等腰、等边三角形
等边三角形和等腰三角形

等边三角形和等腰三角形等边三角形是一种特殊的三角形,其三边长度都相等,内角均为60度。
而等腰三角形则是指两边的长度相等的三角形。
在几何学中,等边三角形和等腰三角形是常见且重要的概念,它们具有一些独特的性质和特点。
本文将分别介绍等边三角形和等腰三角形的定义、性质以及相关的应用。
一、等边三角形等边三角形是指三条边的长度均相等的三角形,也是一种特殊的等腰三角形。
等边三角形的特点有:1. 三边长度相等,记为a。
由于三角形的内角和为180度,所以等边三角形的内角均为60度。
2. 等边三角形具有对称性,任意两条边的夹角均为120度。
3. 等边三角形的高、中线、垂线和角平分线均重合,且相等。
4. 等边三角形的面积可以通过公式S = (a^2 * sqrt(3)) / 4来计算,其中a为边长。
等边三角形常见的应用有:1. 在建筑设计中,等边三角形常被用于构建稳定和均衡的结构,如桥梁、建筑立面或装饰图案等。
2. 在计算机图形学中,等边三角形是一种基本的图形元素,常用于绘制各种图形和几何体。
3. 在航空航天领域,等边三角形被广泛应用于构建稳定的飞行器结构和设计飞行轨迹。
二、等腰三角形等腰三角形是指两边的长度相等的三角形,顶角为其他两个角的夹角。
等腰三角形的特点有:1. 两边长度相等,记为a,底边长度记为b。
两底角(顶角的两个对角)相等,记为θ。
2. 等腰三角形的顶角所对的底边被称为底角基线,两个底角在底角基线上的角平分线相交于三角形的高线上。
3. 等腰三角形的高、中线、垂线和角平分线均相等且重合。
4. 由于等腰三角形具有对称性,可以通过副顶角定理得出两个底角对应的两边长度也相等。
等腰三角形常见的应用有:1. 在几何学中,等腰三角形用于证明和推导其他三角形的定理,如相似三角形、勾股定理等。
2. 在地理学中,等腰三角形常被用于计算地球上两地的距离,即根据视线和太阳光线的角度计算出两地的距离。
3. 在艺术设计中,等腰三角形常被用于布局和图案设计,以营造对称、平衡和美感。
等腰三角形和等边三角形的性质

等腰三角形和等边三角形的性质等腰三角形和等边三角形是基础的几何形状,它们有着特殊的性质和特点。
在本文中,我们将一起探讨等腰三角形和等边三角形的性质,并分析它们在几何学中的重要性。
一、等腰三角形的性质等腰三角形是指具有两条边相等的三角形。
以下是等腰三角形的主要性质:1. 两底角相等:等腰三角形的底边是两边相等的边,因此,其对应的底角相等。
即∠A = ∠C,其中A、C为等腰三角形的两个底角。
2. 顶角平分底角:等腰三角形的顶角恰好平分了底角。
也就是说,等腰三角形的顶角∠B恰好等于底角∠A和∠C的一半。
3. 等腰三角形的高线:等腰三角形的高线是连接顶点与底边垂直的线段。
在等腰三角形ABC中,高线BD垂直于底边AC,并且BD是AC的中线(即BD=DC)。
4. 等腰三角形的中线:等腰三角形中线是分别连接底边中点与顶点的线段。
在等腰三角形ABC中,中线BE与底边AC相等(即BE=EC)。
二、等边三角形的性质等边三角形是指三条边相等的三角形。
以下是等边三角形的主要性质:1. 三个内角相等:等边三角形的三个内角都相等,即∠A = ∠B =∠C = 60°。
2. 三条高线重合:等边三角形的三条高线分别由顶点向底边上的三个顶点所引。
这三条高线相交于同一个点,也就是等边三角形的垂心。
3. 等边三角形的中线:等边三角形的中线是分别连接底边中点与顶点的线段,也就是等边三角形的高线。
由于等边三角形的三边相等,中线也为等边三角形三边的中线。
三、等腰三角形和等边三角形的重要性等腰三角形和等边三角形在几何学中具有重要的应用和特点。
以下是它们的一些重要性:1. 判定等腰三角形:利用等腰三角形的性质,我们可以通过两条边的长度相等来判定一个三角形是否为等腰三角形。
2. 判定等边三角形:等边三角形的三条边相等,因此,我们可以通过三条边的长度相等来判定一个三角形是否为等边三角形。
3. 等腰三角形的应用:等腰三角形的性质常常应用在各类数学问题中,如三角函数、三角恒等式、三角面积等计算中。
等腰三角形与等边三角形的性质及定理

等腰三角形与等边三角形的性质及定理等腰三角形和等边三角形是几何学中常见的两种特殊三角形。
它们具有独特的性质和一些重要的定理,对于几何学的研究和实际应用有着重要的作用。
一、等腰三角形的性质及定理等腰三角形是指具有两条边相等的三角形。
在等腰三角形中,存在以下一些重要的性质和定理。
1. 等腰三角形的顶角和底角相等:等腰三角形的两条边相等,根据三角形内角和定理可知,其顶角和底角一定相等。
2. 等腰三角形的底边中线等于高:将等腰三角形底边的中点与顶点连接,该线段为底边的中线,根据中线定理可知,中线的长度等于等腰三角形的高。
3. 等腰三角形的两底角相等:等腰三角形的两边相等,根据等角定理可知,其两底角一定相等。
4. 等腰三角形的高同时也是角平分线和中线:等腰三角形的高线从顶点到底边的垂直线段上,这条高线也是等腰三角形的两底角的角平分线,同时也等于底边的中线。
5. 等腰三角形的内角和为180度:等腰三角形的两角相等,根据三角形内角和定理可知,其内角和为180度。
二、等边三角形的性质及定理等边三角形是指具有三条边相等的三角形。
在等边三角形中,存在以下一些重要的性质和定理。
1. 等边三角形的三条边相等,三个顶点角也相等:由于等边三角形的三条边都相等,根据等角定理可知,其三个顶点角也一定相等,每个角都是60度。
2. 等边三角形的高、中线、角平分线也相等:等边三角形的高、中线、角平分线都相等,它们都等于等边三角形的任意一条边的长度。
3. 等边三角形的内角和为180度:等边三角形的三个角都相等,根据三角形内角和定理可知,其内角和为180度。
每个角为60度,三个角的和为180度。
4. 等边三角形的外接圆半径等于边长的一半:等边三角形的外接圆半径等于边长的一半。
5. 等边三角形的内切圆半径等于边长乘以根号3再除以6:等边三角形的内切圆半径等于边长乘以根号3再除以6。
总结:等腰三角形和等边三角形都是特殊的三角形,它们具有一些独特的性质和定理。
等腰三角形与等边三角形

等腰三角形与等边三角形三角形是几何学中最基本的图形之一,具有许多有趣的性质和特征。
其中,等腰三角形和等边三角形是两种特殊的三角形,它们各自具有独特的性质和特点。
在本文中,我们将探讨等腰三角形和等边三角形的定义、性质以及它们与普通三角形之间的关系。
一、等腰三角形等腰三角形是指具有两条边相等的三角形。
换句话说,等腰三角形的两个底角相等。
例如,在一个三角形ABC中,如果边AB和边AC相等,那么这个三角形就是一个等腰三角形。
等腰三角形通常可以通过画一条中线或高的方式进行辅助辨识,因为中线和高可以将等腰三角形分成两个等腰三角形或两个全等的直角三角形。
等腰三角形具有一些独特的性质。
首先,等腰三角形的顶角(即顶点对应的角)等于两个底角之和,也就是说,如果∠A=∠B,那么∠C=2∠A。
其次,等腰三角形的两个底角相等,如果∠B=∠C,那么边AB=边AC。
二、等边三角形等边三角形是指三条边相等的三角形。
在一个等边三角形ABC中,边AB、边BC和边AC都相等。
等边三角形同时也是等腰三角形,因为它的两个底角相等。
等边三角形具有一些独特的性质。
首先,等边三角形的三个内角都是60度。
其次,等边三角形是对称的,可以通过任意一个高或任意一条中线进行折叠,将三角形的三个顶点都叠在一起。
三、等腰三角形与等边三角形的关系等腰三角形与等边三角形之间存在一种特殊的关系。
事实上,等边三角形是一种特殊的等腰三角形,它的两个底角都是60度,等于等边三角形的顶角。
在几何图形中,我们可以通过构造等边三角形来证明一些等腰三角形的性质。
例如,如果我们知道一个等腰三角形的两个底角相等,我们可以通过构造一个等边三角形,从而得出这个等腰三角形的两个底角都等于60度。
此外,等腰三角形也可以通过构造来证明等边三角形。
如果我们知道一个等腰三角形的两个底角都等于60度,我们可以通过构造一条辅助线来将等腰三角形分成两个等边三角形,从而得出这个等腰三角形的三条边都相等。
等腰三角形、等边三角形

等腰三角形、等边三角形等腰三角形和等边三角形在我们的数学世界中,三角形家族里有两个特殊而又重要的成员,那就是等腰三角形和等边三角形。
它们不仅在数学的理论知识中频繁出现,在实际生活中的应用也随处可见。
先来说说等腰三角形。
等腰三角形,顾名思义,就是至少有两边相等的三角形。
相等的这两条边叫做腰,另一边则称为底边。
两腰所夹的角叫做顶角,腰与底边的夹角叫做底角。
等腰三角形的两个底角度数相等,这是它非常重要的一个性质。
想象一下,我们在建筑设计中,如果要建造一个对称的屋顶,等腰三角形的结构就可能会被运用到。
因为它的对称性,能够让屋顶看起来更加美观和稳定。
在数学题目中,常常会利用等腰三角形的性质来求解角度或者边长。
比如说,已知一个等腰三角形的顶角是 80 度,那么底角就是(180 80)÷ 2 = 50 度。
再来看等腰三角形的“三线合一”性质。
这可是个非常重要的宝贝!等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合。
这一性质在解决很多几何问题时都能起到关键作用。
假设我们有一个等腰三角形 ABC,AB = AC,AD 是底边 BC 上的中线。
因为是等腰三角形,所以∠BAD =∠CAD,AD 既是∠BAC 的平分线,又垂直于 BC,是底边 BC 上的高。
接下来聊聊等边三角形。
等边三角形,也叫正三角形,它的三条边都相等,三个角也都相等,并且每个角都是 60 度。
等边三角形可以说是等腰三角形的“进阶版”。
由于它的三条边都相等,所以它同时具有等腰三角形的所有性质。
在生活中,我们常见的交通警示标志,很多都是等边三角形的形状。
因为它的三条边相等,看起来更加规整、醒目,能够有效地引起人们的注意。
从数学角度来看,证明一个三角形是等边三角形也有多种方法。
如果一个三角形的三条边相等,那它肯定是等边三角形;或者三个角都相等的三角形是等边三角形;再或者有一个角是 60 度的等腰三角形是等边三角形。
我们来做一道小题目感受一下。
等腰三角形和等边三角形

等腰三角形和等边三角形三角形是几何学中最基本的图形之一,根据边的长度和角的大小可以分为不同类型,其中等腰三角形和等边三角形是两种常见的特殊三角形。
本文将介绍等腰三角形和等边三角形的定义、性质以及一些相关应用。
一、等腰三角形的定义和性质等腰三角形是指具有两条边长度相等的三角形。
根据等腰三角形的定义,我们可以得到以下性质:1. 两个底角相等:等腰三角形的两个底角(即底边对应的两个角)是相等的。
这是由于等腰三角形的两条边长度相等,所以其对应的两个角也相等。
2. 一个顶角:等腰三角形只有一个顶角(即不等于底角的角)。
这是由于等腰三角形的两条边长度相等,所以其对应的两个角必然相等,就只能是底角。
等腰三角形的性质使得它在几何学中具有一些特殊的用途和应用。
比如在建筑设计中,等腰三角形的对称性可以提供平衡感和美观感;在地质勘探中,等腰三角形的性质可以用于测量不可直接测量的距离等。
二、等边三角形的定义和性质等边三角形是指三条边长度均相等的三角形。
根据等边三角形的定义,我们可以得到以下性质:1. 三个内角均为60度:等边三角形的三个内角均相等,且都等于60度。
这是由于等边三角形的三条边长度相等,根据三角形内角和定理可知,三个内角之和为180度,所以每个角都是60度。
2. 三条高(垂直边)相等且相互重合:等边三角形的三条高(即垂直于底边的边)均相等,且相互重合。
这是由于等边三角形的三个内角都是60度,所以三条高形成的三个直角相等,从而高也相等。
等边三角形的性质使得它在几何学和其他领域中具有广泛的应用。
比如在建筑设计中,等边三角形可以提供稳定和均衡的结构;在工程测量中,等边三角形可以用于正方向标志和测量精度的校准等。
综上所述,等腰三角形和等边三角形是两种常见的特殊三角形。
等腰三角形具有两个底角相等和一个顶角的性质;而等边三角形具有三个内角均为60度和三条高相等且相互重合的性质。
这些性质使得它们在几何学和其他领域中具有一些特殊的应用,对于我们理解和应用三角形概念都有一定的帮助。
等边三角形与等腰三角形

等边三角形与等腰三角形数学中的几何形状有很多种,其中等边三角形和等腰三角形是初中数学中常见的两种形状。
它们具有一些特殊的性质和应用,对于中学生来说是必须掌握的知识点。
本文将从定义、性质和应用三个方面进行详细介绍。
一、等边三角形的定义及性质等边三角形是指三条边都相等的三角形。
我们可以通过测量三条边的长度来判断一个三角形是否为等边三角形。
等边三角形的特点是三个内角都相等,每个内角都是60度,这是因为等边三角形的三条边相等,所以三个内角也必然相等。
等边三角形的性质有以下几点:1. 等边三角形的三个内角都是60度。
2. 等边三角形的三条边相等。
3. 等边三角形的三条高线、三条中线、三条角平分线都重合于同一点,即重心。
4. 等边三角形的面积可以通过公式S = (边长^2 * √3) / 4来计算。
二、等腰三角形的定义及性质等腰三角形是指两条边相等的三角形。
我们可以通过测量三条边的长度来判断一个三角形是否为等腰三角形。
等腰三角形的特点是两个底角(底边所对的两个内角)相等,而顶角(顶边所对的内角)则不一定相等。
等腰三角形的性质有以下几点:1. 等腰三角形的两个底角相等。
2. 等腰三角形的两条边相等。
3. 等腰三角形的两条高线、两条中线、两条角平分线都重合于同一点,即重心。
4. 等腰三角形的面积可以通过公式S = (底边长 * 高) / 2来计算。
三、等边三角形和等腰三角形的应用等边三角形和等腰三角形在日常生活和数学问题中有着广泛的应用。
1. 建筑设计:等边三角形和等腰三角形是建筑设计中常见的形状,比如等边三角形的稳定性使其成为建筑物的基础结构;等腰三角形的对称性使其成为门窗设计的基础。
2. 地理测量:在地理测量中,等边三角形和等腰三角形可以用来计算地球的形状和大小,以及测量地球上的距离和角度。
3. 数学问题:等边三角形和等腰三角形经常出现在数学问题中,比如求解三角形的面积、角度、边长等。
4. 几何推理:通过等边三角形和等腰三角形的性质,可以进行几何推理,解决一些几何问题,培养学生的逻辑思维和推理能力。
等腰三角形和等边三角形的性质

等腰三角形和等边三角形的性质一、等腰三角形的性质1.1 定义:等腰三角形是指有两边相等的三角形。
1.2 两边相等:在等腰三角形中,两个底角相等,两条底边相等。
1.3 底角平分线:在等腰三角形中,底边的垂直平分线同时也是底角平分线。
1.4 顶角平分线:在等腰三角形中,顶角的平分线、底边的中线和底角的平分线三线合一。
1.5 面积公式:等腰三角形的面积公式为:S=12absinC,其中 a 和 b 分别为等腰三角形的底边,C 为顶角。
二、等边三角形的性质2.1 定义:等边三角形是指三边相等的三角形。
2.2 内角相等:在等边三角形中,三个内角都相等,每个内角为60∘。
2.3 外角相等:在等边三角形中,每个外角都相等,每个外角为120∘。
2.4 中线相等:在等边三角形中,三条中线相等,且都垂直于对边。
2.5 高线相等:在等边三角形中,三条高线相等,且都垂直于对边。
2.6 面积公式:等边三角形的面积公式为:S=√34a2,其中 a 为等边三角形的边长。
2.7 圆周角定理:在等边三角形中,每个圆周角都等于60∘。
2.8 圆心对称:等边三角形具有圆心对称性,即三角形的三条高线、三条中线、三条角平分线都相交于同一点,称为三角形的垂心。
2.9 稳定性:等边三角形是稳定的,不会因为外力的作用而变形。
总结:等腰三角形和等边三角形是特殊的三角形,它们具有独特的性质。
通过掌握这些性质,我们可以更好地理解和解决与等腰三角形和等边三角形相关的问题。
习题及方法:1.习题:判断以下三角形是否为等腰三角形。
解答:根据等腰三角形的性质,只需要判断两边是否相等即可。
如果两边相等,则为等腰三角形。
2.习题:已知等腰三角形的底边长为8cm,腰长为5cm,求该三角形的面积。
解答:根据等腰三角形的性质,底边上的高也是腰长的垂直平分线。
因此,可以将三角形分成两个直角三角形,每个直角三角形的底边为4cm,高为5cm。
面积公式为S=12×底边×高,所以面积为12×4cm×5cm=10cm2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础一般学生知识点一、等腰三角形1、等腰三角形的定义:两边相等的三角形叫做等腰三角形.2、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A∠-︒ 3、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
这个判定定理常用于证明同一个三角形中的边相等。
推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
等腰三角形的性质与判定等腰三角形性质等腰三角形判定中线1、等腰三角形底边上的中线垂直底边,平分顶角;2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。
1、两边上中线相等的三角形是等腰三角形;2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形角平分线 1、等腰三角形顶角平分线垂直平分底边; 2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。
1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。
高线 1、等腰三角形底边上的高平分顶角、平分底边;2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。
1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;2、有两条高相等的三角形是等腰三角形。
角 等边对等角 等角对等边边底的一半<腰长<周长的一半 两边相等的三角形是等腰三角形题型体系一、等腰三角形例1、等腰三角形ABC 中,AB=AC ,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.例2、如图,AB AC =,30BAD ∠=,且AD AE =.求EDC ∠的度数.【经典练习】如图△ABC 中,AB=AC ,AD 、BE 是△ABC 的高,它们相交于H ,且AE=BE.求证:AH=2BD .例3、已知:如图,△ABC 中,D 在AB 上,E 在AC 延长线上,且BD =CE ,DE 交BC 于M ,MD =ME ,求证:△ABC 是等腰三角形.【经典练习】如图,ABC ∆中,90ACB ∠=,CD BA ⊥于D ,AE 平分BAC ∠交DC B AEMD C BA于F,交BC于E,求证:CEF∆是等腰三角形.知识点二、等边三角形1、等边三角形定义:三条边都相等的三角形叫做等边三角形,又称正三角形.2、等边三角形的性质:等边三角形的三边相等,三个内角都相等,并且每一个内角都等于60°.注意:等边三角形是特殊的等腰三角形,具有等腰三角形的性质.等边三角形是轴对称图形,有三条对称轴.3、等边三角形的判定:三条边都相等的三角形是等边三角形;三个内角都相等的三角形是等边三角形;有一个内角是60°的等腰三角形是等边三角形.题型体系二、等边三角形例4、如图,等边三角形ABC中,D、E分别为AB、BC边上的点,AD BE=,AE与CD交于点F,AG CD⊥于点G,则AGAF的值为.例5、如图,△ABC为等边三角形,且∠1=∠2=∠3.求∠BEC的度数;△DEF是等边三角形吗?请说明理由.CABCAFBEG课后作业学生姓名: 家长签字: 日期:1、如下图,△MNP 中, ∠P=60°,MN=NP ,MQ ⊥PN ,垂足为Q ,延长MN 至G ,取NG=NQ ,若△MNP 的周长为12,MQ=a ,则△MGQ 周长是?2、如图,∠ABC=50°,∠ACB=80°,延长CB 到D ,使BD=AB ,延长BC 到E ,使CE=CA ,连接AD .AE ,则∠DAE=_______.EDCB A3、如图5,在△ABC 中,AB =AC ,点O 在△ABC 内,OB =OC , 求证:AO ⊥BC.4、如图,在△ABC 中,∠A =90°,AB =AC ,D 为BC 边中点,E 、F 分别在AB 、AC 上,且DE ⊥DF ,求证:AE +AF 是一个定值.PQ MN G 图5图11基础良好学生 知识体系1、等腰三角形性质定理:等腰三角形的两个底角相等(简称“等边对等角”)2、等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合,简述为“三线合一”3、等边三角形的性质定理:等边三角形的三个角都相等,并且每个角都等于060 4、等腰三角形、等边三角形的判定定理:(1)有两个角相等的三角形是等腰三角形(简称为:等角对等边) (2)有一个角等于060的等腰三角形是等边三角形(3)在直角三角形中,如果一个锐角等于030,那么它所对的直角边等于斜边的一半。
(4)三个角都相等的三角形是等边三角形 5、等腰三角形中的特殊线段:(1)两底角的平分线;(2)两要上的高;(3)两腰上的中线;(4)底边上的高上的任一点向两腰所引的垂线段对应相等。
题型体系例1、如图,在△ABC 中,AB = AC ,AD ⊥AC ∠BAC = 100°。
求∠1、∠3、∠B 的度数。
例2、如图,△ABC 和△DCE 都是等边三角形,D 是△ABC 的边BC 上的一点,连接AD 、BE 。
求证:AD = BE 。
例3、如图,ABC 中,BD ⊥AC 于D ,CE ⊥AB 于E ,BD = CE 。
求证:是等腰三角形。
321ABCDCBAEE ABCD例4、已知:如图,△ABC 是等边三角形,DE ∥BC ,交AB 、AC 于D 、E 。
求证:△ADE 是等边三角形例5、证明:等腰三角形两底角的平分线相等。
(已知:如图,在△ABC 中,AB = AC ,BD ,CE 是△ABC 的角平分线。
求证:BD = CE 。
)★例6、如图,△ABC 是等边三角形,BD = CE ,∠1 =∠2。
求证:△ADE 是等边三角形。
21EABCDE A BCD EA B CD课堂检测一、填空题1、已知等腰三角形一个内角的度数为30°,那么它的底角的度数是_________.2、等腰三角形的两边长分别为3厘米和6厘米,这个三角形的周长为_________3、一个等边三角形的角平分线、高、中线的总条数为_________.4、由在同一三角形中“等角对等边”“等边对等角”两个定理我们可以联想到大边对_________,大角对_________.5、如图(1),在中,平分,则D点到AB的距离为________.6、如图(2),在中,平分,若,则.图(1)图(2)图(3)图(4)7、如图(3),,AB的垂直平分线交AC于D,则.8、如图(4),中,DE垂直平分的周长为13,那么的周长为__________.二、选择题1、给出下列命题,正确的有()①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形A.1个B.2个C.3个D.4个2、若等腰△ABC的顶角为∠A,底角为∠B=α,则α的取值范围是()A.α<45°B.α<90°C.0°<α<90°D.90°<α<180°3、下列命题,正确的有()①三角形的一条中线必平分该三角形的面积;②直角三角形中30°角所对的边等于另一边的一半;③有一边相等的两个等边三角形全等;④等腰三角形底边上的高把原三角形分成两个全等的三角形A.1个B.2个C.3个D.4个4、若三角形的一边等于另一边的一半,那么这边所对的角度为( )A.30°B.45°C.60°D.无法确定5、如果三角形一边的中线和这边上的高重合,则这个三角形是( )A.等边三角形B.等腰三角形C.锐角三角形D.钝角三角形6、△ABC 中, AB=AC , CD 是△ABC 的角平分线, 延长BA 到E 使DE=DC , 连结EC , 若 ∠E =51°,则∠B 等于( )A.60°B.52°C.51°D.78°7、在△ABC 中∠A ∶∠B ∶∠C=1∶2∶3,CD ⊥AB 于D 点,AB=a ,则BD 的长为( )A.2aB.3aC.4aD.以上都不对三、解答题1、如图,求作一点P ,使 ,并且使点P 到 的两边的距离相等,并说明你的理由.2、如图,在AB =AC 的△ABC 中,D 点在AC 边上,使BD =BC ,E 点在AB 边上,使AD =DE =EB ,求∠ED B.【课后作业】姓名成绩家长签名一、填空题1、底与腰不等的等腰三角形有__________条对称轴,等边三角形有__________条对称轴.请你在图(1)中作出等腰△ABC,等边△DEF的对称轴.(1) (2)2、如图(2),已知△ABC是等边三角形,AD∥BC,CD⊥AD,垂足为D、E为AC的中点,AD=DE=6 cm则∠ACD=(__________)°,AC=__________cm,∠DAC=(__________)°,△ADE是__________三角形.3、如左下图,△ABC是等边三角形,AD⊥BC,DE⊥AB,垂足分别为D,E,如果AB=8 cm,则BD=__________cm,∠BDE=(__________)°,BE=__________cm.4、如右上图,Rt△ABC中,∠A=30°,AB+BC=12 cm,则AB=__________cm.二、选择题1、下列说法不正确的是()A.等边三角形只有一条对称轴B.线段AB只有一条对称轴C.等腰三角形的对称轴是底边上的中线所在的直线D.等腰三角形的对称轴是底边上的高所在的直线2、下列命题不正确的是()A.等腰三角形的底角不能是钝角B.等腰三角形不能是直角三角形C.若一个三角形有三条对称轴,那么它一定是等边三角形D.两个全等的且有一个锐角为30°的直角三角形可以拼成一个等边三角形。