n 2·n 3=1-1=0. 所以平面ACM ⊥平面P AB .热点二 利用空间向量求空间角设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ⎝⎛⎭⎫0≤θ≤π2, 则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21 a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ⎝⎛⎭⎫0≤θ≤π2, 则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|. (3)二面角设α-a -β的平面角为θ(0≤θ≤π), 则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|. 例2 (2019·南昌模拟)如图,四棱台ABCD -A 1B 1C 1D 1中,底面ABCD 是菱形,CC 1⊥底面ABCD ,且∠BAD =60°,CD =CC 1=2C 1D 1=4,E 是棱BB 1的中点.(1)求证:AA 1⊥BD ;(2)求二面角E -A 1C 1-C 的余弦值.(1)证明 因为C 1C ⊥底面ABCD ,所以C 1C ⊥BD . 因为底面ABCD 是菱形,所以BD ⊥AC . 又AC ∩CC 1=C ,AC ,CC 1⊂平面ACC 1A 1, 所以BD ⊥平面ACC 1A 1. 又AA 1⊂平面ACC 1A 1, 所以BD ⊥AA 1.(2)解 如图,设AC 交BD 于点O ,依题意,A 1C 1∥OC 且A 1C 1=OC , 所以四边形A 1OCC 1为平行四边形, 所以A 1O ∥CC 1,且A 1O =CC 1. 所以A 1O ⊥底面ABCD .以O 为原点,OA ,OB ,OA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 则A (23,0,0),A 1(0,0,4),C 1(-23,0,4),B (0,2,0), AB →=(-23,2,0).由A 1B 1----→=12AB →,得B 1(-3,1,4).因为E 是棱BB 1的中点, 所以E ⎝⎛⎭⎫-32,32,2, 所以EA 1→=⎝⎛⎭⎫32,-32,2,A 1C 1----→=(-23,0,0).设n =(x ,y ,z )为平面EA 1C 1的法向量,则⎩⎨⎧n ·A 1C 1----→=-23x =0,n ·EA 1→=32x -32y +2z =0,取z =3,得n =(0,4,3),平面A 1C 1C 的法向量m =(0,1,0),又由图可知,二面角E -A 1C 1-C 为锐二面角, 设二面角E -A 1C 1-C 的平面角为θ, 则cos θ=|m ·n ||m ||n |=45,所以二面角E -A 1C 1-C 的余弦值为45.跟踪演练2 (2019·河南名校联盟联考)如图,在四棱锥P -ABCD 中,∠P AB =90°,AB ∥CD ,且PB =BC =BD =6,CD =2AB =22,∠P AD =120°.E 和F 分别是棱CD 和PC 的中点.(1)求证:CD ⊥BF ;(2)求直线PB 与平面PCD 所成的角的正弦值. (1)证明 ∵E 为CD 中点,CD =2AB , ∴AB =DE .又AB∥CD,∴四边形ABED为平行四边形.∵BC=BD,E为CD中点,∴BE⊥CD,∴四边形ABED为矩形,∴AB⊥AD.由∠P AB=90°,得P A⊥AB,又P A∩AD=A,P A,AD⊂平面P AD,∴AB⊥平面P AD.∵AB∥CD,∴CD⊥平面P AD.又PD⊂平面P AD,∴CD⊥PD.∵EF∥PD,∴CD⊥EF.又CD⊥BE,BE∩EF=E,BE,EF⊂平面BEF,∴CD⊥平面BEF.又∵BF⊂平面BEF,∴CD⊥BF.(2)解由(1)知AB⊥平面P AD.以A为原点,AB所在直线为x轴,AD所在直线为y轴,平面P AD内过点A且与AD垂直的线为z轴建立空间直角坐标系A-xyz,如图所示.∵∠P AD=120°,∴∠P Az=30°.又PB=6,AB=2,AB⊥P A,∴P A=2.∴点P到z轴的距离为1.∴P(0,-1,3),同时知A(0,0,0),B(2,0,0).又BC=BD=6,CD=22,∴BE=2.∴C (22,2,0),D (0,2,0).设平面PCD 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PD →=(x ,y ,z )·(0,3,-3)=0,n ·CD →=(x ,y ,z )·(-22,0,0)=0,得⎩⎨⎧3y -3z =0,-22x =0.令y =1,则n =(0,1,3). 又PB →=(2,1,-3),设直线PB 与平面PCD 所成的角为θ. 则sin θ=|cos 〈n ,PB →〉|=|n ·PB →||n |·|PB →|=22+1+3×1+3=66.即直线PB 与平面PCD 所成的角的正弦值为66. 热点三 利用空间向量解决探索性问题与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题.处理原则是:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.例3 (2019·临沂模拟)如图,平面ABCD ⊥平面ABE ,四边形ABCD 是边长为2的正方形,AE =1,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥平面BCE ;(2)线段AD 上是否存在一点M ,使平面ABE 与平面MCE 所成二面角的余弦值为34?若存在,试确定点M 的位置;若不存在,请说明理由. (1)证明 ∵BF ⊥平面ACE ,AE ⊂平面ACE , ∴BF ⊥AE ,∵四边形ABCD 是正方形,∴BC ⊥AB ,又平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE =AB , ∴CB ⊥平面ABE , ∵AE ⊂平面ABE , ∴CB ⊥AE ,∵BF ∩BC =B ,BF ,BC ⊂平面BCE , ∴AE ⊥平面BCE .(2)解 线段AD 上存在一点M ,当AM =3时,使平面ABE 与平面MCE 所成二面角的余弦值为34. ∵AE ⊥平面BCE ,BE ⊂平面BCE , ∴AE ⊥BE ,在Rt △AEB 中,AB =2,AE =1, ∴∠ABE =30°,∠BAE =60°,以A 为原点,建立空间直角坐标系A -xyz , 设AM =h ,则0≤h ≤2, ∵AE =1,∠BAE =60°, ∴M (0,0,h ),E ⎝⎛⎭⎫32,12,0,B (0,2,0),C (0,2,2),所以ME →=⎝⎛⎭⎫32,12,-h ,CE →=⎝⎛⎭⎫32,-32,-2,设平面MCE 的一个法向量n =(x ,y ,z ), 则⎩⎨⎧n ·ME →=3x 2+12y -hz =0,n ·CE →=3x 2-32y -2z =0,令z =2,解得n =⎝⎛⎭⎫33(2+3h ),h -2,2,平面ABE 的一个法向量m =(0,0,1),由题意可知cos 〈m ,n 〉=m ·n|m ||n |=213(2+3h )2+(h -2)2+4=34, 解得h =3,所以当AM =3时,使平面ABE 与平面MCE 所成二面角的余弦值为34. 跟踪演练3 如图,在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,AC =BC =AA 1=2,点P 为棱B 1C 1的中点,点Q 为线段A 1B 上一动点.(1)求证:当点Q 为线段A 1B 的中点时,PQ ⊥平面A 1BC ;(2)设BQ →=λBA 1→,试问:是否存在实数λ,使得平面A 1PQ 与平面B 1PQ 所成锐二面角的余弦值为3010?若存在,求出这个实数λ;若不存在,请说明理由. (1)证明 连接AB 1,AC 1,∵点Q 为线段A 1B 的中点, ∴A ,Q ,B 1三点共线, 且Q 为AB 1的中点, ∵点P 为B 1C 1的中点, ∴PQ ∥AC 1.在直三棱柱ABC -A 1B 1C 1中, AC ⊥BC ,∴BC ⊥平面ACC 1A 1, 又AC 1⊂平面ACC 1A 1, ∴BC ⊥AC 1.∵AC =AA 1,∴四边形ACC 1A 1为正方形, ∴AC 1⊥A 1C ,又A 1C ,BC ⊂平面A 1BC ,A 1C ∩BC =C , ∴AC 1⊥平面A 1BC , 而PQ ∥AC 1, ∴PQ ⊥平面A 1BC .(2)解 由题意可知,CA ,CB ,CC 1两两垂直,以C 为原点,分别以CA ,CB ,CC 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系C -xyz , 连接B 1Q ,PB ,设Q (x ,y ,z ), B (0,2,0),A 1(2,0,2), P (0,1,2),B 1(0,2,2), ∵BQ →=λBA 1→,∴(x ,y -2,z )=λ(2,-2,2), ∴⎩⎪⎨⎪⎧x =2λ,y =2-2λ,z =2λ,∴Q (2λ,2-2λ,2λ). ∵点Q 在线段A 1B 上运动,∴平面A 1PQ 的法向量即为平面A 1PB 的法向量, 设平面A 1PB 的法向量为n 1=(x ,y ,z ), BP →=(0,-1,2),P A 1→=(2,-1,0), 由⎩⎪⎨⎪⎧n 1·BP →=0,n 1·P A 1→=0,得⎩⎪⎨⎪⎧-y +2z =0,2x -y =0,令y =2,得n 1=(1,2,1),设平面B 1PQ 的法向量为n 2=(x ,y ,z ), PB 1→=(0,1,0),B 1Q →=(2λ,-2λ,2λ-2).由⎩⎪⎨⎪⎧n 2·PB 1→=0,n 2·B 1Q →=0,得⎩⎪⎨⎪⎧y =0,2λx -2λy +(2λ-2)z =0,令z =1得n 2=⎝⎛⎭⎫1-λλ,0,1=1λ(1-λ,0,λ), 取n 2=(1-λ,0,λ),由题意得|cos 〈n 1,n 2〉|=|()1,2,1·()1-λ,0,λ|6·(1-λ)2+λ2=16×2λ2-2λ+1=3010,∴9λ2-9λ+2=0, 解得λ=13或λ=23,∴当λ=13或λ=23时,平面A 1PQ 与平面B 1PQ 所成锐二面角的余弦值为3010.真题体验(2019·全国Ⅰ,理,18)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1-N 的正弦值.(1)证明 连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1∥DC 且A 1B 1=DC ,可得B 1C ∥A 1D 且B 1C =A 1D ,故ME ∥ND 且ME =ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面C 1DE ,ED ⊂平面C 1DE ,所以MN ∥平面C 1DE .(2)解 由已知可得DE ⊥DA ,以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的一个法向量,则 ⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0,所以⎩⎨⎧-x +3y -2z =0,-4z =0,可得m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的一个法向量,则 ⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎨⎧-3q =0,-p -2r =0,可取n =(2,0,-1).于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,所以二面角A -MA 1-N 的正弦值为105.押题预测如图1,在梯形ABCD 中,AB ∥CD ,过A ,B 分别作AE ⊥CD ,BF ⊥CD ,垂足分别E ,F ,AB =AE =2,CD =5,已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE -BCF ,如图2.(1)若AF ⊥BD ,证明:DE ⊥平面ABFE ;(2)若DE ∥CF ,CD =3,线段AB 上存在一点P ,满足CP 与平面ACD 所成角的正弦值为520,求AP 的长.(1)证明 由已知得四边形ABFE 是正方形,且边长为2,在图2中,AF ⊥BE , 由已知得AF ⊥BD ,BE ∩BD =B ,BE ,BD ⊂平面BDE , ∴AF ⊥平面BDE ,又DE ⊂平面BDE ,∴AF ⊥DE ,又AE ⊥DE ,AE ∩AF =A ,AE ,AF ⊂平面ABFE , ∴DE ⊥平面ABFE .(2)解 在图2中,AE ⊥DE ,AE ⊥EF ,DE ∩EF =E ,DE ,EF ⊂平面DEFC ,即AE ⊥平面DEFC ,在梯形DEFC 中,过点D 作DM ∥EF 交CF 于点M ,连接CE , 由题意得DM =2,CM =1, 由勾股定理可得DC ⊥CF , 则∠CDM =π6,CE =2,过E 作EG ⊥EF 交DC 于点G , 可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA →,EF →,EG →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系, 则A (2,0,0),B (2,2,0),C (0,1,3),D ⎝⎛⎭⎫0,-12,32,AC →=(-2,1,3),AD →=⎝⎛⎭⎫-2,-12,32.设平面ACD 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AC →=0,n ·AD →=0,得⎩⎪⎨⎪⎧-2x +y +3z =0,-2x -12y +32z =0, 取x =1,得n =(1,-1,3), 设AP =m ,则P (2,m ,0),0≤m ≤2, 得CP →=(2,m -1,-3), 设CP 与平面ACD 所成的角为θ, sin θ=|cos 〈CP →,n 〉|=|m |5×7+(m -1)2=520⇒m =23(舍负). 所以AP =23.A 组 专题通关1.(2019·全国Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B -EC -C 1的正弦值.(1)证明 由已知得,B 1C 1⊥平面ABB 1A 1,因为BE ⊂平面ABB 1A 1,故B 1C 1⊥BE . 又BE ⊥EC 1,EC 1∩B 1C 1=C 1, 所以BE ⊥平面EB 1C 1. (2)解 由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB .以D 为坐标原点,DA →的方向为x 轴正方向,|DA →|为单位长,建立如图所示的空间直角坐标系D -xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB →=(1,0,0),CE →=(1,-1,1),CC 1→=(0,0,2). 设平面EBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CB →·n =0,CE →·n =0,即⎩⎪⎨⎪⎧x =0,x -y +z =0,所以可取n =(0,-1,-1).设平面ECC 1的法向量为m =(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧CC 1→·m =0,CE →·m =0,即⎩⎪⎨⎪⎧2z 1=0,x 1-y 1+z 1=0,所以可取m =(1,1,0).于是cos 〈n ,m 〉=n ·m |n ||m |=-12,sin 〈n ,m 〉=1-⎝⎛⎭⎫-122=32, 所以二面角B -EC -C 1的正弦值为32. 2.(2019·全国Ⅲ)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B —CG —A 的大小.(1)证明 由已知得AD ∥BE ,CG ∥BE ,所以AD ∥CG , 故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,BE ∩BC =B , BE ,BC ⊂平面BCGE ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)解 作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,平面BCGE ∩平面ABC =BC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°, 可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向, 建立如图所示的空间直角坐标系H -xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0). 设平面ACGD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0.所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0), 所以cos 〈n ,m 〉=n ·m |n ||m |=32.因此二面角B -CG -A 的大小为30°.3.(2019·马鞍山模拟)如图,在三棱柱ABC -A 1B 1C 1中,∠ACB =90°,A 1B ⊥AC 1,AC =AA 1=4,BC =2.(1)求证:平面A 1ACC 1⊥平面ABC ;(2)若∠A 1AC =60°,在线段AC 上是否存在一点P ,使二面角B -A 1P -C 的平面角的余弦值为34?若存在,确定点P 的位置;若不存在,请说明理由. (1)证明 如图,∵AC =AA 1, ∴四边形AA 1C 1C 为菱形,连接A 1C ,则A 1C ⊥AC 1,又A 1B ⊥AC 1,且A 1C ∩A 1B =A 1, A 1C ,A 1B ⊂平面A 1CB ,∴AC 1⊥平面A 1CB ,则AC 1⊥BC , 又∠ACB =90°,即BC ⊥AC ,又AC 1∩AC =A ,AC 1,AC ⊂平面A 1ACC 1, ∴BC ⊥平面A 1ACC 1,而BC ⊂平面ABC ,∴平面A 1ACC 1⊥平面ABC .(2)解 在平面ACC 1A 1中,过点C 作CE ⊥AC 交A 1C 1于E , 由(1)知,CE ⊥平面ABC ,以C 为坐标原点,分别以CA ,CB 所在直线为x 轴,y 轴建立如图所示的空间直角坐标系C -xyz ,∵AC =AA 1=4,BC =2,∠A 1AC =60°, ∴C (0,0,0),B (0,2,0),A (4,0,0),A 1(2,0,23).设在线段AC 上存在一点P ,满足AP →=λAC →(0≤λ<1),使得二面角B -A 1P -C 的平面角的余弦值为34. 则AP →=(-4λ,0,0).BP →=BA →+AP →=(4,-2,0)+(-4λ,0,0) =(4-4λ,-2,0),A 1P →=A 1A →+AP →=(2-4λ,0,-23), CA 1→=(2,0,23).设平面BA 1P 的一个法向量为m =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧m ·BP →=(4-4λ)x 1-2y 1=0,m ·A 1P →=(2-4λ)x 1-23z 1=0,取x 1=1,得m =⎝⎛⎭⎪⎫1,2-2λ,1-2λ3;平面A 1PC 的一个法向量为n =(0,1,0). 由|cos 〈m ,n 〉|=|m ·n ||m ||n |=|2-2λ|1+(2-2λ)2+(1-2λ)23×1=34, 解得λ=43或λ=34,因为0≤λ<1,所以λ=34.故在线段AC 上存在一点P ,满足AP →=34AC →,使二面角B -A 1P -C 的平面角的余弦值为34.B 组 能力提高4.如图所示,在四棱锥P -ABCD 中,P A =PD =AD =2CD =2BC =2,且∠ADC =∠BCD =90°.(1)当PB =2时,证明:平面P AD ⊥平面ABCD ;(2)当四棱锥P -ABCD 的体积为34,且二面角P -AD -B 为钝角时,求直线P A 与平面PCD所成角的正弦值.(1)证明 如图所示,取AD 的中点O ,连接PO ,OB .∵P A =PD ,∴PO ⊥AD . ∵∠ADC =∠BCD =90°, ∴BC ∥AD ,又BC =12AD =1,∴BC =OD ,∴四边形BCDO 为矩形, ∴OB =CD =1.在△POB 中,PO =3,OB =1,PB =2, ∴∠POB =90°,则PO ⊥OB .∵AD ∩OB =O ,∴PO ⊥平面ABCD , 又PO ⊂平面P AD , ∴平面P AD ⊥平面ABCD .(2)解 由(1)知AD ⊥PO ,AD ⊥BO , ∵PO ∩OB =O ,∴AD ⊥平面POB , 又AD ⊂平面ABCD , ∴平面POB ⊥平面ABCD . 过点P 作PE ⊥平面ABCD ,则垂足E 一定落在平面POB 与平面ABCD 的交线OB 上. ∵四棱锥P -ABCD 的体积为34,∴13×PE ×12×(AD +BC )×CD =13×PE ×12×(2+1)×1 =12PE =34, ∴PE =32.∵PO =3,∴OE =PO 2-PE 2=32. 以O 为坐标原点,OA ,OB 所在直线分别为x 轴,y 轴, 在平面POB 内过点O 作垂直于平面AOB 的直线为z 轴, 建立如图所示的空间直角坐标系O -xyz . 由题意可知A (1,0,0),P ⎝⎛⎭⎫0,-32,32,D (-1,0,0),C (-1,1,0), 则DP →=⎝⎛⎭⎫1,-32,32,DC →=(0,1,0),P A →=⎝⎛⎭⎫1,32,-32.设平面PCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·DP →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x -32y +32z =0,y =0,令x =1,则y =0,z =-23,∴n =⎝⎛⎭⎫1,0,-23. 设直线P A 与平面PCD 所成的角为θ,则sin θ=|P A →·n ||P A →||n |=22×133=31313,故直线P A 与平面PCD 所成角的正弦值为31313.5.如图,已知圆锥OO 1和圆柱O 1O 2的组合体(它们的底面重合),圆锥的底面圆O 1的半径为r =5,OA 为圆锥的母线,AB 为圆柱O 1O 2的母线,D ,E 为下底面圆O 2上的两点,且DE =6,AB =6.4,AO =52,AO ⊥AD .(1)求证:平面ABD ⊥平面ODE; (2)求二面角B -AD -O 的正弦值.(1)证明 依题意知,圆锥的高为h =(52)2-52=5,又圆柱的高为AB =6.4,AO ⊥AD ,所以OD 2=OA 2+AD 2, 因为AB ⊥BD , 所以AD 2=AB 2+BD 2,连接OO 1,O 1O 2,DO 2,易知O ,O 1,O 2三点共线,OO 2⊥DO 2,所以OD 2=OO 22+O 2D 2, 所以BD 2=OO 22+O 2D 2-AO 2-AB 2=(6.4+5)2+52-(52)2-6.42=64,解得BD =8,又因为DE =6,圆O 2的直径为10,圆心O 2在∠BDE 内, 所以∠BDE =90°,所以DE ⊥BD .因为AB ⊥平面BDE ,DE ⊂平面BDE ,所以DE ⊥AB , 因为AB ∩BD =B ,AB ,BD ⊂平面ABD , 所以DE ⊥平面ABD . 又因为DE ⊂平面ODE , 所以平面ABD ⊥平面ODE .(2)解 如图,以D 为原点,DB ,DE 所在直线为x ,y 轴,建立空间直角坐标系.则D (0,0,0),A (8,0,6.4),B (8,0,0),O (4,3,11.4).所以DA →=(8,0,6.4),DB →=(8,0,0),DO →=(4,3,11.4), 设平面DAO 的法向量为u =(x ,y ,z ),所以DA →·u =8x +6.4z =0,DO →·u =4x +3y +11.4z =0,令x =12,则u =(12,41,-15).可取平面BDA 的一个法向量为v =(0,1,0),所以cos 〈u ,v 〉=u·v |u||v |=41582=8210, 所以二面角B -AD -O 的正弦值为3210.。
2020新课标高考数学讲义:立体几何含解析

球
S=4πR2
V= πR3
2.空间线面位置关系的证明方法
(1)线线平行: ⇒a∥b、 ⇒a∥b、
⇒a∥b、 ⇒c∥b.
(2)线面平行: ⇒a∥α、 ⇒a∥α、 ⇒a∥α.
(3)面面平行: ⇒α∥β、 ⇒α∥β、
⇒α∥γ.
(4)线线垂直: ⇒a⊥b.
(5)线面垂直: ⇒l⊥α、 ⇒a⊥β、 ⇒a⊥β、 ⇒b⊥α.
(6)面面垂直: ⇒α⊥β、 ⇒α⊥β.
[提醒]要注意空间线面平行与垂直关系中的判定定理和性质定理中的条件.如由α⊥β、α∩β=l、m⊥l、易误得出m⊥β的结论、就是因为忽视面面垂直的性质定理中m⊂α的限制条件.
3.用空间向量证明平行垂直
设直线l的方向向量为a=(a1、b1、c1)、平面α、β的法向量分别为μ=(a2、b2、c2)、υ=(a3、b3、c3).则有:
若存在某个位置.使得AD⊥BC、又因为AD⊥AB、则AD⊥平面ABC、所以AD⊥AC、而斜边CD小于直角边AD、矛盾、故C错误.
6. 如图、在四棱锥PACBD中、底面ACBD为正方形、PD⊥平面ACBD、BC=AC=a、PA=PB= a、PC= a、则点C到平面PAB的距离为________.
解析:
解析:选B.若存在某个位置、使得AC⊥BD、作AE⊥BD于E、则BD⊥平面AEC、所以BD⊥EC、在△ABD中、AB2=BE·BD、BE= 、而在△BCD中、BC2=BE·BD、BE= 、两者矛盾.故A错误.
若存在某个位置、使得AB⊥CD、又因为AB⊥AD、则AB⊥平面ACD、所以AB⊥AC、故AC=1、故B正确、D错误.
4.用向量求空间角
(1)直线l1、l2的夹角θ有cosθ=|cos〈l1、l2〉|(其中l1、l2分别是直线l1、l2的方向向量).
专题01 立体几何部分(解析版)-2020年江苏高考数学试卷名师分析与预测

专题一 立体几何部分一、近几年江苏高考1、(1)(2019江苏卷)如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.【答案】10.【解析】因为长方体1111ABCD A B C D -的体积为120, 所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点, 所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. (2)(2019江苏卷).如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E . 【解析】(1)因为D ,E 分别为BC ,AC 的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE⊂平面ABC,所以CC1⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.2、(1)(2018江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为(2)(2018江苏卷)在平行六面体中,.求证:(1);(2).【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB 1平面ABB 1A 1,所以平面ABB 1A 1⊥平面A 1BC .3、(1)(2017江苏卷)如图,圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.【答案】 32【解析】设球的半径为R ,则圆柱的底面半径为R ,高为h =2R .因为V 1=πR 2h =2πR 3,V 2=4πR 33,所以V 1V 2=32. (2)(2017江苏卷)如图,在三棱锥ABCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1) EF ∥平面ABC ; (2) AD ⊥AC .证明:(1) 在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2) 因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD. 因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.4、(1)(2016江苏卷)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P A1B1C1D1,下部的形状是正四棱柱ABCDA1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1) 若AB=6 m,PO1=2 m,则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?【答案】 (1) 由PO 1=2知O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P A 1B 1C 1D 1的体积 V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3); 正四棱柱ABCDA 1B 1C 1D 1的体积 V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2) 设A 1B 1=a (m),PO 1=h (m),则0<h <6,O 1O =4h .连结O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21, 所以⎝⎛⎭⎫2a 22+h 2=36,即a 2=2(36-h 2), 于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3),0<h <6,从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值.因此,当PO1=2 3 m时,仓库的容积最大.(2)(2016江苏卷)如图,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1) 直线DE∥平面A1C1F;(2) 平面B1DE⊥平面A1C1F.解析:(1) 在直三棱柱ABCA1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2) 在直三棱柱ABCA1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.5、(1)(2015江苏卷)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.【答案】7【解析】设新的底面半径为r ,则13π×52×4+π×22×8=13πr 2×4+πr 2×8,解得r =7.(2)(2015江苏卷)如图,在直三棱柱ABCA 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1) DE ∥平面AA 1C 1C ; (2) BC 1⊥AB 1.(1) 由题意知,E 为B 1C 的中点, 又D 为AB 1的中点,因此DE ∥AC .又因为DE ⊄平面AA 1C 1C ,AC ⊂平面AA 1C 1C , 所以DE ∥平面AA 1C 1C .(2) 因为棱柱ABCA 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC .因为AC ⊂平面ABC ,所以AC ⊥CC 1.又因为AC ⊥BC ,CC 1⊂平面BCC 1B 1,BC ⊂平面BCC 1B 1,BC ∩CC 1=C ,所以AC ⊥平面BCC 1B 1. 又因为BC 1⊂平面BCC 1B 1,所以BC 1⊥AC .因为BC =CC 1,所以矩形BCC 1B 1是正方形,因此BC 1⊥B 1C . 因为AC ,B 1C ⊂平面B 1AC ,AC ∩B 1C =C ,所以BC 1⊥平面B 1AC . 又因为AB 1⊂平面B 1AC ,所以BC 1⊥AB 1.二、近几年高考试卷分析从近五年江苏高考数学来看体现了以下几个方面:1、从题型来看主要以一个填空,一个解答;(2016年填空题中没有考查体积,体积的考查体现在应用题中);2、从知识点考查的内容来看主要以填空题是关于体积的计算,解答题设置了2问,第一问考查了平行,主要时候以线面平行,使用的方法还是以中位线为主。
2023年新高考数学大一轮复习专题四立体几何第1讲空间几何体(含答案)

新高考数学大一轮复习专题:第1讲 空间几何体[考情分析] 几何体的结构特征是立体几何的基础,空间几何体的表面积与体积是高考题的重点与热点,多以小题的形式进行考查,属于中等难度. 考点一 表面积与体积 核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径).例1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________. 答案 402π解析 因为母线SA 与圆锥底面所成的角为45°, 所以圆锥的轴截面为等腰直角三角形. 设底面圆的半径为r ,则母线长l =2r . 在△SAB 中,cos∠ASB =78,所以sin∠ASB =158.因为△SAB 的面积为515,即12SA ·SB sin∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.答案 233解析 如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2, ∴AC =2,OC =1,则AO = 3. ∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3. 又11BB C S=12×2×2=2, ∴11D BB C V =13×2×3=233.易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算). (2)一些不规则几何体的体积不会采用分割法或补形思想转化求解. (3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.跟踪演练1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt△ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.答案327解析 设CD =DE =x (0<x <1),则四边形ABDE 的面积S =12(1+x )(1-x )=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝ ⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 考点二 多面体与球 核心提炼解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.例2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________. 答案 64π解析 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上, 即球心就是△PAB 的外心,根据正弦定理ABsin∠APB =2R ,解得R =4,所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB , 故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π.规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心. (3)多面体的内切球可利用等积法求半径.跟踪演练2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB.64πC.144πD.256π 答案 C解析 如图所示,设球O 的半径为R ,因为∠AOB =90°, 所以S △AOB =12R 2,因为V O -ABC =V C -AOB , 而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大, 此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.答案 20π解析 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3, ∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2,设鳖臑P -ADE 的外接球的半径为R 1, 则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21,可得PA 2=R 21-r 21=102,∴PA =10.正方形ABCD 的外接圆直径为2r 2=AC =2AD =10, ∴r 2=102, ∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题强化练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 答案 A解析 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt△AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt△SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22,∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( )A.12B.13C.14D.18答案 C解析如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r,l为底面圆周长,R为母线长,则12lR=2πr2,即12·2π·r·R=2πr2,解得R=2r,故∠ADC=30°,则△DEF为等边三角形,设B为△DEF的重心,过B作BC⊥DF,则DB为圆锥的外接球半径,BC为圆锥的内切球半径,则BCBD=12,∴r内r外=12,故S1S2=14.4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体的费用最少为( )A.4500元B.4000元C.2880元D.2380元答案 B解析因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高 1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V=1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1000元,所以气体的费用最少为4×1000=4000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关 答案 B解析 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h (h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3B.4π3 C.5π3D .2π 答案 C解析 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE=π×12×2-13π×12×1=5π3.7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64πB.48πC.36πD.32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt△OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3B .3πC.4π3D .8π 答案 A解析 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3,∴2r =AB sin∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A.9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2000π9B.4000π27C .81πD .128π答案 B解析 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,V 单调递增;当53<h <5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝⎛⎭⎪⎫53+5=4000π27,故选B.10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( ) A.36B.12C.13D.32答案 C解析 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O , ∵球O 的半径为1,∴正方体的边长为233,即PA =PB =PC =233,球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13S △PAB ×PC =13×12×⎝⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形,S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13.二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值 答案 AD解析 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFGAB,即AE ·AH 是定值,故D 正确.12.(2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π 答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE .由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, 即r ·l =2.由于侧面展开图为半圆, 可知12πl 2=2π,可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40cm ,母线长最短50cm ,最长80cm ,则斜截圆柱的侧面面积S =________cm 2.答案 2600π解析 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2600π(cm 2).15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________. 答案823π 解析 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π.16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r , 则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级:辅导科目:数学课时数:课题立体几何(一)教学目的教学内容一、知识网络二、命题分析立体几何在高考中考查的主要内容有:空间几何体的性质、线面关系的判定与证明、表面积与体积的运算、空间几何体的识图,空间中距离、角的计算等.从近几年高考来看,一般以2~3个客观题来考查线面关系的判定、表面积与体积、空间中的距离与角、空间几何体的性质与识图等,以1个解答题来考查线面关系的证明以及距离、角的计算.在高考中属于中档题目.而三视图作为新课标的新增内容,在2011年高考中,有多套试卷在此知识点命题,主要考查三视图和直观图,特别是通过三视图来确定原图形的相关量.预计今后高考中,三视图的考查不只在选择题、填空题中出现,很有可能在解答题中与其他知识点结合在一起命题.三、复习建议在2012年高考复习中注意以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变,除保留传统的“四选一”的选择题外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类题目往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合.在2012年高考复习中注意以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变,除保留传统的“四选一”的选择题外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类题目往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合.(3)从方法上来看,着重考查公理化方法,如解答题注重理论推导和计算相结合,考查转化的思想方法,如要把立体.4.空间几何体的直观图画空间几何体的直观图常用画法,基本步骤是:(1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′= .(2)已知图形中平行于x轴、y轴的线段,在直观图中分别画成平行于的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度,平行于y轴的线段,长度变为.(4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度.5.中心投影与平行投影(1)平行投影的投影线互相,而中心投影的投影线相交于一点.(2)从投影的角度看,三视图和用斜二测画法画出的直观图都是在投影下画出来的图形.(三)基础自测1.(2010·北京理)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( )[答案] C[解析] 本题考查了三视图知识,解题的关系是掌握三视图与直观图的知识,特别是应明确三视图是从几何体的哪个方向看到的.由三视图中正(主)视图、侧(左)视图得到几何体的直观图如图所示,所以该几何体的俯视图为C.2.(2010·福建理)如图,若Ω是长方体ABCD—A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确...的是( ) A.EH∥FG B.四边形EFGH是矩形 C.Ω是棱柱 D.Ω是棱台[答案] D[解析] ∵EH∥A1D1,∴EH∥B1C1∴B1C1∥面EFGH,B1C1∥FG,∴Ω是棱柱,故选D.3.右图为水平放置的正方形ABCO,它在直角坐标系xOy中点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为( )A.12B.22C.1 D. 2[答案] B[解析] 如图,在平面直观图中,B′C′=1,∠B′C′D′=45°,∴B′D′=2 2 .4.已知某物体的三视图如图所示,那么这个物体的形状是( )A.六棱柱 B.四棱柱 C.圆柱 D.五棱柱[答案] A[解析] 由俯视图可知,该物体的形状是六棱柱,故选A.5.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体最多为________个.[答案] 7[解析] 由主视图和左视图知,该几何体由两层组成,底层最多有3×2=6个,上层只有1个,故最多为7个.6.(2010·新课标理)正(主)视图为一个三角形的几何体可以是________.(写出三种)[答案] 三棱锥、三棱柱、圆锥(其他正确答案同样给分).[解析] 本题考查空间几何体的三视图.本题属于开放性题目,答案不唯一.正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.7.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .[分析] 由三视图的形状大小,还原成几何体;再利用体积公式和表面积公式求解.[解析] (1)由该几何体的俯视图、主视图、左视图可知,该几何体是四棱锥.且四棱锥的底面ABCD 是边长为6和8的矩形,高VO =4,O 点是AC 与BD 的交点.∴该几何体的体积V =13×8×6×4=64. (2)如图所示,OE ⊥AB ,OF ⊥BC ,侧面VAB 中,VE =VO 2+OE 2=42+32=5,∴S △VAB =12×AB ×VE =12×8×5=20, 侧面VBC 中,VF =VO 2+OF 2=42+42=42,∴S △VBC =12×BC ×VF =12×6×42=12 2. ∴该几何体的侧面积S =2(S △VAB +S △VBC )=40+24 2.[点评] 由三视图还原成几何体,需要对常见的柱、锥、台、球的三视图非常熟悉,有时还可根据三视图的情况,还原成由常见几何体组合而成的组合体.(四)典型例题1.命题方向:空间几何体的结构特征[例1] 下列命题中,成立的是( )A .各个面都是三角形的多面体一定是棱锥B .四面体一定是三棱锥C .棱锥的侧面是全等的等腰三角形,该棱锥一定是正棱锥D .底面多边形既有外接圆又有内切圆,且侧棱相等的棱锥一定是正棱锥[分析] 结合棱锥、正棱锥的概念逐一进行考查.[解析] A 是错误的,只要将底面全等的两个棱锥的底面重合在一起,所得多面体的每个面都是三角形,但这个多面体不是棱锥;B 是正确的,三个面共顶点,另有三边围成三角形是四面体也必定是个三棱锥;对于C ,如图所示,棱锥的侧面是全等的等腰三角形,但该棱锥不是正棱锥;D 也是错误的,底面多边形既有内切圆又有外接圆,如果不同心,则不是正多边形,因此不是正棱锥.[答案] B[点评] 本题考查棱锥、正棱锥的概念以及四面体与三棱锥的等价性,当三棱锥的棱长都相等时,这样的三棱锥叫正四面体.判断一个命题为真命题要考虑全面,应特别注意一些特殊情况.跟踪练习1:以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥、得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1 C.2 D.3[答案] A[解析] ①应以直角三角形的一条直角边为轴旋转才可以得到圆锥;②以直角梯形垂直于底边的一腰为轴旋转可得到圆台;③它们的底面为圆面,④用平行于圆锥底面的平面截圆锥,可得到一个圆锥和圆台.应选A.2.命题方向:直观图[例2] 若已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为( )A.32a2 B.34a2 C.62a2 D.6a2[解析] 如图是△ABC的平面直观图△A′B′C′.作C′D′∥y′轴交x′轴于D′,则C′D′对应△ABC的高CD,∴CD=2C′D′=2·2·C′O′=22·32a=6a.而AB=A′B′=a,∴S△ABC=12·a·6a=62a2[答案] C[点评] 解决这类题的关键是根据斜二测画法求出原三角形的底和高,将水平放置的平面图形的直观图,还原成原来的图形,其作法就是逆用斜二测画法,也就是使平行于x轴的线段的长度不变,而平行于y轴的线段长度变为直观图中平行于y′轴的线段长度的2倍.跟踪练习2已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A.34a 2B.38a 2C.68a 2D.616a 2 [分析] 先根据题意画出直观图,然后根据直观图△A ′B ′C ′的边长及夹角求解.[答案] D[解析] 如图①、②所示的实际图形和直观图.由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a , 在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a . ∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2. 3.命题方向:三视图[例3] 下列图形中的图(b)是根据图(a)中的实物画出的主视图和俯视图,你认为正确吗?若不正确请改正并画出左视图.[解析] 主视图和俯视图都不正确.主视图的上面的矩形中缺少中间小圆柱形成的轮廓线(用虚线表示);左视图的轮廓是两个矩形叠放在一起,上面的矩形中有2条不可视轮廓线.下面的矩形中有一条可视轮廓线(用实线表示),该几何体的三视图如图所示:[点评] 简单几何体的三视图的画法应从以下几个方面加以把握:(1)搞清主视、左视、俯视的方向,同一物体由放置的位置不同,所画的三视图可能不同.(2)看清简单组合体是由哪几个基本元素组成.(3)画三视图时要遵循“长对正,高平齐,宽相等”的原则,还要注意几何体中与投影垂直或平行的线段及面的位置关系.跟踪练习3(2010·浙江文)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A.3523cm 3B.3203cm 3C.2243cm 3D.1603cm 3 [答案] B[解析] 本题考查了三视图及几何体体积的求解.由三视图可知,该几何体是由一个正四棱台和一个长方体构成的一个组合体,V 台=13×2×(16+42×82+64)=2243cm 3, V 长方体=4×4×2=32cm 3 ∴V 总=V 台+V 长方体=2243+32=3203cm 3.(五)思想方法点拨:1.要注意牢固把握各种几何体的结构特点,利用它们彼此之间的联系来加强记忆,如棱柱、棱锥、棱台为一类;圆柱、圆锥、圆台为一类;或分成柱体、锥体、台体三类来分别认识.只有对比才能把握实质和不同,只有联系才能理解共性和个性.2.要适当与平面几何的有关概念、图形和性质进行对比,通过平面几何与立体几何相关知识的比较,丰富自己的空间想象力.对组合体可通过把它们分解为一些基本几何体来研究.3.画图时要紧紧把握住一斜——在已知图形中垂直于x 轴的线段,在直观图中均与x 轴成45°;二测——两种度量形式,即在直观图中,平行于x 轴的线段长度不变,平行于y 轴的线段变为原长度的一半.4.三视图(1)几何体的三视图的排列规则:俯视图放在主视图的下面,长度与主视图一样,左视图放在主视图右面,高度与主视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”.注意虚、实线的区别.(2)应用:在解题的过程中,可以根据三视图的形状及图中所涉及到的线段的长度,推断出原几何图形中的点、线、面之间的关系及图中的一些线段的长度,这样我们就可以解出有关的问题.5.本节常涉及一些截面问题,它把空间图形的性质、画法及有关论证、计算融为一体,常见的、基本的截面问题,如直截面、对角截面、中截面等,要求熟知并掌握.要知道这些截面的形状、位置,并能画出其图形,这常常可以将较难的问题变得简单,如“用一个平面截一个球,截面是圆面”这一点很重要,它把有关球的一些问题转化为圆的问题来解决.(六)课后强化作业一、选择题1.(2010·陕西理)若某空间几何体的三视图如图所示,则该几何体的体积是( )A.13B.23 C .1 D .2[答案] C[解析] C 该几何体是如图所示的直三棱柱V =12×1×2×2=1. 2.下列命题中:①与定点的距离等于定长的点的集合是球面;②球面上三个不同的点,一定都能确定一个圆;③一个平面与球相交,其截面是一个圆,其中正确命题的个数为( )A .0B .1C .2D .3[答案] C[解析] 命题①、②都对,命题③一个平面与球相交,其截面是一个圆面,故选C.[点评] 要注意球与球面的区别.3.(2009·上海文,16)如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是( )[答案] B[解析] 本题考查三视图的基本知识及空间想象能力.由题可知,选B.4.如果一个空间几何体的主视图与左视图均为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为( )A.33πB.233πC.3πD.π3- 11 - [答案] A[解析] 由三视图知,该几何体是底半径为1的圆锥,轴截面是边长为2的正三角形,∴高为3,体积V =33π. 5.如图,△O ′A ′B ′是△OAB 水平放置的直观图,则△OAB 的面积为( )A .6B .3 2C .6 2D .12[答案] D[解析] 若还原为原三角形,则易知OB =4,OA ⊥OB ,OA =6,∴S △AOB =12×4×6=12. 6.棱长为1的正方体ABCD -A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 、F 分别是棱AA 1、DD 1的中点,则直线EF 被球O 截得的线段长为( )A.22 B .1 C .1+22 D. 2 [答案] D[解析] 由条件知球O 半径为32,球心O 到直线EF 的距离为12,由垂径定理可知直线EF 被球O 截得的线段长d =2⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫122= 2. 7.(2010·广东)如图所示,△ABC 为正三角形,AA ′∥BB ′∥CC ′,CC ′⊥平面ABC 且3AA ′=32BB ′=CC ′=AB ,则多面体ABC -A ′B ′C ′的正视图(也称主视图)是( )[答案] D[解析] 本小题考查线面垂直的判定方法及三视图的有关概念.由于AA ′∥BB ′∥CC ′及CC ′⊥平面ABC ,知BB ′⊥平面ABC ,又CC ′=32BB ′,且△ABC 为正三角形,故正(主)视图为D.8.用单位正方体搭一个几何体,使它的主视图和俯视图如图所示,则它的体积的最小值与最大值分别为( )A .9与13B .7与10C .10与16D .10与15[答案] C [解析] 由俯视图知几何体有三行和三列,且第三列的第一行,第二行都没有小正方体,其余各列各行都有小正- 12 -。