数据结构-实验五-图
数据结构实验五矩阵的压缩存储与运算学习资料

数据结构实验五矩阵的压缩存储与运算第五章矩阵的压缩存储与运算【实验目的】1. 熟练掌握稀疏矩阵的两种存储结构(三元组表和十字链表)的实现;2. 掌握稀疏矩阵的加法、转置、乘法等基本运算;3. 加深对线性表的顺序存储和链式结构的理解。
第一节知识准备矩阵是由两个关系(行关系和列关系)组成的二维数组,因此对每一个关系上都可以用线性表进行处理;考虑到两个关系的先后,在存储上就有按行优先和按列优先两种存储方式,所谓按行优先,是指将矩阵的每一行看成一个元素进行存储;所谓按列优先,是指将矩阵的每一列看成一个元素进行存储;这是矩阵在计算机中用一个连续存储区域存放的一般情形,对特殊矩阵还有特殊的存储方式。
一、特殊矩阵的压缩存储1. 对称矩阵和上、下三角阵若n阶矩阵A中的元素满足= (0≤i,j≤n-1 )则称为n阶对称矩阵。
对n阶对称矩阵,我们只需要存储下三角元素就可以了。
事实上对上三角矩阵(下三角部分为零)和下三角矩阵(上三角部分为零),都可以用一维数组ma[0.. ]来存储A的下三角元素(对上三角矩阵做转置存储),称ma为矩阵A的压缩存储结构,现在我们来分析以下,A和ma之间的元素对应放置关系。
问题已经转化为:已知二维矩阵A[i,j],如图5-1,我们将A用一个一维数组ma[k]来存储,它们之间存在着如图5-2所示的一一对应关系。
任意一组下标(i,j)都可在ma中的位置k中找到元素m[k]= ;这里:k=i(i+1)/2+j (i≥j)图5-1 下三角矩阵a00 a10 a11 a20 … an-1,0 … an-1,n-1k= 0 1 2 3 …n(n-1)/2 …n(n+1)/2-1图5-2下三角矩阵的压缩存储反之,对所有的k=0,1,2,…,n(n+1)/2-1,都能确定ma[k]中的元素在矩阵A中的位置(i,j)。
这里,i=d-1,(d是使sum= > k的最小整数),j= 。
2. 三对角矩阵在三对角矩阵中,所有的非零元素集中在以主对角线为中心的带内状区域中,除了主对角线上和直接在对角线上、下方对角线上的元素之外,所有其它的元素皆为零,见图5-3。
《数据结构》实验报告

苏州科技学院数据结构(C语言版)实验报告专业班级测绘1011学号10201151姓名XX实习地点C1 机房指导教师史守正目录封面 (1)目录 (2)实验一线性表 (3)一、程序设计的基本思想,原理和算法描述 (3)二、源程序及注释(打包上传) (3)三、运行输出结果 (4)四、调试和运行程序过程中产生的问题及采取的措施 (6)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (6)实验二栈和队列 (7)一、程序设计的基本思想,原理和算法描述 (8)二、源程序及注释(打包上传) (8)三、运行输出结果 (8)四、调试和运行程序过程中产生的问题及采取的措施 (10)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (10)实验三树和二叉树 (11)一、程序设计的基本思想,原理和算法描述 (11)二、源程序及注释(打包上传) (12)三、运行输出结果 (12)四、调试和运行程序过程中产生的问题及采取的措施 (12)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (12)实验四图 (13)一、程序设计的基本思想,原理和算法描述 (13)二、源程序及注释(打包上传) (14)三、运行输出结果 (14)四、调试和运行程序过程中产生的问题及采取的措施 (15)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (16)实验五查找 (17)一、程序设计的基本思想,原理和算法描述 (17)二、源程序及注释(打包上传) (18)三、运行输出结果 (18)四、调试和运行程序过程中产生的问题及采取的措施 (19)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (19)实验六排序 (20)一、程序设计的基本思想,原理和算法描述 (20)二、源程序及注释(打包上传) (21)三、运行输出结果 (21)四、调试和运行程序过程中产生的问题及采取的措施 (24)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (24)实验一线性表一、程序设计的基本思想,原理和算法描述:程序的主要分为自定义函数、主函数。
数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。
图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。
图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。
本文将详细讲解图的遍历算法及其应用。
二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。
(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。
(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。
(4)重复步骤(2)和(3),直到栈为空。
2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。
(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。
(3)重复步骤(2),直到队列为空。
三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。
1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。
图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。
具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。
(2)重复步骤(1),直到所有顶点都被访问。
2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。
数据结构实验五(二叉树的建立及遍历)题目和源程序

实验5:二叉树的建立及遍历(第十三周星期三7、8节)一、实验目的1.学会实现二叉树结点结构和对二叉树的基本操作。
2.掌握对二叉树每种操作的具体实现,学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。
二、实验要求1.认真阅读和掌握和本实验相关的教材内容。
2.编写完整程序完成下面的实验内容并上机运行。
3.整理并上交实验报告。
三、实验内容1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历并计算出二叉树的高度。
2 .编写程序生成下面所示的二叉树,并采用中序遍历的非递归算法对此二叉树进行遍历。
四、思考与提高1.如何计算二叉链表存储的二叉树中度数为1的结点数?2.已知有—棵以二叉链表存储的二叉树,root指向根结点,p指向二叉树中任一结点,如何求从根结点到p所指结点之间的路径?/*----------------------------------------* 05-1_递归遍历二叉树.cpp -- 递归遍历二叉树的相关操作* 对递归遍历二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>typedef char ElemType;using namespace std;typedef struct BiTNode {ElemType data;//左右孩子指针BiTNode *lchild, *rchild;}BiTNode, *BiTree;//动态输入字符按先序创建二叉树void CreateBiTree(BiTree &T) {char ch;ch = cin.get();if(ch == ' ') {T = NULL;}else {if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!" << endl;}else {//生成根结点T = (BiTNode * )malloc(sizeof(BiTNode));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);}}}//输出e的值ElemType PrintElement(ElemType e) { cout << e << " ";return e;}//先序遍历void PreOrderTraverse(BiTree T) { if (T != NULL) {//打印结点的值PrintElement(T->data);//遍历左孩子PreOrderTraverse(T->lchild);//遍历右孩子PreOrderTraverse(T->rchild);}}//中序遍历void InOrderTraverse(BiTree T) {if (T != NULL) {//遍历左孩子InOrderTraverse(T->lchild);//打印结点的值PrintElement(T->data);//遍历右孩子InOrderTraverse(T->rchild);}}//后序遍历void PostOrderTraverse(BiTree T) { if (T != NULL) {//遍历左孩子PostOrderTraverse(T->lchild);//遍历右孩子PostOrderTraverse(T->rchild);//打印结点的值PrintElement(T->data);}}//按任一种遍历次序输出二叉树中的所有结点void TraverseBiTree(BiTree T, int mark) {if(mark == 1) {//先序遍历PreOrderTraverse(T);cout << endl;}else if(mark == 2) {//中序遍历InOrderTraverse(T);cout << endl;}else if(mark == 3) {//后序遍历PostOrderTraverse(T);cout << endl;}else cout << "选择遍历结束!" << endl;}//输入值并执行选择遍历函数void ChoiceMark(BiTree T) {int mark = 1;cout << "请输入,先序遍历为1,中序为2,后序为3,跳过此操作为0:";cin >> mark;if(mark > 0 && mark < 4) {TraverseBiTree(T, mark);ChoiceMark(T);}else cout << "此操作已跳过!" << endl;}//求二叉树的深度int BiTreeDepth(BiTNode *T) {if (T == NULL) {//对于空树,返回0并结束递归return 0;}else {//计算左子树的深度int dep1 = BiTreeDepth(T->lchild);//计算右子树的深度int dep2 = BiTreeDepth(T->rchild);//返回树的深度if(dep1 > dep2)return dep1 + 1;elsereturn dep2 + 1;}}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;bt = NULL; //将树根指针置空cout << "输入规则:" << endl<< "要生成新结点,输入一个字符,""不要生成新结点的左孩子,输入一个空格,""左右孩子都不要,输入两个空格,""要结束,输入多个空格(越多越好),再回车!"<< endl << "按先序输入:";CreateBiTree(bt);cout << "树的深度为:" << BiTreeDepth(bt) << endl;ChoiceMark(bt);return 0;}/*----------------------------------------* 05-2_构造二叉树.cpp -- 构造二叉树的相关操作* 对构造二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05-2.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>#define STACK_INIT_SIZE 100 //栈的存储空间初始分配量#define STACKINCREMENT 10 //存储空间分配增量typedef char ElemType; //元素类型using namespace std;typedef struct BiTNode {ElemType data; //结点值BiTNode *lchild, *rchild; //左右孩子指针}BiTNode, *BiTree;typedef struct {BiTree *base; //在栈构造之前和销毁之后,base的值为空BiTree *top; //栈顶指针int stacksize; //当前已分配的存储空间,以元素为单位}SqStack;//构造一个空栈void InitStack(SqStack &s) {s.base = (BiTree *)malloc(STACK_INIT_SIZE * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base;s.stacksize = STACK_INIT_SIZE;}//插入元素e为新的栈顶元素void Push(SqStack &s, BiTree e) {//栈满,追加存储空间if ((s.top - s.base) >= s.stacksize) {s.base = (BiTree *)malloc((STACK_INIT_SIZE+STACKINCREMENT) * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base + s.stacksize;s.stacksize += STACK_INIT_SIZE;}*s.top++ = e;}//若栈不空,则删除s的栈顶元素,并返回其值BiTree Pop(SqStack &s) {if(s.top == s.base)cout << "栈为空,无法删除栈顶元素!" << endl;s.top--;return *s.top;}//按先序输入字符创建二叉树void CreateBiTree(BiTree &T) {char ch;//接受输入的字符ch = cin.get();if(ch == ' ') {//分支结束T = NULL;} //if' 'endelse if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!(接着输入)" << endl;} //if'\n'endelse {//生成根结点T = (BiTNode * )malloc(sizeof(BiTree));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);} //Create end}//输出e的值,并返回ElemType PrintElement(ElemType e) {cout << e << " ";return e;}//中序遍历二叉树的非递归函数void InOrderTraverse(BiTree p, SqStack &S) {cout << "中序遍历结果:";while(S.top != S.base || p != NULL) {if(p != NULL) {Push(S,p);p = p->lchild;} //if NULL endelse {BiTree bi = Pop(S);if(!PrintElement(bi->data))cout << "输出其值未成功!" << endl;p = bi->rchild;} //else end} //while endcout << endl;}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;SqStack S;InitStack(S);bt = NULL; //将树根指针置空cout << "老师要求的二叉树序列(‘空’表示空格):""12空空346空空空5空空,再回车!"<< endl << "请按先序输入一个二叉树序列(可另输入,但要为先序),""无左右孩子则分别输入空格。
数据结构实验报告五,查找与排序-

数据结构实验报告五,查找与排序-查找与排序一、实验目的:1.理解掌握查找与排序在计算机中的各种实现方法。
2.学会针对所给问题选用最适合的算法。
3.熟练掌握常用排序算法在顺序表上的实现。
二、实验要求:掌握利用常用的查找排序算法的思想来解决一般问题的方法和技巧,进行算法分析并写出实习报告。
三、实验内容及分析:设计一个学生信息管理系统,学生对象至少要包含:学号、性别、成绩1、成绩总成绩等信息。
要求实现以下功能:1.平均成绩要求自动计算;2.查找:分别给定学生学号、性别,能够查找到学生的基本信息(要求至少用两种查找算法实现);3.? 排序:分别按学生的学号、成绩1、成绩2、平均成绩进行排序(要求至少用两种排序算法实现)。
四、程序的调试及运行结果五、程序代码#includestdio.h#includestring.hstruct student//定义结构体{char name;int a1,a2,a3,num;double pow;}zl;int count=0;void jiemian1(); //主界面//函数声明int jiemian2(); //选择界面void luru(); //录入函数void xianshi(); //显示void paixv(); //排序void diaoyong(int); //循环调用选择界面void tianjia(); //添加信息void chaxun1(); //按学号查询详细信息void chaxun2(); //按姓名查询详细信息void xiugai(); //修改信息void shanchu(); //删除信息void main() //main函数{jiemian1();//函数点用}void jiemian1() //主界面定义{char a;printf(“\n\n\n\n\t\t\t学员信息管理器\n\n\n\t\t\t 数据结构课程设计练习六\n\n\n\t\t\t 09信计2:于学彬\n\n“);printf("\n\t\t\t 按回车键继续:");scanf("%c",system("cls");jiemian2();}int jiemian2() //选择界面{int a,b;printf("*******************************主要功能********************************");printf("\n\n\n\n\t\t\t\t1.录入信息\n\n\t\t\t\t2.添加信息\n\n\t\t\t\t3.查看信息\n\n\t\t\t\t4.查询信息\n\n\t\t\t\t5.修改信息\n\n\t\t\t\t6.删除信息\n\n\t\t\t\t7.退出\n\n\t\t\t\t请选择:");scanf("%d",switch(a){case 1:system("cls");luru();break;case 2:system("cls");tianjia();break;case 3:system("cls");paixv();break;case 4:system("cls");printf("1.按学号查询详细信息\n2.按姓名查询详细信息\n请选择:");scanf("%d",switch(b){case 1:system("cls");chaxun1();break;case 2:system("cls");chaxun2();break;} break;case 5:system("cls");xiugai();break;case 6:system("cls");shanchu();break;case 7:system("cls");return a;break;}}void diaoyong(int b) //循环调用选择界面{char a='y';printf("是否返回选择页(y/n):");fflush(stdin);//清空输入缓冲区,通常是为了确保不影响后面的数据读取(例如在读完一个字符串后紧接着又要读取一个字符,此时应该先执行fflush(stdin);)a=getchar();system("cls");while(a=='y'||a=='Y'){b=jiemian2();if(b==7){break;}}}void luru() //录入函数{char a;//='y';do{printf("请输入学员信息:\n");printf("学号:");scanf("%d",zl[count].num);//调用结构体printf("姓名:");fflush(stdin);gets(zl[count].name);printf("三门成绩:\n");printf("成绩1:");scanf("%d",zl[count].a1);printf("成绩2:");scanf("%d",zl[count].a2);printf("成绩3:");scanf("%d",zl[count].a3);zl[count].pow=(zl[count].a1+zl[count].a2+zl[count].a3)/3;//求平均数printf("是否继续(y/n):");fflush(stdin);a=getchar();count++;system("cls");}while(a=='y'count100);//paixv();diaoyong(count);}void tianjia() //添加信息{char a='y';do{printf("请输入学员信息:\n");printf("学号:");scanf("%d",zl[count].num);printf("姓名:");//fflush(stdin);gets(zl[count].name);printf("三门成绩:\n");printf("成绩1:");scanf("%d",zl[count].a1);printf("成绩2:");scanf("%d",zl[count].a2);printf("成绩3:");scanf("%d",zl[count].a3);zl[count].pow=(zl[count].a1+zl[count].a2+zl[count].a3)/3; printf("是否继续(y/n):");//fflush(stdin);a=getchar();count++;system("cls");}while(a=='y'count100);paixv(count);diaoyong(count);}void xianshi() //显示{int i;printf("学号\t \t姓名\t\t\t平均成绩\n");for(i=0;icount;i++){printf("%d\t \t%s\t\t\t%f\n",zl[i].num,zl[i].name,zl[i].pow); }}void paixv() //排序{int i,j;struct student zl1;printf("排序前:\n");xianshi();for(i=0;icount;i++){for(j=1;jcount-i;j++){if(zl[j-1].powzl[j].pow){zl1=zl[j-1];zl[j-1]=zl[j];zl[j]=zl1;}}}printf("排序后:\n");xianshi();diaoyong(count);}void chaxun1() //按学号查询详细信息{int i,num;printf("请输入要查询学员的学号:");scanf("%d",num);printf("学号\t姓名\t成绩1\t成绩2\t成绩3\t平均成绩\n"); for(i=0;icount;i++){if(zl[i].num==num){printf("%d\t%s\t%d\t%d\t%d\t%.2f\n",zl[i].num,zl[i].name,zl[i].a1,zl[i].a2,zl [i].a3,zl[i].pow);}}diaoyong(count);}void chaxun2() //按姓名查询详细信息{int i;struct student zl1;printf("请输入要查询学员的姓名:");fflush(stdin);gets();printf("学号\t姓名\t成绩1\t成绩2\t成绩3\t平均成绩\n");for(i=0;icount;i++){if((strcmp(zl[i].name,))==0)//比较两个字符串的大小{printf("%d\t%s\t%d\t%d\t%d\t%.2f\n",zl[i].num,zl[i].name,zl[i].a1,zl[i].a2,zl [i].a3,zl[i].pow);}}diaoyong(count);}void xiugai() //修改信息{int i,num;printf("请输入要查询学员的学号:");scanf("%d",num);printf("学号\t姓名\t成绩1\t成绩2\t成绩3\t平均成绩\n");for(i=0;icount;i++){if(zl[i].num==num){break;}}printf("%d\t%s\t%d\t%d\t%d\t%.2f\n",zl[i].num,zl[i].name,zl[i].a1,zl[i].a2,zl [i].a3,zl[i].pow);printf("请输入学员信息:\n");printf("学号:");scanf("%d",zl[i].num);printf("姓名:");fflush(stdin);gets(zl[i].name);printf("三门成绩:\n");printf("成绩1:");scanf("%d",zl[i].a1);printf("成绩2:");scanf("%d",zl[i].a2);printf("成绩3:");scanf("%d",zl[i].a3);zl[i].pow=(zl[i].a1+zl[i].a2+zl[i].a3)/3;printf("学号\t姓名\t成绩1\t成绩2\t成绩3\t平均成绩\n"); printf("%d\t%s\t%d\t%d\t%d\t%.2f\n",zl[i].num,zl[i].name,zl[i].a1,zl[i].a2,zl[i].a3,zl[i].pow);diaoyong(count);}void shanchu() //删除信息{int num,i,j;printf("请输入要删除的学员学号:");scanf("%d",num);for(i=0;icount;i++){if(zl[i].num==num){for(j=i;jcount;j++){zl[j]=zl[j+1];}}}count--;xianshi();diaoyong(count);}。
数据结构——查找,顺序查找,折半查找

实验五查找的应用一、实验目的:1、掌握各种查找方法及适用场合,并能在解决实际问题时灵活应用。
2、增强上机编程调试能力。
二、问题描述1.分别利用顺序查找和折半查找方法完成查找。
有序表(3,4,5,7,24,30,42,54,63,72,87,95)输入示例:请输入查找元素:52输出示例:顺序查找:第一次比较元素95第二次比较元素87 ……..查找成功,i=**/查找失败折半查找:第一次比较元素30第二次比较元素63 …..2.利用序列(12,7,17,11,16,2,13,9,21,4)建立二叉排序树,并完成指定元素的查询。
输入输出示例同题1的要求。
三、数据结构设计(选用的数据逻辑结构和存储结构实现形式说明)(1)逻辑结构设计顺序查找和折半查找采用线性表的结构,二叉排序树的查找则是建立一棵二叉树,采用的非线性逻辑结构。
(2)存储结构设计采用顺序存储的结构,开辟一块空间用于存放元素。
(3)存储结构形式说明分别建立查找关键字,顺序表数据和二叉树数据的结构体进行存储数据四、算法设计(1)算法列表(说明各个函数的名称,作用,完成什么操作)序号 名称 函数表示符 操作说明1 顺序查找 Search_Seq 在顺序表中顺序查找关键字的数据元素2 折半查找 Search_Bin 在顺序表中折半查找关键字的数据元素3 初始化 Init 对顺序表进行初始化,并输入元素4 树初始化 CreateBST 创建一棵二叉排序树5 插入 InsertBST 将输入元素插入到二叉排序树中6 查找 SearchBST在根指针所指二叉排序树中递归查找关键字数据元素 (2)各函数间调用关系(画出函数之间调用关系)typedef struct { ElemType *R; int length;}SSTable;typedef struct BSTNode{Elem data; //结点数据域 BSTNode *lchild,*rchild; //左右孩子指针}BSTNode,*BSTree; typedef struct Elem{ int key; }Elem;typedef struct {int key;//关键字域}ElemType;(3)算法描述int Search_Seq(SSTable ST, int key){//在顺序表ST中顺序查找其关键字等于key的数据元素。
数据结构图的实验报告

数据结构图的实验报告数据结构图的实验报告引言:数据结构图是计算机科学中重要的概念之一。
它是一种用图形表示数据元素之间关系的数据结构,广泛应用于算法设计、程序开发和系统优化等领域。
本实验报告旨在介绍数据结构图的基本原理、实验过程和结果分析。
一、实验目的本次实验的主要目的是掌握数据结构图的基本概念和操作方法,以及通过实验验证其在解决实际问题中的有效性。
具体而言,我们将通过构建一个社交网络关系图,实现对用户关系的管理和分析。
二、实验方法1. 确定数据结构在本次实验中,我们选择了无向图作为数据结构图的基础。
无向图由顶点集和边集组成,每条边连接两个顶点,且没有方向性。
2. 数据输入为了模拟真实的社交网络,我们首先需要输入一组用户的基本信息,如姓名、年龄、性别等。
然后,根据用户之间的关系建立边,表示用户之间的交流和联系。
3. 数据操作基于构建好的数据结构图,我们可以进行多种操作,如添加用户、删除用户、查询用户关系等。
这些操作将通过图的遍历、搜索和排序等算法实现。
三、实验过程1. 数据输入我们首先创建一个空的无向图,并通过用户输入的方式逐步添加用户和用户关系。
例如,我们可以输入用户A和用户B的姓名、年龄和性别,并建立一条边连接这两个用户。
2. 数据操作在构建好数据结构图后,我们可以进行多种操作。
例如,我们可以通过深度优先搜索算法遍历整个图,查找与某个用户具有特定关系的用户。
我们也可以通过广度优先搜索算法计算某个用户的社交网络影响力,即与该用户直接或间接相连的其他用户数量。
3. 结果分析通过实验,我们可以观察到数据结构图在管理和分析用户关系方面的优势。
它能够快速地找到用户之间的关系,帮助我们了解用户的社交网络结构和影响力。
同时,数据结构图也为我们提供了一种可视化的方式来展示用户之间的关系,使得分析更加直观和易于理解。
四、实验结果通过实验,我们成功构建了一个社交网络关系图,并实现了多种数据操作。
我们可以根据用户的姓名、年龄和性别等信息进行查询,也可以根据用户之间的关系进行遍历和排序。
数据结构试验报告-图的基本操作

中原工学院《数据结构》实验报告学院:计算机学院专业:计算机科学与技术班级:计科112姓名:康岩岩学号:201100814220 指导老师:高艳霞2012-11-22实验五图的基本操作一、实验目的1、使学生可以巩固所学的有关图的基本知识。
2、熟练掌握图的存储结构。
3、熟练掌握图的两种遍历算法。
二、实验内容[问题描述]对给定图,实现图的深度优先遍历和广度优先遍历。
[基本要求]以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。
以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。
【测试数据】由学生依据软件工程的测试技术自己确定。
三、实验前的准备工作1、掌握图的相关概念。
2、掌握图的逻辑结构和存储结构。
3、掌握图的两种遍历算法的实现。
四、实验报告要求1、实验报告要按照实验报告格式规范书写。
2、实验上要写出多批测试数据的运行结果。
3、结合运行结果,对程序进行分析。
【设计思路】【代码整理】#include "stdafx.h"#include <iostream>#include <malloc.h>using namespace std;typedef int Status;#define OK 1#define ERROR 0#define OVERFLOW -1#define MAX_SIZE 20typedef enum{DG,DN,UDG,UDN}Kind;typedef struct ArcNode{int adjvex; //顶点位置struct ArcNode *nextarc; //下一条弧int *info; //弧信息};typedef struct{char info[10]; //顶点信息ArcNode *fistarc; //指向第一条弧}VNode,AdjList[MAX_SIZE];typedef struct{AdjList vertices;int vexnum,arcnum; //顶点数,弧数int kind; //图的种类,此为无向图}ALGraph;//这是队列的节点,仅用于广度优先搜索typedef struct Node{int num;struct Node* next;};//队列的头和尾typedef struct{Node * front;Node *rear;}PreBit;int LocateV ex(ALGraph G,char info[]);//定位顶点的位置Status addArcNode(ALGraph &G,int adjvex); //图中加入弧Status CreatGraph(ALGraph&G);//创建图的邻接表Status DFSTraverse(ALGraph G);//深度优先搜索Status BFSTraverse(ALGraph G);//广度优先搜索Status DFS(ALGraph G,int v);//深度优先搜索中的数据读取函数,用于递归bool visited[MAX_SIZE]; // 访问标志数组//初始化队列Status init_q(PreBit&P_B){P_B.front=P_B.rear=(Node*)malloc(sizeof(Node));if(!P_B.front){exit(OVERFLOW);}P_B.front->next=NULL;}//将数据入队Status en_q(PreBit & P_B,int num){Node *p=(Node*)malloc(sizeof(Node));if(!p){exit(OVERFLOW);}p->num=num;p->next=NULL;P_B.rear->next=p;P_B.rear=p;return OK;}//出队Status de_q(PreBit & P_B){if(P_B.front==P_B.rear){return ERROR;}Node* p=P_B.front->next;P_B.front->next=p->next;if(P_B.rear==p){P_B.rear=P_B.front;}free(p);return OK;}Status CreatGraph(ALGraph&G){cout<<"请输入顶点数目和弧数目"<<endl;cin>>G.vexnum>>G.arcnum;//依次输入顶点信息for(int i=0;i<G.vexnum;i++){cout<<"请输入顶点名称"<<endl;cin>>G.vertices[i].info;G.vertices[i].fistarc=NULL;}//依次输入弧信息for(int k=1;k<=G.arcnum;k++){char v1[10],v2[10]; //用于表示顶点名称的字符数组int i,j; //表示两个顶点的位置BACK: //返回点cout<<"请输入第"<<k<<"条弧的两个顶点"<<endl;cin>>v1>>v2;i=LocateV ex(G,v1); //得到顶点v1的位置j=LocateV ex(G,v2); //得到顶点v2的位置if(i==-1||j==-1){ //头信息不存在则返回重输cout<<"不存在该节点!"<<endl;goto BACK; //跳到BACK 返回点}addArcNode(G,i); //将弧的顶点信息插入表中addArcNode(G,j);}return OK;}//倒序插入弧的顶点信息Status addArcNode(ALGraph &G,int adjvex){ArcNode *p; //弧节点指针p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=adjvex;p->nextarc=G.vertices[adjvex].fistarc;//指向头结点的第一条弧G.vertices[adjvex].fistarc=p; //头结点的第一条弧指向p,即将p作为头结点的第一条弧return OK;}//定位顶点的位置int LocateV ex(ALGraph G,char info[]){for(int i=0;i<G.vexnum;i++){if(strcmp(G.vertices[i].info,info)==0){ //头结点名称与传入的信息相等,证明该头节点存在return i; //此时返回位置}}return -1;}//深度优先搜索Status DFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int i;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;i=LocateV ex(G,v1);if(i==-1){cout<<"不存在该节点!"<<endl;goto BACK;}DFS(G,i);return OK;}//深度优先搜索递归访问图Status DFS(ALGraph G,int v){visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息ArcNode *p;p=G.vertices[v].fistarc; //向头节点第一条while(p) //当弧存在{if(!visited[p->adjvex]){DFS(G,p->adjvex); //递归读取}p=p->nextarc;}return OK;}//广度优先搜索Status BFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int v;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;v=LocateV ex(G,v1);if(v==-1){cout<<"不存在该节点!"<<endl;goto BACK;}PreBit P_B;init_q(P_B);ArcNode *p;visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息en_q(P_B,v); //将头位置v入队while(P_B.front!=P_B.rear){//当队列不为空时,对其进行访问int w=P_B.front->next->num;//读出顶点位置de_q(P_B);//顶点已经访问过,将其出队列p=G.vertices[w].fistarc;//得到与顶点相关的第一条弧while(p){if(!visited[p->adjvex]){en_q(P_B,p->adjvex);//将弧入队,但不读取,只是将其放在队尾}p=p->nextarc;}}return OK;}int _tmain(int argc, _TCHAR* argv[]){ALGraph G;CreatGraph(G);cout<<"深度优先搜索图:"<<endl;DFSTraverse(G);cout<<endl;cout<<"广度优先搜索图:"<<endl;BFSTraverse(G);cout<<endl;system("pause");return 0;}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构与算法课程实验报告实验五:图的相关算法应用
姓名:cll
班级:
学号:
【程序运行效果】
一、实验内容:
求有向网络中任意两点之间的最短路
实验目的:
掌握图和网络的定义,掌握图的邻接矩阵、邻接表和十字链表等存储表示。
掌握图的深度和广度遍历算法,掌握求网络的最短路的标号法和floyd算法。
二、问题描述:
对于下面一张若干个城市以及城市间距离的地图,从地图中所有可能的路径中求出任意两个城市间的最短距离及路径,给出任意两个城市间的最短距离值及途径的各个城市。
三、问题的实现:
3.1数据类型的定义
#define MAXVEX 50 //最大的顶点个数
#define MAX 100000
typedef struct{
char name[5]; //城市的名称
}DataType; //数据结构类型
typedef struct{
int arcs[MAXVEX][MAXVEX]; //临接矩阵
DataType data[MAXVEX]; //顶点信息
int vexs; //顶点数
}MGraph,*AdjMetrix; //邻接矩阵表示图
3.2主要的实现思路:
用邻接矩阵的方法表示各城市直接路线的图,之后用Floyd算法求解两点直接的最短距离,并用递归的方法求出途经的城市。
主要源程序代码:
#include<stdio.h>
#include<string.h>
#define MAXVEX 50
#define MAX 100000
typedef struct{
char name[5]; //城市的名称
}DataType; //数据结构类型
typedef struct{
int arcs[MAXVEX][MAXVEX]; //临接矩阵
DataType data[MAXVEX]; //顶点信息
int vexs; //顶点数
}MGraph,*AdjMetrix;
//创建临接矩阵
void CreatGraph(AdjMetrix g,int m[][MAXVEX],DataType d[],int n){
/*g表示邻接矩阵,m[][MAXVEX]表示输入的邻接矩阵,d[]表示各城市的名称,n表示城市数目*/
int i,j;
g->vexs = n;
for(i=0;i < g->vexs;i++){
g->data[i] = d[i];
for(j=0;j<g->vexs;j++){
g->arcs[i][j] = m[i][j];
}
}
}
//求最短路径
void Floyd(AdjMetrix g,int F[][10],int path[][10]){
int i,j,k;
for(i=0;i<g->vexs;i++){
for(j=0;j<g->vexs;j++){
F[i][j] = g->arcs[i][j]; //初始化最短路径
path[i][j] = -1; //初始化路径为-1
}
}
//递推过程
for(k=0;k<g->vexs;k++){
for(i=0;i<g->vexs;i++){
for(j=0;j<g->vexs;j++){
if(F[i][j] > F[i][k]+F[k][j]){
F[i][j] = F[i][k] + F[k][j]; //更新最短距离的大小
path[i][j]=k;//保存两点之间最短路径经过的点
}
}
}
}
}
//递归实现最短路径途经的各个城市打印
void out(int a,int b,int path[][10],AdjMetrix g){
/*a表示起点城市,b表示终点城市,g表示邻接矩阵*/
if(path[a][b] == -1){
return; //说明该两点直接无途经的城市
}
out(a,path[a][b],path,g);
printf("%s->",g->data[path[a][b]].name);
out(path[a][b],b,path,g);
}
//主函数
void main(){
MGraph gg;
AdjMetrix g = ≫
DataType d[10] ={{0,"郑州"},{1,"北京"},{2,"天津"},{3,"南昌"},{4,"上海"},{5,"贵阳"},{6,"株洲"},{7,"广州"},{8,"兰州"},{9,"西宁"}};
int m[][MAXVEX] = {
{0,45,35,50,MAX,MAX,40,MAX,MAX,MAX},
{45,0,20,MAX,MAX,90,MAX,MAX,70,MAX},
{35,20,0,MAX,50,MAX,MAX,MAX,MAX,MAX},
{50,MAX,MAX,0,50,MAX,40,MAX,MAX,MAX},
{MAX,MAX,50,50,0,MAX,MAX,MAX,MAX,MAX},
{MAX,50,MAX,MAX,MAX,0,20,50,50,MAX},
{40,MAX,MAX,40,MAX,20,0,MAX,MAX,MAX},
{MAX,MAX,MAX,MAX,MAX,MAX,50,0,MAX,MAX},
{MAX,70,MAX,MAX,MAX,50,MAX,MAX,0,35},
{MAX,MAX,MAX,MAX,MAX,MAX,MAX,MAX,35,0},
};
CreatGraph(g,m,d,10); //创建临接矩阵
int F[10][10];
int path[10][10];
Floyd(g,F,path); //求最短路径
printf("******欢迎查询最短路径*****\n");
int choice=0;
while(choice == 0){
printf("请输入起点的名称:\n");
int b=-1;
char begin[5];
do{
scanf("%s",&begin);
int i;
for(i=0;i<10;i++){
if(!strcmp(begin,d[i].name)){
b = i;
}
}
if(b==-1){
printf("输入有误,请重新输入起点:\n");
}
}while(b==-1);
printf("请输入终点的名称:\n");
int L=-1;
char Last[5];
do{
scanf("%s",&Last);
int i;
for(i=0;i<10;i++){
if(!strcmp(Last,d[i].name)){
L = i;
}
}
if(L==-1){
printf("输入有误,请重新输入终点:\n");
}
}while(L==-1);
printf("\t%s到%s的最短距离为%d\t\n",begin,Last,F[b][L]);
printf("\t最短路径是:%s->",gg.data[b].name);
out(b,L,path,g);
printf("%s\n",gg.data[L].name);
printf("是否继续查询:0.查询;1.退出:\t");
scanf("%d",&choice) ;
}
}
总结:
1、Floyd求解任意两点间的最短距离,时间复杂度为O(n^3)。
2、算法中F[][]用于保存最短距离,F[][]初始时为两点间的直接距离
3、path[][]用于保存路径,若等于-1 则说明两点间的最短路径不经过其他点。
4、当图的边数远远小于图的顶点数的时候,邻接矩阵就变成了稀疏矩阵,此时邻接矩阵存储图就会浪费大量存储空间。
注:源程序见附件1.。